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Abstract. In modern video surveillance systems change and outlier detection
is of highest interest. Most of these systems are based on standard pixel-by-pixel
background modeling approaches. In this paper, we propose a novel robust block-
based background model that is suitable for outlier detection using an extension
to on-line boosting for feature selection. In order to be robust our system incor-
porates several novelties for previous proposed on-line boosting algorithms and
classifier-based background modeling systems. We introduce time-dependency
and control for on-line boosting. Our system allows for automatically adjusting
its temporal behavior to the underlying scene by using a control system which
regulates the model parameters. The benefits of our approach are illustrated on
several experiments on challenging standard datasets.

1 Introduction

For most video surveillance systems the detection of moving or intruding objects is of
crucial importance. Frequently simple background subtraction methods are applied, as
they are easy to implement and fast to compute. There objects are detected by blobs of
pixels which do not correspond to the background model.

In its simplest form the background model (BGM) is solely one image, called the
background image. Having this image, pixels are marked as foreground if they do not
fit to it, i.e., are more than a certain threshold above or below each pixel value. For
realistic applications and in order to handle different environmental conditions (e.g.,
changing lightening conditions or foreground models moving to background and vice
versa), more sophisticated, multi-modal statistical models such as Mixture of Gaussians
(GMM) [1] or Eigenbackgrounds [2] are often used. More efficient systems analyzing
foreground models [3] have been proposed. In order to further improve the robustness
some recent approaches exploit the spatial correlation between pixels arranged in blocks
(e.g., [4]), e.g., by describing statistics within one block using features [5], the entire
block is decided to be either background or foreground, which significantly improves
the detection reliability.

Furthermore, several adaptive methods for estimating a pixel-based BGM have been
proposed which update the existing image with respect to the current input frame (e.g.,
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Fig. 1. Comparison of BGM based on Gaussian Mixture Models (GMM) [1] and an on-line clas-
sifier grid [9] at a challenging Wallflower scene [10]. The first row depicts the results after 500
frames, where both adaptive approaches still perform well. From frame 829 to 1844 the lights are
switched off. The second line depicts the result at frame 1865. As can be seen, both approaches
fail because the GMM does not take neighboring pixels into account and the on-line classifier
drifts away due to false updates during the lights-off phase.

running average [6], temporal median filter [7], approximate median filter [8]). For
block-based BGMs adaptiveness can be achieved by describing each block with an
on-line classifier [9]. This, additionally, allows to adapt to continuous changes (e.g.,
illumination changes in outdoor scenes) while observing the scene.

Although being effective for describing highly dynamic scenes, yet, the main draw-
back (see also Section 2) of this on-line learner-based BGM is that its update strategy is
similar to a self-learning method since the model updates are directly based on its own
classifier predictions and can therefore end up in a catastrophic state (i.e., the model
drifts away). Due to this dependency on its own predictions, the model performs quite
well for a relatively short period of time but finally tends to learn foreground objects
very quickly without offering any control on its temporal behavior (see also Figure 1).
Furthermore, the cumbersome update strategy is highly scene dependent and, therefore,
has to be hand-tuned every now and then.

To sum up, previously proposed background models based on on-line classifiers
show high performance potentials but are only tediously, if not impossible, to be applied
in practice. In this paper we extend the classifier-based background model by using an
alternative version of the on-line learning algorithm which is controlled via temporal
aspects and is resistant to outliers. Furthermore, our proposed BGM is based on fixed
and simple update rules which yield stable results over a long period of time. Finally,
the period of time necessary for modeling regular and periodical scene behaviors does
not have to be hand-tuned but autonomously adapts to the underlying problem.

The rest of the paper is organized as follows. In Section 2 we extend the on-line
boosting approach to temporal aspects while in Section 3 we illustrate how these clas-
sifiers can be used for modeling backgrounds and present a general framework. In Sec-



tion 4 we (a) show illustrative examples and (b) evaluate the background model on
public available sequences. Section 5 concludes the paper and gives some ideas for
further research.

2 Time Dependent On-line Boosting

For off-line learning all labeled training samples have to be given in advance. Contrary,
on-line algorithms see each sample only once. They are necessary when (a) the whole
data does not fit into memory at once, (b) data becomes available only over time and
(c) the data generation process changes over time. Especially, for the last point the
algorithm has to be adaptive since the training data is not sampled always from one
fixed distribution. In such applications the control of time (forgetting old, irrelevant
information) is an important parameter.

Since in this work we use on-line boosting as learning algorithm , we start this
section with a short review of on-line boosting for feature selection. We then proceed
by extending it and introduce the time-dependent approach.

2.1 On-line Boosting for Feature Selection

In general, boosting (see [11] for a good introduction) is a widely used technique in
machine learning for improving the accuracy of any given learning algorithm. In fact,
boosting converts a weak learning algorithm into a strong one. Therefore, for an input
sample x a strong classifier hstrong(x) is computed as linear combination of a set of N
weak classifiers hweak

n (x):

hstrong(x) = sign(conf(x)) where conf(x) =
∑N

n=1 αn · hweak
n (x)∑N

n=1 αn

(1)

A weak classifier is a classifier which has to perform only slightly better than random
guessing, i.e., for a binary decision task, the error rate must be less than 50%. The weak
classifiers are trained by adapting the weights (initizalies equally) of the training sam-
ples. As conf(x) is bounded by [−1, 1] it can be interpreted as a confidence measure.
The higher the absolute value, the more confident is the result. Further, boosting can
be used for feature selection (Tieu and Viola [12]) where each feature (e.g., a Haar-
Wavelet) corresponds to a single weak classifier hweak

n .
Standard boosting as described above is an off-line learning procedure. In order

to be adaptive, we apply an on-line version of boosting for feature selection similar
to [13]. Here, the main idea is to introduce “selectors” and to perform boosting on
these selectors and not directly on the weak classifiers. Each selector hsel(x) holds a set
of M weak classifiers {hweak

1 (x), . . . , hweak
M (x)}. Training/Updating a selector means,

that each weak classifier in it gets updated and than it selects one of them according
to an optimization criterion. In fact we select the weak classifier hweak

i with the lowest
estimated error

ei =
λwrong

i

λcorr
i + λwrong

i

(2)



where λcorr
i and λwrong

i are sums of importance weights λ for correct and incorrect
seen samples so far. For updating the weak classifier two distributions of the feature
responds f(x) are estimated by two Gaussians where the parameter are determined via
a Kalman filtering technique.

P (+1|f(x)) ≈ N (µ+, σ+) and P (−1|f(x)) ≈ N (µ−, σ−) (3)

for the positive and negative samples, respectively. They are then used to build a simple
hypothesis which corresponds to a weak classifier. Moreover, the importance/difficulty
λ (initialized by 1) of a sample is estimated by propagating it through the set of selec-
tors. There, it is used to update each weak classifier and for selecting one of those.

Concerning robust adaptiveness, this approach has several limitations: First, the
sample weights contribute forever to the entire model statistics and are only unlearned
(i.e., getting less important) by updating the system with new ones. Hence, there is yet
no control how fast information “fades” away and new one is gained. Second, samples
with high errors get a much higher weight assigned than low-error samples. When sam-
pling always from the same (static) distribution this is perfect, since boosting focuses on
the difficult examples. Nevertheless, this makes the system extremely sensitive to label
noise and, especially when dealing with an adaptive learning problem, this assumption
makes no sense anymore.

2.2 Time Dependent On-line Boosting for Feature Selection

Our first change to on-line boosting considers the basic assumption that the examples
are all drawn from a fixed distribution. As we aspire fading memory we propose to use
exponential forgetting of the examples over time. Therefore, we define the following
update rule for the estimation of the value ŵt using the previous value ŵt−1 and a new
measurement w

ŵt = Kŵt−1 + (1−K)w where K = ∆t
√

0.5 (4)

gives the factor of how much previous information should be kept. In particular, it
determines that half the information is kept in the time interval ∆t. Once defined, this
rule can now be easily used for all dynamic elements of the system. Especially, we
incorporate this update rule for estimating the probability density functions (replacing
the Kalman filtering like updates of mean and variance in Equation 3) of the weak
classifier as well as the estimated errors , i.e., both λcorr and λwrong in Equation 2.

The second change limits the effect of label noise. Each new incoming sample
〈xt, yt〉 for the first selector is initialized with the importance λ = 1. This means if
it is well predictable its importance decreases by propagating through all the selectors
otherwise increases. Assuming label noise a single noisy example can get very high
importance and can change the entire model statistics rapidly. Therefore, we propose
to keep the importance of the samples at the end of the ensemble constant. We first
propagate the example through the set of selectors and obtain the value of λn without
doing an update. The actual update is done with the initial value set to λ1 = 1

λn
which

clearly results in keeping it at one at the last selector. This simple modification ensures
trusting the model more than the examples which means that the system, inherently, has



some kind of outlier detection implemented. Please note, that this modification does not
change the overall boosting process, it rather gives the example a prior importance.

Finally, we introduce a soft-selector, in order to limit the hard switching effect
within the selectors. In contrast to taking the best weak classifier (i.e., that with the
smallest error) for each selector it uses the information of all weak classifiers combined
(which we have anyway). Although every arbitrary classifier fusion rule might be ap-
plied, we chose to use the simple sum-rule which in practice yields good results [14].
As a result, all weak classifiers, the errors and therefore the importance weight λ as well
as the voting αi are changing continuously.

3 Background modeling

First, we start with a review of the block-based classifier background model. Second,
we show how to extend this approach by introducing a fixed and simple update strategy
in combination with the extended time-dependent on-line boosting approach.

3.1 Classifier-Based Backgroundmodel

In order to use classifiers for background modeling [9], we partition the image into a
grid of small, highly overlapping rectangular blocks (patches). For each of them a sep-
arate classifier is computed by combining simple image features (e.g., Haar features)
which are selected using on-line boosting for feature selection. This is depicted in Fig-
ure 2(a). The main idea is to learn if the underlying image patch is predictable using
the classifier. If so, this is considered as “allowed” background and otherwise it is con-
sidered as unknow (therefore foreground). Since boosting is used to train the classifier,
which is a discriminative learning method, normally both positive and negative labeled
samples are required in order to learn a decision boundary. Contrary, the task of back-
ground modeling is a one class classification problem, meaning only positive samples
(the observed images) are given. Therefore, for each feature the negative distribution
is estimated directly without learning (e.g., assuming each pixel is a random variable
which is normal distributed or by using statistics of natural images [15]). From this dis-
tribution simple learning rules are used to get a hypothesis for the weak classifier (for
more details see [9]).

The system has two phases: First, an initial learning stage where a separate classifier
is built for all image patches assuming that all input images are positive examples (i.e.,
correspond to allowed background variations). Later on, in order to be adaptive to the
scene, new input images are analyzed and the background model is updated according
to a given, yet not totally traceable, policy. Then, it ends up with three different thresh-
olds, which have to be hand-tuned as well as some higher update policy, for instance,
that neighboring patches are inhibited to be updated for a certain time (yet another ir-
reproducible variable) when the current patch is considered as foreground. Further on,
due to its analogy to self-learning which relies on a direct feedback of its own predic-
tions, the approach tends to drift and ends up in not predictable states when running for
a long time (e.g., 24 hours a day, 7 days a week).



3.2 Robust Classifier-Based Background Model

(a) classifier grid (b) self-learning (c) our approach: fixed-
learning with adaptive param-
eters

Fig. 2. (a) The background model is formed by a highly overlapping grid of classifiers. Updating
the former approach [9] uses self-learning (b). Our proposed method (c) does not directly take
the classifier responds yt = Ct−1(xt) into account and thus does not suffer from the drifting
problem.

In order to get rid of the self-learning update strategy (Figure 2(b)), we propose a
fixed yet simple update strategy. Each classifier Ci with the correspondent patch xi,t

incorporates every new upcoming frame t as a positive example 〈xi,t,+1〉.
For automatically updating1 the parameter ∆t we choose a simple dynamic control

system, taking the following simple observation into account: The time constant should
be large enough in order to model dynamic behavior but still as small as possible in
order to be highly sensitive to small background changes. If observing a static scene
then every movement or change should be considered as foreground. On the other hand,
observing a dynamic behavior, e.g., leafs in the wind, this should be modeled, and
therefore we have to increase the time constant up to a limit where it is still possible
to model these dynamic backgrounds. Furthermore, we assume that the time constant
should move smoothly. For each individual on-line classifier having its own ∆t we use
the following estimator

∆tt = Ki∆tt−1 + Kp∆̂t, ∆̂t = 1− 0.5 (1 + conf(x)) , (5)

where Ki ∈ [0 1] assumes the smoothness constraint and Kp > 0 is multiplied by
the current estimate ∆̂t, which is considered to be proportional to the confidence of
the patch x. As soon as the confidence changes dramatically, i.e., a totally unknown in-
truder enters the scene, our control system tremendously increases ∆t, which yields the
implicit result that the harder the underlying scenario changes, the higher the controller
sets ∆t and, thus, the longer it takes for a new object to “fade” into the background. Yet,
smooth changes result in only small changes of ∆t which let the system adapt to small

1 Please note, that of course one can also specify the time constant by hand in order to get a
predefined background model for a specific application.



(a) input (b) confidences (c) threshold (d) time-constants

Fig. 3. The first row depicts the test scene after t = 100 and the second row at t = 251, respec-
tively. The second column shows the yielded confidences. As we assume the flickering monitor to
be background, the confidences are quite high. In order to achieve such results our control system
autonomously sets the ∆t in the flickering area higher than in the non-dynamic rest of the scene.

background changes, e.g., slightly changing lighting conditions. This allows us to au-
tonomously model different dynamic movements and periods for each classifier patch
without drifting into unpredictable states since only ∆t and λ1 as model parameters are
changed but not the model itself (see Figure 2(c)).

The confidence of the classifier corresponds to the likelihood that the example corre-
spond to the background. In fact, we robustly detect outliers and mark them as unknown
foreground objects. Note, that all these would not be possible without the changes we
proposed in the previous section.

4 Experiments

In the following we demonstrate the benefits of our approach compared to existing
methods. Therefore, we split the experiments into two main parts. First, we give a de-
tailed evaluation on a sample sequence. Second, to show that we obtain state-of-the-art
results the proposed method is applied on public available benchmark data sets.

For all of our experiments we use a classifier grid with a patch-size of 20× 20 with
an overlap of 75%. To compute the classifier we use only 15 selectors each using a set
of 30 weak classifiers. Haar-like features are used because they can be evaluated very
fast using the integral data structure. The thus obtained grid of detectors is evaluated
and updated whenever a new frame arises. In order to set the time constant ∆t for each
classifier we set Ki = 0.95 and Kp = 10.

4.1 Detail Experiments

Figure 3 shows the behavior of our proposed background model. The rows correspond
to two different times and the columns show the input image and corresponding internal
results, which are the archived confidence map as well as the segmented foreground ob-
ject, which is a simple threshold on the confidence map, and, in addition, the estimated



(a) image (b) confidences (c) time constant

Fig. 4. Confidences (b) and estimated time-constants (c) for two different patches (a) over time.
As can be seen, the blue patch covers a non-dynamic scene, reliably detects the intruder and im-
mediately recovers its state. The second patch (red) has to handle dynamic flickering background.
Hence, the time-constant also stabilizes around a higher value than for the blue patch. However,
when the scene changed dramatically the time-constant raised very high making it very difficult
for the intruded object to fade into the background.

time constant for each grid element. The sequence is taken from [10] which shows a
sequence of a flickering screen. At the end a person enters and fully occludes the mon-
itor. In the first row each patch is able to model the background quite well using the
on-line learned classifier (high confidence). In the region where the screen is located,
the time-constant is automatically set to a higher value. This allows the patches located
around the screen to model the flickering while still being able to detect the intruding
object.

In addition, Figure 4 depicts some more detail results of two specific patches. The
color of the plots corresponds to the color of the rectangles. In particular, the red patch
is located on the screen which is flicker during the scene. Therefore its time constant is
automatically set to a higher value so that the classifier is able to describe it. Note, at
the end of the sequence there is a correct break down by the confidence value, because
a person enters the scene.

4.2 Wallflower Test Sequences

In [10], a test set for evaluating background subtraction methods was presented. It con-
sists of seven video sequences, each addressing a specific canonical background sub-
traction problem. In the same paper, 10 different methods were compared using the test
set. We tested our method against this test set and achieved the results shown in Fig. 5.
Comparing the results in their paper as well as from the recently proposed grid based
classifier [5] we achieve comparable performance. In contrast to the method using lo-
cally binary patterns [5] we are able to handle the the Light Switch problem since we
use features which are illumination invariant and is achieved without use of any higher
level processing that could be used to detect sudden changes in background.

In addition to the segmentation, which is achieved by thresholding the classifier
output by zero we depict as well the confidence map. This map profiles include more
information which can be included in further analysis in the image processing pipeline
(e.g., more sophisticated methods such as a mean shift-based clustering can be applied).



Fig. 5. Detection results of our method for the test sequences presented in [10]. The first column
shows the initial frame of each sequence, second column the test frame and the third column the
hand segmented ground truth. In the last three columns our results (the real valued confidence
map, a binary segmentation achieved be zero thresholding as well as the time constants) are
depicted. Note that the performance could be easily increased by analyzing the confidences more
closely.



5 Conclusions

In this paper we introduced controllable time dependency into on-line boosting. This
was achieved by incorporating several inter-dependent changes into the on-line algo-
rithm. First, our system uses a fading memory strategy in order to forget old information
and acquire new one. Second, each new example is incorporated into the model with
equal importance. Additionally, soft-switching selectors further allow for keeping the
model statistics more robust. This results in both a higher noise invariance and the abil-
ity to smoothly adapt to new problems. Together with a fixed yet simple update rule,
which would not be feasible without controllable fading memory, this yields a very
powerful classifier highly suitable for the task of background modeling of dynamic
scenes. The main advantage is that the model cannot drift and does neither have to be
hand-tuned for each new scene. This is achieved by incorporating a simple automatic
control system which seeks to adjust the model time-period.

We are confident that the changes in the on-line boosting method are also highly
suitable for other on-line learning applications, such as tracking and improving object
detection.

References
1. Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In:

Proc. CVPR. Volume II. (1999) 246–252
2. Oliver, N.M., Rosario, B., Pentland, A.: A bayesian computer vision system for modeling

human interactions. PAMI 22 (2000) 831–843
3. Tian, Y.L., Lu, M., Hampapur, A.: Robust and efficient foreground analysis for real-time

video surveillance. In: Proc. CVPR. Volume 1. (2005) 1182 – 1187
4. Russell, D., Gong, S.: A highly efficient block-based dynamic background model. In: Proc.

Conf. on Advanced Video and Signal Based Surveillance. (2005) 417–422
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