
Semi-Supervised On-line Boosting for Robust
Tracking?

Helmut Grabner1,2, Christian Leistner1, and Horst Bischof1

1 Institute for Computer Graphics and Vision, Graz University of Technology,
Austria, {hgrabner,leistner,bischof}@icg.tugraz.at

2 Computer Vision Laboratory, ETH Zurich, Switzerland,
grabner@vision.ee.ethz.ch

Abstract. Recently, on-line adaptation of binary classifiers for track-
ing have been investigated. On-line learning allows for simple classifiers
since only the current view of the object from its surrounding background
needs to be discriminiated. However, on-line adaption faces one key prob-
lem: Each update of the tracker may introduce an error which, finally,
can lead to tracking failure (drifting). The contribution of this paper
is a novel on-line semi-supervised boosting method which significantly
alleviates the drifting problem in tracking applications. This allows to
limit the drifting problem while still staying adaptive to appearance
changes. The main idea is to formulate the update process in a semi-
supervised fashion as combined decision of a given prior and an on-line
classifier. This comes without any parameter tuning. In the experiments,
we demonstrate real-time tracking of our SemiBoost tracker on several
challenging test sequences where our tracker outperforms other on-line
tracking methods.

1 Introduction

Designing robust tracking methods is still an open issue, especially considering
various complicated variations that may occur in natural scenes, e.g., shape and
appearance changes of the object, illumination variations, partial occlusions of
the object, cluttered scenes, etc. Recently tracking has been formulated as a
classification problem, i.e., the task of tracking is to optimally separate in each
frame the object from the background (e.g., Avidan [1] used support vector
machines). Also, feature based tracking methods are formulated as classification
tasks, i.e., the work of Lepetit et.al. [2] uses randomized trees and ferns based on
pixel pairs [3] to discriminate key points by classifiers. In these approaches, the
object to be tracked is trained a priori. The main motivation for using classifiers
in these approaches is the increased speed, i.e., the time is spent at the training
stage and a fast classifier is available at the tracking stage. All these approaches
use off-line training, which has two important limitations. First, all appearance

?
This work has been supported by the Austrian Joint Research Project Cognitive Vision under projects S9103-N04
and S9104-N04, the FFG project EVis (813399) under the FIT-IT program and the Austrian Science Fund (FWF)
under the doctoral program Confluence of Vision and Graphics W1209.

2 H. Grabner, C. Leistner, H. Bischof

Fig. 1. Tracking of a textured patch with difficult background (same texture). As soon
as the object gets occluded the original tracker from [4] (dotted cyan), drifts away. Our
proposed SemiBoost tracker (yellow) successfully re-detects the object and continues
tracking without drifting.

variations need to be covered in advance which implies that the object to be
tracked needs to be known beforehand. Tracking will fail if a variation of the
object is not covered in the training phase. Second, since the tracker is fixed it
has to cope with all different backgrounds, therefore the classifiers are usually
quite complex.

In order to cope with these problems the tracker needs to be adaptive. Collins
and Liu [5] were among the first to emphasize (and exploit) this principle in a
tracker. They proposed a method to adaptively select color features that best
discriminate the object from the current background. There has also been consid-
erable work along these lines, e.g., Lim et al. [6] used incremental subspace learn-
ing for tracker updating and Avidan [7] use an adaptive ensemble of classifiers.
Furthermore, Grabner et al. [8] have designed an on-line boosting classifier that
selects features to discriminate the object from the background. This work has
demonstrated that by using on-line feature selection the tracking problem can
considerably be simplified and therefore the classifiers can be quite compact and
fast. For instance, Fig. 1 depicts a challenging tracking sequence, where a small
textured patch is tracked using on-line boosting. Since the trackers are trained
to optimally handle foreground/background discrimination, they can handle also
such difficult situations where the same texture is used as background. However,
when we occlude the object it is lost (since it is no longer visible) and the tracker
(continuously updating its representation) starts tracking something different.

Hence, using on-line adaptation we face drifting as the key problem. Each
time we make an update to our tracker an error might be introduced, resulting in
a tracking error, which may accumulate over time resulting in tracking failures.
Matthews et al. [9] have pinpointed this problem and proposed a partial solu-
tion for template trackers. Looking at this problem from a classification point of
view we have the necessity to introduce a “teacher” to train the classifier. Other
approaches used a geometric model (e.g., homography for planar objects) for
verification [10] and performed updating only when the geometric model is ver-
ified. This alleviates the drifting problem but is not applicable in all situations.
Co-learning (using multiple trackers operating on different features that train
each other) is another strategy proposed in [11]. Combinations of generative and
discriminative models are used [12]. Both approaches alleviate the drifting prob-
lem to a certain extend but cannot avoid it. Summarizing, we can either use

Semi-Supervised On-line Boosting for Robust Tracking 3

Fig. 2. Detection and tracking can be viewed as the same problem, depending on how
fast the classifier adapts to the current scene. On the one side a general object detector
(e.g., [14]) is located and on the other side a highly adaptive tracker (e.g., [4]). Our
approach is somewhere in between, benefiting from both approaches: (i) be sufficiently
adaptive to appearance and illumination changes and (ii) limit (avoid large) drifting
by keeping prior information about the object.

fixed classifiers which per definition do not suffer from the drifting problem, but
have limited adaptation capabilities or we can use on-line adaptation and then
have to face the drifting problem3. In fact, this is not a binary choice as depicted
in Fig. 2.

In this paper, we explore the continuum between a fixed detector and on-line
learning methods as depicted in Fig. 2. Recently, this has also been investigated
by Li et al. [15] for tracking in low-frame rates. However, in order to formulate
this problem in a principled manner we use ideas from semi-supervised learn-
ing (see [16] for a recent survey). In particular, we use the recently proposed
SemiBoost [17, 18] for learning a classifier. Labeled data (or a previously trained
model) is used as a prior and the data collected during tracking as unlabeled sam-
ples. This allows us to formulate the tracker update problem in a natural manner.
Additionally, this solves the problem of how to weight the a priori information
and the on-line classifier without parameter tuning. The major contribution is
an on-line formulation of semi-supervised boosting which is a requirement for
using this algorithm for tracking.

Back to our example shown in Fig. 1. The proposed approach performs similar
to the former on-line tracker up to the third subfigure, where both get lost. Yet,
in contrast to the on-line boosting, as soon as the object becomes visible again it
is re-detected by the SemiBoost tracker (using the a priori knowledge) while the
on-line boosted tracker meanwhile has adapted itself to a completely different
region which it finally tries to track.

The reminder of the paper is organized as follows. Section 2 shortly reviews
on-line boosting for feature selection and a recently published variant of semi-
supervised boosting called SemiBoost[18]. In Section 3, we present our novel on-
line SemiBoosting method, which is then used in a tracking application shown
in Section 4. Section 5 presents some detailed experiments and results. Finally,
our work concludes with Section 6.

3 In fact, this is another instance of the stability plasticity dilemma [13].

4 H. Grabner, C. Leistner, H. Bischof

2 Preliminaries

2.1 Off-line Boosting for Feature Selection

Boosting is a widely [19] used technique in machine learning for improving the
accuracy of any given learning algorithm. In this work, we focus on the (dis-
crete) AdaBoost algorithm, which has been introduced by Freund and Shapire
[20]. The algorithm can be summarized as follows: given a labeled training set
XL = {〈x1, y1〉, ..., 〈x|XL|, y|XL|〉 | xi ∈ IRm, yi ∈ {−1,+1}} with a set of
m-dimensional features xi, positive and negative labeled samples yi and an ini-
tial uniform distribution p(xi) = 1

|XL| over the L examples. A weak classifier
h is trained using X and p(x). The weak classifier has to perform only slightly
better than random guessing (i.e., the error rate of a classifier for a binary
decision task must be less than 50%). Depending on the error e of the weak
classifier, a weight α = 1

2 ln
(

1−e
e

)
is calculated and the probability p(x) is up-

dated. For misclassified samples the corresponding weight is increased while for
correctly classified samples the weight is decreased. Thus, the algorithm focuses
on the hard examples. Boosting greedily adds a new classifier at each boost-
ing iteration until a certain stopping criterion is met. Finally, a strong classifier
H(x) = sign

(∑N
n=1 αnhn(x)

)
is calculated by a linear combination of all N

trained weak classifiers. As shown by Friedman et al. [21], boosting can be viewed
as additive logistic regression by stage wise minimization of the exponential loss
L =

∑
x∈XL e−yH(x). Thus, a confidence measure is provided by

P (y = 1|x) =
eH(x)

eH(x) + e−H(x)
. (1)

Furthermore, boosting can be applied for feature selection [22] where each
feature corresponds to a weak classifier. In each iteration n from a set of k
possible features F = {f1, ..., fk}, a weak hypothesis is built from the weighted
training samples. The best fn is selected and forms the weak hypothesis hn.
The weights of the training samples are updated with respect to the error of the
chosen hypothesis.

2.2 On-line Boosting for Feature Selection

During on-line learning, contrary to off-line methods, each training sample is
only provided once to the learner and is discarded right after learning. For that
purpose, the weak classifiers have to be updated on-line every time a new training
sample is available. The basic idea of on-line boosting is that the importance λ
of a sample can be estimated by propagating it through a fixed set of weak
classifiers [23]. The importance plays the role as the weight distribution p(xi) in
the off-line case. In fact, λ is increased proportional to the error e of the weak
classifier if the sample is still misclassified and decreased, otherwise. The error
of the weak classifier ê = λw

λw+λc is estimated by the sum of correctly λc and
incorrectly λw samples seen so far.

Semi-Supervised On-line Boosting for Robust Tracking 5

In order to perform feature selection Grabner and Bischof [8] introduced
“selectors”. On-line boosting is not directly performed on the weak classifiers,
but on the selectors. For that purpose, a selector hsel(x) consists of a set of
M weak classifiers {h1(x), . . . , hM (x)}. When training a selector, its M weak
classifiers are trained and the one with the lowest estimated error is selected
hsel(x) = arg minm e (hm(x)). The AdaBoost on-line training algorithm used
for feature selection works as follows: A fixed number of N selectors hsel1 , .., hselN
are initialized with random features. The weak classifiers in each selector are
updated, as soon as a new training sample 〈x, y〉 is available, and the weak
classifier with the smallest estimated error is selected. For updating of the weak
classifier any on-line learning algorithm is applicable. Finally, the weight αn of
the n-th selector hseln is updated and the importance λn is passed to the next
selector hseln+1. Contrary to the off-line version, the on-line classifier is available
at any time of the training process as a linear combination of the N selectors.

2.3 Off-line Semi-Supervised Boosting

Unsupervised methods are looking to find an interesting (natural) structure us-
ing only unlabeled data XU = {x1, . . . ,x|XU |}. Semi-supervised learning uses
both labeled XL and unlabeled XU data X = XL ∪ XU . We use the recently
proposed SemiBoost approach by Mallapragada et al. [17] which combines ideas
from graph theory and clustering and outperforms other approaches on com-
mon machine learning datasets. The basic idea is to extend the loss function
with unlabeled data. In order to include unlabeled samples a similarity measure
S(xi,xj) has to be provided to “connect” pairs of samples. The combined loss
linearly combines three individual loss functions: (i) a loss for labeled exam-
ples, (ii) labeled examples and unlabeled examples and (iii) pairs of unlabeled
examples. Boosting is used to minimize the combined loss.

Following the derivation of the AdaBoost algorithm the objective function
is solved in a greedy manner by stage-wise selecting the best weak classifier hn
and weight αn, which are added to the ensemble. Formally,

hn = arg min
hn

(
1
|XL|

∑
x∈XL

hn(x)6=y
wn(x, y)− 1

|XU |
∑

x∈XU (pn(x)− qn(x))αnhn(x)
)

(2)

αn =
1

4
ln

(1
|XU |

(∑
x∈XU

hn(x)=1

pn(x) +
∑

x∈XU

hn=−1

qn(x)
)

+ 1
|XL|

∑
x∈XL

hn(x)=y

wn(x, y)

1
|XU |

(∑
x∈XU

hn(x)=1

qn(x) +
∑

x∈XU

hn(x)=−1

pn(x)
)

+ 1
|XL|

∑
x∈XL

hn(x)6=y
wn(x, y)

)

(3)

where the term wn(x, y) = e−2yHn−1(x), is the weight of a labeled sample.
Using X+ = {〈x, y〉|x ∈ XL, y = 1} as the set of all positive samples and
X− = {〈x, y〉|x ∈ XL, y = −1} as the set of all negative samples the terms

pn(x) = e−2Hn−1(x) 1
|XL|

∑
xi∈X+

S(x,xi) + 1
|XU |

∑
xi∈XU

S(x,xi)e
Hn−1(xi)−Hn−1(x),(4)

qn(x) = e2Hn−1(x) 1
|XL|

∑
xi∈X−

S(x,xi) + 1
|XU |

∑
xi∈XU

S(x,xi)e
Hn−1(x)−Hn−1(xi) (5)

6 H. Grabner, C. Leistner, H. Bischof

can be interpreted as confidences of an unlabeled sample belonging to the pos-
itive (pn(x)) and negative class (qn(x)), respectively. The classifier is trained in
order to minimize the weighted error of the samples. For a labeled sample x ∈ XL
this is the same as in common boosting the weight wn(x). The second term con-
siders the distance between the unlabeled sample and the labeled samples. Each
unlabeled sample x ∈ XU gets the (pseudo)-label zn(x) = sign(pn(x) − qn(x))
and should be sampled according to the confidence weight |pn(x)− qn(x)|.

Summarizing, the algorithm minimizes an objective function which takes
distances among semi-labeled data into account using a given similarity measure
between samples. When no unlabeled data is used (i.e., XU = {}) Eq. 2 and
Eq. 3 reduce to the well known AdaBoost formulas. After the training, we have
a strong classifier similar to standard boosting.

3 Semi-Supervised On-line Boosting for Feature Selection

3.1 Approximations of the Weights

Since sample weights code the information from one weak classifier to the next,
we have to determine all these weights in an on-line setting, in order to train
the n-th weak classifier hn (Eq. 2) and calculate its associated factor αn (Eq. 3).
For labeled examples we can use the on-line boosting for feature selection ap-
proach directly. The main question is how to include the unlabeled samples.
Their weights and, additionally, their labels are related to p(x) and q(x) defined
in Eq. 4 and Eq. 5, respectively. But, these terms cannot be evaluated directly,
due to the sums over pairs of either labeled and unlabeled samples. Since we are
in a pure on-line setting we cannot access the whole training set. Hence, we have
to use approximations.

Let us assume we have a huge (|XU | → ∞) amount of unlabeled data, then
the second terms in Eq. 4 and Eq. 5 will be zero. Therefore, we can skip these
terms without a major loss in performance. Now, following [24, 18] we learn the
similarity S(xi,xj) ≈ Hsim(xi,xj) by a classifier using boosting. Furthermore,
we only have to sum over the similarity of the current (unlabeled) sample x and
the set of positive or negative samples. Given the labeled samples in advance,
we can train a classifier a-priori which measures the similarity, to the positive
or negative class. For a positive sample this can be approximated by learning a
classifier which describes the positive class

∑
xi∈X+ Hsim(x,xi) ≈ H+(x), i.e.,

provides a probability measure that x corresponds to the positive class. In the
same manner, a classifier is built for the negative class

∑
xi∈X− H

sim(x,xi) ≈
H−(x). Instead of learning two generative classifiers we learn one discriminative
classifier HP (x) which distinguishes the two classes, i.e., H+(x) ∼ HP (x) and
H−(x) ∼ 1 − HP (x). Since we use boosting to learn such a prior classifier, it
can be translated into a probability using Eq. 1. We can now approximate Eq. 4
and Eq. 5 as

p̃n(x) ≈ e−Hn−1(x)
∑

xi∈X+

S(x,xi) ≈ e−Hn−1(x)H+(x) ≈ e−Hn−1(x)eH
P (x)

eHP (x) + e−HP (x)
, (6)

Semi-Supervised On-line Boosting for Robust Tracking 7

q̃n(x) ≈ eHn−1(x)
∑

xi∈X−
S(x,xi) ≈ eHn−1(x)H−(x) ≈ eHn−1(x)e−H

P (x)

eHP (x) + e−HP (x)
, (7)

where we discard the factor 2 since we do not include pairs of unlabeled to
unlabeled samples. Since we are interested in the difference, we finally get the
“pseudo-soft-label”

z̃n(x) = p̃n(x)− q̃n(x) =
sinh(HP (x)−Hn−1)

cosh(HP (x))
= tanh(HP (x))− tanh(Hn−1(x)). (8)

Algorithm 1 On-line Semi-supervised Boosting for feature selection
Require: training (labeled or unlabeled) example 〈x, y〉, x ∈ X
Require: prior classifier HP (can be initialized by training on XL)
Require: strong classifier H (initialized randomly)
Require: weights λcn,m, λwn,m (initialized with 1)
1: for n = 1, 2, .., N do // for all selectors

2: if x ∈ XL then //set weight and target of the sample
3: yn = y, λn = exp(−yHn−1(x)
4: else
5: yn = sign(p(x)− q(x)), λn = |p(x)− q(x)| //set pseudo label
6: end if

7: for m = 1, 2, ..,M do // update the selector hseln
8: hn,m = update(hn,m, 〈x, y〉, λ) // update each weak classifier
9: // estimate errors

10: if hweakn,m (x) = y then
11: λcn,m = λcn,m + λn
12: else
13: λwn,m = λwn,m + λn
14: end if
15: en,m =

λw
n,m

λc
n,m+λw

n,m

16: end for
17: // choose weak classifier with the lowest error
18: m+ = arg minm(en,m), en = en,m+ , hseln = hn,m+

19: if en = 0 or en >
1
2

then
20: exit
21: end if
22: αn = 1

2
· ln
(

1−en
en

)
// calculate voting weight

23: end for

3.2 The On-line Algorithm

It is now straight forward to extend SemiBoost to on-line boosting [8]. For the
labeled examples 〈x, y〉, x ∈ XL (y ∈ {−1,+1}) nothing changes. For each unla-
beled sample (x ∈ XU) after each selector not only the weight (the importance

8 H. Grabner, C. Leistner, H. Bischof

λn) is adapted, but also its estimated target yn may change. Hence, for unlabeled
samples in each selector n, we set

yn = sign(z̃n(x)) and λn = |z̃n(x)|, (9)

where z̃n(x) is defined in Eq. 8. Summarizing, by training a prior classifier HP

from labeled samples a-priori provided, it is possible to include unlabeled data
into the on-line boosting framework using pseudo-labels and pseudo-importances.
Our semi-supervised boosting algorithm for feature selection is sketched in Al-
gorithm 1. Compared to the original on-line boosting algorithm [8] only a few
lines of code (highlighted lines 2-6) have to be changed in order to cope with
unlabeled data.

Let us take a look at the pseudo-labels when propagating the unlabeled
sample x through the selectors. If the prior is very confident it dictates the
label. A label switch can happen, i.e., H(x) can overrule HP (x), if z̃n(x) has a
differnt label as the prior HP (x). As can be easily seen from Eq. 8, this is the
case if |Hn| > |HP |. Therefore, the more confident the prior is, the longer (with
respect to n) the label is not allowed to change. We do not make any statements
whether this is a correct or incorrect label switch. Note, that the prior classifier
can be wrong, but it has to provide a “honest” decision. Meaning, if it is highly
confident it must be ensured to be a correct decision4.

4 Robust Tracking

We first briefly review the on-line boosting tracker that is based on on-line
boosting for feature selection [8, 4], which is replaced by our proposed on-line
SemiBoost algorithm.

The basic idea is to formulate tracking as binary classification problem be-
tween the foreground object, which has to be tracked, and the local background.
Assuming the object has been detected in the first frame, an initial classifier is
built by taking positive samples from the object and randomly chosen negative
ones from the background. The tracking loop consists of the following steps.
From time t to t+ 1 the classifier is evaluated exhaustively pixel by pixel in the
local neighborhood. Since the classifier delivers a response which is equivalent
to the log-likelihood ratio H(x) = 1

2 log
(
P (y=1|x)
P (y=−1|x)

)
(see Eq. 1), the confidence

distribution is analyzed and in the simplest case the local maximum is considered
to be the new object position. In order to robustly find the object in the next
frame and thus adapt to appearance changes of the object, different lightning
conditions or background changes, the classifier gets updated. A positive update
is taken for the patch where the object is most likely to be and negative updates
are drawn from the local neighborhood.

4 There are also relations to the co-training [25] assumptions, i.e., a classifier should
be never “confident but wrong”.

Semi-Supervised On-line Boosting for Robust Tracking 9

Fig. 3. Given a fixed prior and an initial position of the object in time t, the classifier
is evaluated at many possible positions in a surrounding search region in frame t +
1. The obtained confidence map is analyzed in order to estimate the most probable
position and finally the tracker (classifier) is updated in an unsupervised manner, using
randomly selected patches.

4.1 Modifications of the Tracking Loop

The tracker, as reviewed above, can suffer from the drifting problem. This is
due to self-learning relies on its own predictions that are always incorporated
with hard labels (i.e., y ∈ {−1,+1}), even if their confidences are very low. In
contrast, incorporating our novel way of on-line semi-supervised boosting allows
us to change the update strategy of the previously proposed on-line boosting
tracker. The overall work flow is depicted in Figure 3, which is very similar to
the one described above. The main difference is, that we do not update the
classifier with fixed labels, we solely use (random) patches from the region of
the estimated object position and use them as unlabeled samples to update
the classifier. This is only possible because we have a prior classifier. Roughly
speaking, one can think of the prior classifier as a fixed point and the on-line
classifier exploring the space around it. This means that the classifier can adapt
(or “drift”) to new situations but has always the possibility to recover.

5 Experiments and Discussion

In this section, first, we perform experiments demonstrating the specific prop-
erties of our tracking approach. Second, we evaluated our tracker on different
scenarios showing that we can cope with a large variability of different objects.

As image features which are selected by on-line SemiBoost we use Haar-like
features [14] which can be calculated efficiently using integral data-structures.
The performance (speed) depends on the size of the search region which we
have defined by enlarging the target region by one third of the object size in
each direction (for this region the integral representation is computed). In our
experiments we neither use a motion model nor a scaled search window, which

10 H. Grabner, C. Leistner, H. Bischof

Fig. 4. Tracking a face in an image sequence under various appearance changes. The
first row illustrates three different types of update strategies for the tracker, i.e., (i)
on-line boosting (cyan), (ii) prior classifier (red) and (iii) a heuristic combination of (i)
and (ii) using the sum-rule, i.e., 0.5(HP (x)+H(x)) (green). The second row shows the
SemiBoost tracker using the same off-line prior. The last row depicts confidence values
of the tracked patch over time for the prior and the SemiBoost tracker, respectively.

both however can be incorporated quite easily. The strong classifier consists of
only 25 selectors each with a feature pool of 50 weak classifier. All experiments
are performed on a common 2.0 GHz PC with 2 GB RAM, where we achieve 25
fps tacking speed.

5.1 Illustrations

We illustrate details of our tracker on frontal faces. As prior classifier and for
initialization of the tracking process we take the default frontal face detector
from OpenCV Version 1.05. This demonstrates that we can use any prior in our
method. The primary focus of the experiments is to compare the SemiBoost
tracker with other combination methods for the prior and the on-line method6.
As can be seen from Fig. 4, our approach (second row) significantly outperforms
the on-line booster, the prior classifier and a heuristic combination of prior and
on-line booster (first row). Additionally, even if the prior has very low confidence
(third row), the tracker is still able to correctly follow the (side) face. This shows
that we can adapt to appearance changes.

Fig. 5 depicts some illustrative samples taken for updates for both the on-
line tracker and our tracker. As can be observed, while both approaches track
5 http://sourceforge.net/projects/opencvlibrary/, 2008/03/16
6 The OpenCV detector fails on side looking faces.

Semi-Supervised On-line Boosting for Robust Tracking 11

on-line boosting our approach
tracker [4] selector 1 selector 11 selector 21

z̃
(x

)
>

0
.5

|z̃
(x

)|
<

0
.5

z̃
(x

)
<
−

0
.5

Fig. 5. Typical updates used for the former on-line boosting tracker (first column). If
the tracker loses the object and due to the self-learning update strategy which delivers
hard updates, it focuses on another image region. The remaining columns show how
samples are incorporated by the SemiBoost tracker. While they are propagated through
the selectors, their importance and label can change, with respect to the prior.

the same object, they incorporate totally different updates. After some time the
on-line booster performs wrong updates with still high confidence. This is the
main reason for drifting. Furthermore, in the SemiBoost method both sample
labels and sample weights change while propagating through the selectors of
the SemiBoost tracker while being constant for the former approach. Only such
samples are incorporated which are necessary to augment the prior knowledge
or invert it in order to be adaptive. Positive samples are inherently treated with
caution, i.e., only few positive examples are considered.

5.2 One-Shot Prior Learning

For these experiments, the prior is learned from the first frame only. In fact, we
build a trainingset XP = 〈xo,+1〉 ∪ {〈xi,−1〉|xi 6= xo} where xo corresponds
to the marked image region and negative samples are generated from the local
neighborhood7. Since this trainingset is quite small the time needed to train the
prior classifier HP is negligible. After this one-shot training, the prior classifier
is kept constant.

7 Also some invariance can be included in the training set, e.g., by adding “virtual”
samples [26] in order to train a more robust classifier.

8 http://www.vividevaluation.ri.cmu.edu/datasets/datasets.html,

2007/06/12.

12 H. Grabner, C. Leistner, H. Bischof

In Fig. 5.2, we compare our new method to the on-line boosting approach
on various tracking scenarios. First, as can be seen in row 1, we are still able to
handle challenging appearance changes of the object. Row 2 of Fig. 5.2 depicts
tracking during a fast movement. Since some incorrect updates and the self-
learning strategy of the on-line boosting tracker loses the target and focuses on
another part while the semi-supervised tracker is able to re-detect the object. An
extremal case is shown in row 3, where we remove the object from the scene. If
the object is present again and thanks to the fixed prior our proposed approach
has not forgotten the appearance as it is the case for the other tracker and
snap to the object again. The next experiment (row 4) focuses on the long term
behavior. We chose to track a non-moving object in a static scene for about 1
hour. In order to emphasize the effect we use rather dark illumination conditions.
While our proposed tracker stays at the object, the on-line booster starts to drift
away. The reason is the accumulation of errors. The final experiment shows a
special case of drifting as depicted in the last row of Fig. 5.2. Two very similar
objects are put together in the scene. Since the pure on-line tracker has not the
additional prior information, it is very likely that it is unstable and may switch to
another object. Additionally, we choose two public available tracking sequences
which have been already used in other publications as can be seen in the last
two rows. Our approach performs comparable to the previous on-line tracker
on appearance changes (sixth row). After the object was totally occluded (last
row), our approach is able to recover the correct object while the former on-line
tracker gets confused and starts tracking the second (wrong) car. Additional
tracking videos are included as supplementary material.

6 Conclusions

In this paper, we have presented a tracker which limits the drifting problem
while still being adaptive to various appearance changes which arise in typical
real world scenarios. We have employed ideas from semi-supervised learning and
on-line boosting for feature selection. The so trained on-line classifier is used in
a tracking framework in order to discriminate the object from the background.
The knowledge from labeled data can be used to build a fixed prior for the
on-line classifier. In order to still be adaptive, during tracking unlabeled data
is explored in a principled manner. Furthermore, our approach does not need
parameter tuning and is easy to implement. We have demonstrated successful
tracking of different objects in real-time on various challenging sequences.

References

1. Avidan, S.: Support vector tracking. IEEE Trans. PAMI 26 (2004) 1064–1072
2. Lepetit, V., Lagger, P., Fua, P.: Randomized trees for real-time keypoint recogni-

tion. In: Proc. CVPR. Volume 2. (2005) 775–781
3. Özuysal, M., Fua, P., Lepetit, V.: Fast keypoint recognition in ten lines of code.

In: CVPR. (2007)

Semi-Supervised On-line Boosting for Robust Tracking 13

4. Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting.
In: Proc. BMVC. Volume 1. (2006) 47–56

5. Collins, R., Liu, Y., Leordeanu, M.: Online selection of discriminative tracking
features. IEEE Trans. PAMI 27(10) (2005) 1631–1643

6. Lim, J., Ross, D., Lin, R., Yang, M.: Incremental learning for visual tracking.
In Saul, L.K., Weiss, Y., Bottou, L., eds.: NIPS. Number 17. MIT Press (2005)
793–800

7. Avidan, S.: Ensemble tracking. In: Proc. CVPR. Volume 2. (2005) 494–501
8. Grabner, H., Bischof, H.: On-line boosting and vision. In: Proc. CVPR. Volume 1.

(2006) 260–267
9. Matthews, I., Ishikawa, T., Baker, S.: The template update problem. IEEE Trans.

PAMI 26 (2004) 810 – 815
10. Grabner, M., Grabner, H., Bischof, H.: Learning features for tracking. In: Proc.

CVPR. (2007)
11. Tang, F., Brennan, S., Zhao, Q., Tao, H.: Co-tracking using semi-supervised sup-

port vector machines. In: Proc. ICCV. (2007) 1–8
12. Woodley, T., Stenger, B., Cipolla, R.: Tracking using online feature selection and

a local generative model. In: Proc. BMVC. (2007)
13. Grossberg, S.: Competitive learning: From interactive activation to adaptive reso-

nance. Neural networks and natural intelligence (1998) 213–250
14. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple

features. In: Proc. CVPR. Volume I. (2001) 511–518
15. Li, Y., Ai, H., Yamashita, T., Lao, S., Kawade, M.: Tracking in low frame rate

video: A cascade particle filter with discriminative observers of different lifespans.
In: Proc. CVPR. (2007) 1–8

16. Zhu, X.: Semi-supervised learning literature survey. Technical Report 1530, Com-
puter Sciences, University of Wisconsin-Madison (2005)

17. Mallapragada, P.K., Jin, R., Jain, A.K., Liu, Y.: Semiboost: Boosting for semi-
supervised learning. Technical report, Department of Computer Science and En-
gineering, Michigan State University (2007)

18. Leistner, C., Grabner, H., Bischof, H.: Semi-supervised boosting using visual sim-
ilarity learning. In: Proc. CVPR. (2008) to appear.

19. Schapire, R.: The boosting approach to machine learning: An overview. In: Pro-
ceedings MSRI Workshop on Nonlinear Estimation and Classification. (2001)

20. Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences 55(1)
(1997) 119–139

21. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical
view of boosting. Annals of Statistics 28(2) (2000) 337–407

22. Tieu, K., Viola, P.: Boosting image retrieval. In: Proc. CVPR. (2000) 228–235
23. Oza, N., Russell, S.: Online bagging and boosting. In: Proceedings Artificial

Intelligence and Statistics. (2001) 105–112
24. Hertz, T., Bar-Hillel, A., Weinshall, D.: Learning distance functions for image

retrieval. In: Proc. CVPR. Volume 2. (2004) 570–577
25. Balcan, M.F., A.Blum, Yang, K.: Co-training and expansion: Towards bridging

theory and practice. In: NIPS. MIT Press (2004)
26. Girosi, F., Chan, N.: Prior knowledge and the creation of virtual examples for rbf

networks. In: IEEE Workshop on Neural Networks for Signal Processing. (1995)

14 H. Grabner, C. Leistner, H. Bischof

Fig.6: Comparisons of our proposed SemiBoost tracker (yellow) and the previously
proposed on-line tracker (dotted cyan). Our approach is still able to adapt to
appearance changes while limiting the drinfing. Additionally, results on two public
sequences are shown (last two rows). The first sequence have been provided by Lim
and Ross ([6]) and the second sequence is taken from the VIVID-PETS 2005 dataset8.

