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Abstract

A major shortcoming of discriminative recognition and
detection methods is their noise sensitivity, both during
training and recognition. This may lead to very sensi-
tive and brittle recognition systems focusing on irrelevant
information. This paper proposes a method that selects
generative and discriminative features. In particular, we
boost classical Haar-like features and use the same features
to approximate a generative model (i.e., eigenimages). A
modified error function for boosting ensures that only fea-
tures are selected that show a good discrimination and re-
construction. This allows a robust feature selection using
boosting. Thus, we can handle problems where discrimi-
nant classifiers fail while still retaining the discriminative
power. Our experiments show that we can significantly
improve the recognition performance when learning from
noisy data. Moreover, the feature type used allows efficient
recognition and reconstruction.

1. Introduction

When computing a classifier for object recognition one
faces two main philosophies: generative and discriminative
models. Formally, the two categories can be described as
follows: Given an inputx and and a labely then a generative
classifier learns a model of the joint probabilityp(x, y) and
classifies usingp(y|x) which is obtained by using Bayes’
rule. In contrast, a discriminative classifier models the pos-
terior p(y|x) directly from the data or learns a map from
input to labels:y = f(x).

Generative models such as principal component analysis
(PCA) [11], independent component analysis (ICA) [10],
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Figure 1. Combining discriminative and generative information by
using a shared feature pool. In addition to discriminative classify-
ing the features can be used to reconstruct a previously learned
object (face) while the reconstruction for other objects (e.g., cars)
fails completely.

or non-negative matrix factorization (NMF) [13] try to find
a suitable representation of the original data (by approxi-
mating the original data by keeping as much information as
possible). As they provide sufficient reconstructive power
these methods are capable of dealing with missing or oc-
cluded pixels. Thus, several methods were proposed that al-
low robust recognition (e.g., [4,14]) as well as robust learn-
ing (e.g., [5,23]).

In contrast, discriminant classifiers such as linear dis-
criminant analysis (LDA) [3], support vector machines
(SVM) [27], or boosting [7] were designed for classifica-
tion tasks. Given the training data and the corresponding
labels the goal is to find optimal decision boundaries. Com-
pared to generative methods this allows to train more spe-
cific classifiers having a higher recognition rate. In fact,
several studies (e.g., [3,17]) have shown that discriminative
classifiers outperform generative models (if enough training
data is available). Thus, many applications use discrimina-
tive classifiers instead of generative classifiers. Compared
to generative models discriminative models have two main
drawbacks: (a) discriminant models are not robust, whether



in the training nor in the recognition stage and (b) a huge
amount of labeled training data is necessary.

To overcome these drawbacks several approaches (e.g.,
[6, 9, 15, 16, 19, 20]) have been proposed that combine dis-
criminative and generative models to get the best of both
worlds: the discriminative power and the robustness. In
addition, the paper [12] provides a theoretical discussion
on this topic. Most of these approaches are based on two-
stages (e.g., [9, 15, 16, 19]). In the first stage a generative
model is estimated and in the second stage a discriminant
classifier is built from the generative model. Holubet al. [9]
proposed to use a probabilistic constellation model as gen-
erative model and to use SVM on Fisher Scores to estimate
the discriminative classifier. Linet al. [16] applied a proba-
bilistic PCA to compute a distribution for the positive sam-
ples in the first stage. In the second stage they estimate a
new distribution for the negative samples by learning a lin-
ear projection. Other authors proposed to use a clustering
algorithm in the generative stage and a neural network clas-
sifier (e.g., multi-layer perceptron [15], pairwise neural net-
work [19]) in the discriminative stage. In contrast, the prob-
lem of robust discriminative classification was addressed by
Fidler et al. [6]. They proposed a robust LDA approach
that constructs a basis that contains all discriminative infor-
mation but in addition also contains sufficient reconstruc-
tive information to enable robust reconstructions. Boosting
Haar-like features allows to train efficient classifiers. Thus,
Roth et al. [20] proposed the conservative learning frame-
work where they additionally estimate a PCA model which
serves as supervisor for the boosted discriminative model
and thus ensures robustness.

All methods described above combine discriminative
and generative information on image level only. Moreover,
most of them are multistage methods where the (final) dis-
criminative classifier is trained on a (pre-processed) gener-
ative model. The main contribution of this paper is to pro-
pose a method that combines a discriminative model and a
generative model on the feature level. In order to do this
we need features that are discriminative and provide recon-
structive feasibilities at the same time. For example, Haar-
like features fulfill both criteria. It is well known [28] that
this feature type can be used to train powerful discrimi-
native classifiers. In addition, Taoet al. [25] showed that
binary bases (in fact, Haar-like features can be considered
as binary basis functions) can be used to reconstruct gray-
value images. The discriminative and generative power of
Haar-like features is shown in Figure 1 by two specific ex-
amples. Given a face model learned from Haar-like features
a face can be described and reconstructed by the same fea-
tures which is not the case for a non-face image (e.g., a car).

Having features that cover both, discriminative and gen-
erative information, we can combine discriminative and
generative information on the feature level. In particular, we

apply boosting for feature selection on Haar-like features.
Therefore, we define a new error-function that additionally
includes the generative information of a feature which al-
lows a robust feature selection using boosting. Thus, we
can learn a discriminative classifier even from degraded in-
put images.

The remaining paper is organized as follows: Section 2
reviews some theoretic issues that are relevant later on. Sec-
tion 3 introduces the new Eigenboosting method and de-
fines the modified discriminative/generative boosting error-
function. In Section 4 the proposed method is evaluated on
two well known databases. Finally, conclusions are drawn
in Section 5.

2. Preliminaries

Before we introduce the Eigenboost method we need to
discuss the two main components of the system and to in-
troduce the notation.

2.1. Boosting for Feature Selection

In general, Boosting is a widely used technique in ma-
chine learning for improving the accuracy of any given
learning algorithm. In fact, boosting converts a weak learn-
ing algorithm into a strong one. In the following we focus
on the AdaBoost algorithm that was introduced by Freund
and Schapire [7].

Given a training setX = {(x1, y1), ..., (xL, yL)}, where
xi ∈ IRP is a sample andyi ∈ {−1, +1} is the correspond-
ing label, and an initial uniformly distributed weight dis-
tribution with p(xi) = 1

L . In each boosting iterationn a
new weak classifier1 hweak

n (x) : x → [−1, 1] and the corre-
sponding weightαn is calculated according to the training
error over all samplesX andp(x). In addition, the proba-
bility p(x) is updated such that it is increased for samples
that were misclassified and decreased for samples that were
classified correctly. Thus, the algorithm focuses on the dif-
ficult examples.

The process is repeated and at each boosting iteration a
new weak classifier is added until a certain stopping condi-
tion is met (e.g., a given number of weak classifiers). Fi-
nally, a strong classifierhstrong(x) is computed as linear
combination of a set ofN weak classifiershweak

n (x):

hstrong(x) = sign

(
N∑

n=1

αnhweak
n (x)

)
. (1)

The weightsαn can be obtained by

1A weak classifiers is a classifier that has to perform only slightly better
than random guessing (i.e., for a binary decision task, the error rate must
be less than 50%). It is obtained by applying a learning algorithm (e.g., by
applying statistical learning for a decision stump).



αn =
1
2

ln
(

1 + rn

1− rn

)
, rn =

L∑

l=1

p(xl)hweak
n (xl)yl (2)

which was shown by Schapire and Singer in [22] where they
proved strong bounds for the training and generalization er-
ror of AdaBoost. Hence, boosting minimizes the error on
the training set:

1
L

L∑

l=1

[
hstrong(xl) 6= yl

]
=

1
L

L∑

l=1

hstrong(xl)yl. (3)

This error is bounded by

1
L

L∑

l=1

exp

(
−

N∑
n=1

αnhweak
n (xl)yl

)
=

N∏
n=1

Zn, (4)

where

Zn =
L∑

l=1

p(xl)exp(−αn hweak
n (xl)yl︸ ︷︷ ︸

en

) (5)

andhweak
n (xl) ∈ [−1, +1]. Minimizing Zn on each round

n, boosting greedily minimizes the training error which fi-
nally yields the weights defined in (2). Note, the optimiza-
tion problem and therefore the weightsαn are related to the
error of the weak hypotheses:

en = hweak
n (xl)yl. (6)

Boosting for feature selection was first introduced by
Tieu and Viola [26] and has been widely used for differ-
ent applications (e.g., face detection [28]). The main idea is
that each feature corresponds to a single weak classifier and
boosting selects an informative subset from these features.

Given a set of possible featuresF = {f1, ..., fM} and a
weak learning algorithmL. In each iteration stepn all fea-
turesfj are evaluated on all positive and negative training
samples and a hypothesis is generated by applying the learn-
ing algorithmL. Finally, the best hypothesis is selected
which forms the weak classifierhweak

n . Thus, the selection
of a feature depends the erroren that was defined in (6) and
(2), respectively.

2.2. Principal Component Analysis

Given a set of input imagesX = [x1, . . . xL] ∈ IRP×L,
wherexi = [x1i, . . . , xPi]T ∈ IRP is an individual im-
age represented as a vector. Then the PCA projection
U = [u1, . . . uL] ∈ IRP×L is obtained by solving the eigen-
problem for the covariance matrixC ∈ IRP×P of X or more
efficiently by solving Singular Value Decomposition (SVD)
of X assuming thatX is mean normalized.

The columns ofui = [u1i, . . . , uPi]T ∈ IRP of U, i.e.,
the eigenvectors, are arranged in decreasing order with re-
spect to the corresponding eigenvalues. Usually, onlyK,
K < L, eigenvectors (those with the largest eigenvalues)
are needed to represent a given imagex to a sufficient de-
gree of accuracy as a linear combination of eigenvectorsui:

x̃ =
K∑

i=1

aiui . (7)

The coefficientsai can be calculated by a standard projec-
tion

ai = uT
i x =

P∑

j=1

ujixj , i = 1 . . .K, (8)

or, as a robust procedure [14], by solving a system of linear
equations

xri =
K∑

j=1

ajuri,j , i = 1 . . . Q, (9)

evaluated atQ ≥ K pointsr = (r1, . . . , rQ).

3. Eigenboosting

3.1. Image Representation

The goal of this paper is to train a classifier that takes
into account discriminative as well as generative informa-
tion. Therefore, we need a common low-level representa-
tion of the data that covers both aspects. In particular, we
decided to use Haar-like features for this purpose and de-
fined a shared feature poolF = {f1, ..., fM} containing
Haar-like features. It is well known that boosting for fea-
ture selection on Haar-like features allows to train powerful
discriminative classifiers (e.g., [28]). Thus, the featuresfj

are used to build weak hypothesishweak
j (x) following the

theory of boosting for feature selection as described before.
But these features can also be considered as binary basis

functions that describe a visual dictionary. Taoet al. [25]
showed that binary bases can be used to reconstruct gray-
value images which can efficiently be done by using inte-
gral images [28]. Examples of such basis functions obtained
from Haar-like features are shown in Figure 2.

Figure 2. Haar-like binary basis functions: for illustration the orig-
inal values were normalized; a black pixel represents−1, a white
pixel 1, and a gray pixel0.

An extension of this approach called binary PCA (B-
PCA) was proposed by Tang and Tao [24]. The main idea



is first to approximate eigenimages from binary basis func-
tions and then to use these eigenimages to reconstruct the
original image. This theory also holds for basis functions
defined by Haar-like features which allows us to approxi-
mate an eigenimage imageu by

ũ =
M∑

i=1

bifi, (10)

wherefi is a single feature from the feature poolF . The
coefficientbi can be estimated by

bi = F†ui, (11)

whereF† denotes the pseudoinverse ofF . In fact, the ob-
tained bases are not orthogonal but for practical purposes
the accuracy is sufficient to reconstruct images by PCA pro-
jections; we can approximate the eigenbasis to a desired ac-
curacy (increasing the number of features will increase the
accuracy of the reconstructions) from the over-complete vi-
sual dictionary.

Having this eigenbasis we can reconstruct a given input
imagex by substituting (10) into (7) which yields

x̃ =
K∑

k=1

ak

M∑

i=1

bk,ifi. (12)

The coefficientsak can be estimated by the standard pro-
jection (8) or robustly by (9). Hence, we can easily intro-
duce robustness into our approach which, in fact, is not pos-
sible for a standard discriminative approach.

3.2. Discriminative/Generative Model

Given a training setX of totalL samples withLpos pos-
itive samples andLneg negative samples and the previously
defined feature poolF . To finally train a discriminant clas-
sifier we combine a discriminative model and a generative
model using a boosting framework. The proposed discrim-
inative/generative learning framework is depicted in Fig-
ure 3.

Discriminative classifiershd
j are trained using features

from F from positive and negative training samples. In
parallel and independently using PCA an eigenbasis is es-
timated (from the positive samples only). The obtained
eigenvectors are approximated by (10) using features from
the shared feature poolF . Finally, a discriminative classi-
fier is trained by boosting for feature selection.

To combine the discriminative and generative informa-
tion we define a new error-function for boosting for feature
selection. Therefore, for each featurefj we first have to es-
timate the discriminative errored

j and the generative error
eg
j .

Adapting the error function for boosting was previously
addressed by other authors,e.g., by Hertz et al. [8] to

Figure 3. Eigenboosting framework for robust feature selection.

learn kernel functions (KernelBoostand DistBoost) or by
Avidan [2] to include spatial information.

Discriminative Error

The discriminative classifierhd
j (x) is defined by

hd
j (x) = pj · sign(fj(x)− θj), (13)

where the thresholdθj and the paritypj are defined by

θj = |µ+ + µ−|/2,
pj = sign(µ+ − µ−). (14)

The mean valuesµ+ andµ− are estimated by computing
the response for each featurefj for all imagesxl. Based on
the decision of the weak hypothesishd

j (xl) the discrimina-
tive errored

j for the featurefj on all training examples can
directly be estimated by

ed
j =

1
L

L∑

l=1

hd
j (xl)yl (15)

which is related to the error derived in (3).

Generative error

To estimate the generative error (from the positive sam-
ples only) we consider the error that would be obtained
without the featurefj . Let

x̃j =
K∑

k=1

ak

∑

m 6=j

bk,mfm (16)

be the reconstruction of the original imagex using
{F\{fj}} andx̃ be the reconstruction obtained by (12) (i.e.,



by using the full basisF). As x̃ is the optimal reconstruction
that can be obtained from the basisF (using a pre-specified
number of eigenimagesK) we can consider||x̃− x̃j || as an
error measure for a single featurefj . From (12) and (16)
we get

∣∣∣∣∣∣

∣∣∣∣∣∣

K∑

k=1

ak

M∑
m=1

bk,mfm −
K∑

k=1

ak

∑

m 6=j

bk,mfm

∣∣∣∣∣∣

∣∣∣∣∣∣
=

=

∣∣∣∣∣

∣∣∣∣∣
K∑

k=1

akbk,jfj

∣∣∣∣∣

∣∣∣∣∣ =

∣∣∣∣∣
K∑

k=1

akbk,j

∣∣∣∣∣ ||fj || .
(17)

Thus, the training error for a featurefj is related to

∣∣∣∣∣
K∑

k=1

akbk,j

∣∣∣∣∣ . (18)

Hence, we can estimate the training error for a featurefj

over all samples by

εj =
1

Lpos

Lpos∑

l=1

∣∣∣∣∣
K∑

k=1

al,kbk,j

∣∣∣∣∣ . (19)

Finally, the generative errorεj is mapped into the interval
[0, 1]. In particular, the normalized generative erroreg

j can
be obtained by

eg
j = g(εj) =

{
1 εj > θ

0 otherwise,
(20)

whereθ is estimated from the expected reconstruction error
over all training samples.

Modified boosting error-function

The overall errorej is estimated as a weighted sum over
the discriminative errored

j and the generative erroreg
j :

ej = βed
j + (1− β)eg

j , (21)

whereβ ∈ [0, 1]. The main idea now is to use boosting
not on the standard error-function (6) but on this new com-
bined error (21) that incorporates both, generative and the
discriminative information. Since we finally train a dis-
criminative classifier we can define the error function for
a sample(x, y) by e = h(x)y. Thus, for the featurefj we
get the weak classifier

hweak
j (x) = βhd

j (x) + (1− β)eg
jy. (22)

When substituting the error defined in (21) (or the defin-
ition of the weak classifier (22)) into (5) we finally get that
the combined approach minimizes

∑

x∈X
p(x)exp

(−α(βhd
j (x) + (1− β)eg

j )
)

=

=
∑

x∈X

(
p(x)exp

(−α(βhd
j (x))

) · exp
(−α(1− β)eg

j

))
=

= exp
(−α(1− β)eg

j

)
︸ ︷︷ ︸

generative prior

·
∑

x∈X
p(x)exp

(−αβhd
j (x)

)

︸ ︷︷ ︸
discriminative information

.

(23)
We can interpret this error function as follows: a gener-

ative prior (calculated with respect to the weighted positive
samples) influences the discriminative error in a multiplica-
tive way, where the parameterβ controls the influence. For
β = 1 the generative prior vanishes and we obtain the orig-
inal boosting error function; forβ = 0 only the generative
prior is considered but no discriminative information is in-
cluded. In fact, by using the prior we introduce robustness
to discriminant learning and enablerobust feature selection
using boosting.

Please note, PCA is required only during training. Once
training is finished the boosted classifier can be used (e.g.,
for object detection [28]) on its own and is therefore as effi-
cient as any other boosting approach.

4. Experiments

For our experiments we mainly used the ATT database
(former ORL database) [21] and the UIUC Image Database
for Car Detection [1]. The databases were split into a train-
ing and a test set. In particular, we used 60% of the images
for training and 40% for testing. The negative samples were
generated randomly from images that do not contain the ob-
jects of interest. In the training we build a discriminative
classifier containing 20 features; for the generative model
five eigenimages were used.

The main contribution of this paper is to introduce ro-
bustness to boosting based learning. Thus, we would like
to emphasize that the goal of the experiments is to show
the benefits of the presented approach (i.e., robust discrimi-
native learning and reconstructing from discriminative fea-
tures).

4.1. Reconstructive power

First, we show the reconstructive power and the robust-
ness of the Eigenboost method. Thus, we trained a face
model from the ATT database by boosting and by the new
Eigenboost method and evaluated the obtained models on
test images (Figure 4(a)). The first two images are faces
from the ATT database where we added an occlusion noise;
the others are non-face images from the COIL data base
[18].

From Figure 4(b) it can be seen that the Haar-like basis
function obtained by standard boosting can not be used to



(a)

(b)

(c)

Figure 4. Reconstructive power of Eigenboosting: (a) original test
images; (b) reconstructions using learned Haar-like basis func-
tions; (c) reconstructions obtained by Eigenboosting method.

reconstruct the original image. The faces are reconstructed
well, but due to the high dimensionality of the (learned) fea-
ture space “nearly everything” can be reconstructed. In fact,
we can reconstruct the COIL objects even though we have
learned faces before. Moreover, the reconstruction is not
robust. In contrast, when using the ideas of B-PCA (ap-
proximate the eigenimages by binary basis functions) we
obtain a more suitable representation. As can be seen from
Figure 4(c) the faces are reconstructed correctly (even the
occluded pixels) while the reconstruction for the non-faces
fails completely.

4.2. ATT Face Database

Next, we trained different classifiers by our proposed
method from clean data and evaluated these classifiers an
clean data. From the receiver operator characteristic (ROC)
curves in Figure 5 it can be seen that including more and
more discriminative information (i.e., increasing the para-
meterβ) increases the recognition rate.

This effect can also be seen from Figure 7 where we eval-
uated the the influence of the parameterβ by analyzing the
equal error rate point.

When training on noisy images (we included a small
constant occlusion in every positive sample) the discrimi-
native method focuses on this local noise. This can be seen
in Figure 8(a) where we show the features that were selected
by using discriminant information only. Most of these fea-
tures represent the occlusion that is present in all training
images. Moreover, the weights for these features are very
high. In contrast, Figure 8(c) shows the features that were
selected by using only generative information. It can be

Figure 5. ATT database: ROC curves for discriminative classifiers
that were trained on clean data.

Figure 6. ATT database: ROC curves for discriminative classifiers
that were trained on noisy data (small local occlusion noise was
added).
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Figure 7. Varying parameterβ: (generative information)0 ≤ β ≤
1 (discriminative information). Increasingβ increases the perfor-
mance for clean data; for noisy data the best results are obtained
for β ≈ 0.5



α = 2.98 α = 2.79 α = 2.01 α = 1.45 α = 1.37 α = 1.53 α = 1.14 α = 1.13 α = 1.03

(a)

α = 1.01 α = 0.96 α = 0.80 α = 0.79 α = 0.76 α = 0.75 α = 0.71 α = 0.64 α = 0.65

(b)

α = 1.58 α = 1.31 α = 1.23 α = 0.97 α = 0.90 α = 0.91 α = 0.82 α = 0.72 α = 0.71

(c)

Figure 8. Chosen features with corresponding weightsα: (a) classifier trained on noisy data withβ = 1: only discriminative information
is used (“standard boosting”); (b) classifier trained on noisy data withβ = 0.5: combining generative and discriminative information; (c)
classifier trained on noisy data withβ = 0: only generative information is used. The artificial occlusion noise is marked as a red rectangle.

seen that these features mostly represent the global struc-
ture of the original image. In fact, the added occlusion is
not modeled. When discriminative and generative informa-
tion are combined we get the features shown in Figure 8(b).
There are still some features left that represent the occlu-
sion noise but compared to the pure discriminant case the
weights are much smaller. Thus, the importance of these
features was reduced by adding the generative information.
This can be seen in Figure 6 and Figure 7. From the ROC
curves in Figure 6 it is clear that the performance of the
system is improved when using the combined error which
captures both, the generative and discriminative informa-
tion. Figure 7 shows that the performance is increased up to
a certain amount of discriminative information (β ≈ 0.5).
But by adding further (irrelevant) discriminative informa-
tion the performance is decreased.

4.3. UIUC Car Database

For the UIUC Car Database we have performed the same
experiments as previously described for the ATT face data-
base. As we are mostly interested in robust discriminant
learning in Figure 9 we finally show the ROC curves ob-
tained when adding occlusion noise to the training samples.
It can be seen that the combined classifiers (0.25 ≤ β ≤
0.75) outperform the extremal cases (β = 0 andβ = 1).

Figure 9. UIUC Car database: ROC curves for discriminative clas-
sifiers that were trained on noisy data (small local occlusion noise
was added).

5. Conclusion

In this paper we presented a new visual learning al-
gorithm that combines a discriminative and a generative
model. To get a common representation for both models we
expressed the learning process at the feature level. Thus, we
need features that are discriminative and have reconstructive
abilities at the same time. In particular, we use Haar-like
features but any other feature type that fulfills both criteria
(e.g., Gabor-features) may be applied. For the final discrim-
inative classifier trained by boosting we deduced a modified
error-function that minimizes (23) where the generative in-



formation is included as a multiplicative prior. As we use
robust PCA (the eigenimages are reconstructed from Haar-
like binary basis-functions) as generative representation we
can introduce robustness to boosting based learning. In par-
ticular, the method can be interpreted as mechanism forro-
bust feature selectionusing boosting. In the experiments
we demonstrated that when learning form noisy data (i.e.,
occlusion noise) our Eigenboosting method outperforms a
pure discriminative classifier. One of our next steps will be
to include different feature types into our system. Moreover,
as there exist on-line variants of both, boosting and PCA, an
incremental extension of the method is straight forward.
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