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Abstract

Tracking and detection of objects often require to apply
complex models to cope with the large intra-class variabil-
ity of the foreground as well as the background class. In
this work, we reduce the complexity of a binary classifi-
cation problem by a context-driven approach. The main
idea is to use a hidden multi-class representation to capture
multi-modalities in the data finally providing a binary clas-
sifier. We introduce virtual classes generated by a context-
driven clustering, which are updated using an active learn-
ing strategy. By further using an on-line learner the classi-
fier can easily be adapted to changing environmental condi-
tions. Moreover, by adding additional virtual classes more
complex scenarios can be handled. We demonstrate the ap-
proach for tracking as well as detection on different scenar-
ios reaching state-of-the-art results.

1. Introduction

Object detection or single target tracking can be formu-
lated as binary classification problems, where a discrimina-
tive classifier has to distinguish the object of interest from
the background. Very often the multi-modality in the data
caused by large intra-class variability arises the need for
a rather complex and large classifier complicates learning,
reduces the evaluation speed, and may cause overfitting.
Moreover, the complexity of the two classes can vary con-
siderably. For instance, for surveillance scenarios, the res-
olution is low and the object class usually can be described
with a simple model, whereas the background might be clut-
tered and arbitrarily complex.
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A number of approaches have been proposed where the
multi-modality within the data has been described by mul-
tiple classes or multiple classifiers (e.g., [3, 10, 11, 21, 22]).
Babenko et al. [3] developed a boosting algorithm suitable
for multiple pose learning, where the aim is to simultane-
ously split the data into groups and to train a separate clas-
sifier for each group. Another approach using multiple clas-
sifiers has been proposed by Kim and Cipolla [11], where
image clustering and training of multiple boosted classifiers
are performed in parallel. Torralba et al. [21] developed a
multi-class and multi-view object detector, where features
used for different views or different classes are shared. A
Cluster Boosted Tree has been developed by Wu and Neva-
tia [22]. One classifier is used for splitting the training sam-
ples into different classes by unsupervised clustering based
on image features selected by a boosting algorithm. For
most of these approaches the number of classes needs to be
given in advance and all of them are trained in an off-line
manner. Jacobs et al. [10] used the mixture of experts, that
learn how to divide the training cases and assign each train-
ing case to one expert.

In object detection or tracking, however, often either
the object of interest or the background are changing over
time. Hence, an adaptive representation would be benefi-
cial. Therefore, the goal of this work is to introduce a classi-
fier that automatically adapts its complexity to the complex-
ity of the current task. This is realized by a binary classifier
that is built on a multi-class representation. In particular, the
multi-modality in the background is described by a number
of virtual classes, which are generated autonomously using
context information (i.e., for a more complex setup more
classes are generated). Furthermore, we robustly adapt the
classifier to changing conditions (e.g., changing illumina-
tion conditions, changing backgrounds, etc.).

In the following, we first describe the concept of virtual
classes for unsupervised training an adaptive, scene specific
classifier. Then, we demonstrate this approach for two dif-



ferent applications, i.e., object detection and tracking, on
different publicly available datasets.

2. Virtual Classes for Scene-specific Classifica-
tion

Using context information can significantly reduce the
complexity of classification tasks. We introduce a concept
for context-driven adaption of the classifier complexity to
the actual task and to changing situations. An on-line multi-
class classifier is used to model the multi-modality within
the data. In a first stage (initialization) bootstrapping is
performed to train an initial classifier. In the second stage
(evaluation), the complexity of the classifier is adapted to
changing situations.

2.1. Context-driven On-line Clustering

In order to adapt the complexity of a classifier to a scene,
we propose to split the object as well as the background
class into a number of virtual classes. The crucial point
is, how to find these clusters. One possibility would be to
manually pre-cluster the training data requiring to manually
label all samples, which is tedious and often even not pos-
sible. To avoid pre-clustering, we propose a clustering ap-
proach for dealing with this intra-class variability. In partic-
ular, we apply a classifier-based bootstrapping using an on-
line multi-class classifier (e.g., [12, 20]) and virtual classes.

A virtual class can be considered a class within a multi-
class classifier, if these classes are separated into negative
and positive classes. Hence, each modality can be described
by one single virtual class finally yielding a binary classifi-
cation result (e.g., a sample is classified as positive if it falls
into one of the positive classes).

To start the clustering, we train an initial classifier c0

discriminating the object of interest from an arbitrary back-
ground. Then this classifier is applied to the current scene,
and for samples ai that are either misclassified by the cur-
rent classifier c0 or are very close to the decision boundary
a new virtual class with the label yv++ is added. In this
way, the complexity of the classifier can be adapted to the
complexity of the scene, i.e., for more complex scenes more
virtual classes are generated. The virtual class creation is
described more formally in Algorithm 1 and is illustrated
in Figure 1, where the input image and the clusters created
within the bootstrapping stage are shown.

2.2. Active Learning

After training the initial multi-class classifier in the boot-
strapping stage, this classifier is able to discriminate be-
tween object and actual background. However, this initial
classifier would not be able to cope with typical occurring
changing environmental conditions (e.g., changing illumi-
nation conditions, changing backgrounds, etc.). Hence, on-

Algorithm 1 Virtual Class Generation
Require: Initialized Classifier c = c0

Output: Final classifier: c
1: Extract background samples ABG

2: for ai ∈ ABG do
3: y = eval(c, ai)
4: if y = ypos then
5: // Add new virtual class
6: update(c, ai, yv++)
7: else
8: // Update classifier
9: update(c, ai, y)

10: end if
11: end for

line algorithms are required, which allow to adapt to chang-
ing scenes. To reduce the learning effort (i.e., the number
of required samples) we use a context-driven active learning
strategy.

Active learning is a widely used strategy when dealing
with labeled and unlabeled data for sampling along the de-
cision boundary in order to (a) select a reduced set of sam-
ples arranged around an optimal decision boundary and (b)
to reduce the labeling effort (e.g., [5, 14, 16, 23]). An ac-
tive learner can be described by the quintuple (c, s, T, L, U)
[14], where c is a classifier, s is a sampling function which
identifies valuable samples, T is a teacher (supervisor), L
is a set of labeled data and U is a set of unlabeled data. In
general, an active learning process can be described as fol-
lows. First, a classifier c is trained by the labeled samples L.
Then, the sampling function s selects valuable samples uj .
For those samples the teacher T assigns a label yj , which is
used to update the classifier c.

In this work, we use context information to define the
sampling function s as well as the teacher T . Since Park
and Choi [16] showed that it is more effective to sample the
current estimate of the decision boundary, the most informa-
tive samples are those which are misclassified by the current
classifier. Hence, we define our sampling function s such
that it identifies samples close to the decision boundary. In
particular, we run the classifier c yielding a confidence on
the current sample and identify the samples which are very
close to the decision border. Those samples are then la-
beled by using the scene context (teacher). If the decision is
close to one of the actual background classes (implies small
changes in the scene), the corresponding class is updated.
Otherwise (if the background has changed too much) a new
class is added to the multi-class classifier.

In this work, we consider two different tasks (i.e., detec-
tion and tracking), where different strategies for using the
context information are required. These strategies are ex-
plained in detail in Sections 3.2 and 3.3.



   
Input Image

Create Virtual Classes

Context­based
Background Clustering

Object Background #1

Background #3Background #2

Figure 1. Generation of virtual classes: the input image is used for the bootstrapping (left), the created virtual classes (right), and an
illustration of the virtual classes (middle)

3. Applications
In the following, we first describe the implementation

details, i.e., the used multi-class classifier with the settings
used within our evaluations. Then, we discuss the two dif-
ferent applications, i.e., object detection and object tracking
and show experimental results.

3.1. Implementation Details

In general, any on-line capable multi-class classifier can
be used, but in practice we use a multi-class version of on-
line GradientBoost [13], related to online Multi-Class LP-
Boost [19]. On-line GradientBoost combines a number of
selectors fm to one strong classifier

F (x) =
M∑

m=1

fm(x). (1)

Each selector fm consists of a number of weak classi-
fiers {fm,1(x), · · · , fm,N (x)} and is represented by its best
weak classifier fm,j(x) according to the minimal error
within the selector. To adapt this algorithm to a multi-class
learner the weak learners fi(x) have to be able to deal with
more than two classes. Thus, as weak classifiers we use on-
line histograms that give a confidence rated prediction. As
in [8] we use symmetric multiple logistic transformation

fj(x) = log Pj(x)− 1/J

J∑
k=1

log Pk(x), (2)

where Pj can simply be calculated in the on-line his-
tograms. In our experiments the histograms have a size of
32 bins. As features we used Haar-like features. For the de-
tection experiments the strong classifier consists of 50 se-
lectors, each of it containing 20 weak classifiers. For the
tracking experiments the strong classifier consists of 30 se-
lectors, each of it containing 20 weak classifiers.

3.2. Detection with Virtual Classes

First, we demonstrate the idea of virtual classes on the
task of object detection from static cameras. Initially, a clas-
sifier c0 is trained on labeled data L. For generating the
virtual classes in the bootstrapping stage we need images,
which do not contain the object object of interest. For object
detection from stationary cameras one can use a background
model (e.g., approximated median background model [15]),
which can be used as an input image for the bootstrapping
procedure. For false positives on the background image new
virtual classes are created, i.e., the classifier’s complexity is
adapted to scene’s complexity. To adapt to changing situa-
tions the background model is updated all the time and used
to introduce new virtual classes if necessary.

In order to demonstrate the performance of our approach
for object detection, we evaluated it on two different publ-
icy available standard benchmark datasets. The first dataset
is PETS 2006 1, a pedestrian detection benchmark. The sec-
ond one, the AVSS 2007 dataset 2, is a standard benchmark
for car detection. We compare our approach to two state-of-
the-art object detectors, both allowing for detecting cars as
well as persons. The first one is a generic detector trained
off-line without scene context information, namely the de-
formable part model of Felzenszwalb et al. [7] (FS). The
second approach is the classifier grid approach of Roth et
al. [18] (CG), which is a scene specific object detector.
The results are demonstrated using recall-precision curves
(RPC) [2]. A detection is counted as true positive, if the
overlap criteria [2] exceeds 50%, as false positive otherwise.

PETS 2006

First, we evaluated our approach on the PETS 2006
dataset. The sequence used for evaluation consists of 308
frames (720x576 pixels).

1http://www.pets2006.net
2http://www.elec.qmul.ac.uk/staffinfo/andrea/avss2007 d.html
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Figure 2. RPCs for the PETS 2006 Sequence.

Figure 3. Illustrative detection results of our approach on the PETS
2006 Sequence.

The Recall-Precision curves (RPC) shown in Figure 2
demonstrate that our approach outperformed both, the
generic and even the scene specific approach. It can be
seen that compared to these approaches, we get a higher
recall still preserving the precision. Illustrative detections
are shown in Figure 3.

For this sequence the number of virtual classes used to
describe the multi-modality within the background class is
between two and six. The variation between the number
of classes is caused by the random initialization of the fea-
tures within the classifier and hence the performance is not
depending on the number of classes created.

AVSS 2007

In addition, we demonstrate our approach on the
AVSS 2007 dataset. We evaluated on the first 500
frames (720x576 pixels) of the vehicle detection sequence
AVSS PV Hard.

The results (see Figure 4) clearly show that we outper-
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Figure 4. RPCs for the AVSS 2007 Sequence.

Figure 5. Illustrative detection results of our approach for the AVSS
2007 sequence (Detection results within the fully colored region).

form the generic object detector of Felzenszwalb et al. [7].
Our results are comparable to the scene specific approach of
Roth et al. [18], which has shown excellent results for the
task of car detection. In addition, our approach has the ad-
vantage that instead of a large number of binary classifiers,
only one multi-class classifier is used, which is much more
efficient in terms of memory consumption.

For this sequence between two and five virtual classes
are created during the bootstrapping stage. Since the scene
is not changing over time, during run-time no further virtual
classes are added to the classifier.

3.3. Tracking with Virtual Classes

Within this section, we show the performance of our
approach in a tracking-by-detection scenario using on-line
feature selection [6, 9]. Similar to the detection task, we as-
sume that the background is only slightly changing, which
holds for most of the tracking scenarios. Further, we use the
context knowledge that only a single instance of the tracked



object is present in the scene at a time, which is different
from the detection scenario. This allows for background
updates if we know the current position of the object.

We use this context information to create and update the
set of virtual classes within the multi-class classifier. At the
beginning, we randomly initialize our classifier. At the first
frame, we randomly select a single sample from the back-
ground and use it together with the object position to update
the classifier. These two samples are enough to enable the
update mechanism with virtual classes. Subsequently, we
bootstrap by using every background sample already cap-
tured by a virtual background class to update this class and
every false-positive sample to create a new virtual back-
ground class. During tracking, we seek for false-positives
within our current scene and perform the same update strat-
egy on the extracted patches.

For our object class, we simply perform supervised on-
line self-learning, but semi-supervised or multiple instance
updates could easily be integrated. To increase the stability
of our classifier, we use two equally weighted classifiers,
one is updated during runtime and one is frozen after boot-
strapping, which delivers combined detections. Figure 6
compares the tracking performance with and without using
virtual classes. In general, for the used tracking sequences,
the amount of virtual classes was in a range of 3 to 5 during
tracking. This number is directly related to the complexity
of the scene and is automatically chosen by the algorithm.
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Figure 6. Comparison of tracking with and without virtual classes
for the Sylvester sequence (blue solid: overlap for tracking with
virtual classes; blue dashed: overlap without virtual classes - bi-
nary; red: number of virtual classes over time).

For the evaluation of our tracker we use the overlap-
criterion of Agarwal [2]. This criterion is directly related
to the accuracy of the detection of the classifier, in com-
parison to the raw distance measure between the target and
background. We compute the overlap score for the entire
video sequence and run each tracker 5 times, reporting the
overlap score of the median run.

Table 1 lists the average overlap score for several pub-

Sequence CONTEXT MIL [4] Frag [1] OAB [9]
Sylvester 0.74 0.73 0.74 0.62

Face 1 0 .93 0.73 0.94 0.63

Face 2 0.89 0 .81 0.51 0 .81

Girl 0.84 0.68 0 .73 0.57

Tiger 1 0.65 0.65 0.26 0.33

Tiger 2 0 .49 0.69 0.22 0.41

David 0 .71 0.73 0.52 0.39

Coke 0 .42 0.47 0.10 0.25
Table 1. Average overlap score: bold-face shows the best method,
while italic-font indicates the second best.

licly available benchmark sequences [4, 17] in comparison
to other state-of-the-art tracking methods. In fact, in 4 out
of 8 sequences our tracker outperforms the compared meth-
ods. For the remaining 4, it delivers state-of-the-art results
close to the best method. Since we outperform both, static
(Fragment-based Tracking [1] and adaptive (On-line Ad-
aBoost [9], Multiple-Instance Tracking [4]) approaches, we
show that our method is able to cope with static as well as
dynamic scenarios. Figure 7 shows several illustrative sam-
ples from different tracking sequences. It is clearly visible
that our tracker is able to recover if the object was occluded
or the tracking result was not well aligned. With our non-
optimized C++ implementation we achieve a frame rate of
about 15 frames per second.

Figure 7. Illustrative tracking results on the Sylvester, Tiger1,
Faceocc2, David sequences (red: our approach; blue: MIL [4];
yellow: Frag [1]; magenta: OAB [9]).



4. Conclusion
In this work, we presented an approach for automatically

adapting the complexity of classifiers for object detection
and tracking. In particular, we apply an on-line multi-class
learner (however, finally providing a binary classifier) and
introduce virtual classes to cope with the multi-modalities
in the data. The approach is motivated by previous works
on multi-class and multi-classifier aiming to model multi-
modalities in the data. However, most of these approaches
require to define the number of classes in beforehand, which
is insufficient in practice since the complexity of the task is
typically not known. To overcome this problem we intro-
duce an autonomous context-driven clustering approach to
generate and, on demand, to add new virtual classes and
an active learning strategy to update the classes’ represen-
tation. Moreover, since an on-line learner is applied this al-
lows for adapting to changing object appearance and chang-
ing environmental condition. The approach is demonstrated
for two different applications, i.e., object detection and ob-
ject tracking, showing that even using less complex classi-
fiers state-of-the-art results can be obtained. Future work
will concentrate on more sophisticated learning methods
(e.g., Multiple Instance Learner or Semi-supervised Learn-
ing) to establish a more robust foreground model and a more
sophisticated strategy for enabling both, adding and remov-
ing of virtual classes.
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