
On-line Random Naive Bayes for Tracking

Martin Godec, Christian Leistner, Amir Saffari, Horst Bischof
Institute for Computer Vision and Graphics

Graz University of Technology
Graz, Austria

Email: {godec, leistner, saffari, bischof}@icg.tugraz.at

Abstract—Randomized learning methods (i.e., Forests or
Ferns) have shown excellent capabilities for various computer
vision applications. However, it was shown that the tree struc-
ture in Forests can be replaced by even simpler structures, e.g.,
Random Naive Bayes classifiers, yielding similar performance.
The goal of this paper is to benefit from these findings to
develop an efficient on-line learner. Based on the principals
of on-line Random Forests, we adapt the Random Naive
Bayes classifier to the on-line domain. For that purpose, we
propose to use on-line histograms as weak learners, which
yield much better performance than simple decision stumps.
Experimentally we show, that the approach is applicable to in-
cremental learning on machine learning datasets. Additionally,
we propose to use an iir filtering-like forgetting function for the
weak learners to enable adaptivity and evaluate our classifier
on the task of tracking by detection.

Keywords-On-line Learning; Object Tracking; Naive Bayes;

I. INTRODUCTION

Machine learning methods have been applied to various
computer vision problems, e.g., detection, segmentation, or
tracking. Recently, randomized learning techniques such
as Random Forests [1], [2], [3] and Ferns [4] have been
introduced to the vision community. These methods use
randomized input selection and random feature selection to
create a diverse classifier ensemble. While yielding state-of-
the-art results, randomized methods possess several prop-
erties that make them particularly interesting for computer
vision applications. First, they are very fast in both, training
and classification. Second, they can easily be parallelized,
which makes them interesting for multi-core and GPU
implementations [5]. Third, they are inherently multi-class
and do not require to build several binary classifiers to
solve a multi-class problem and fourth, the randomization
increases the stability and decreases the variance of the
trained classifier. Typically, randomized methods are trained
off-line, but many applications (e.g., tracking) require on-
line training capabilities. This is especially the case if the
problem is based on a sequential data source or the learning
algorithm has to train on a very large dataset.

Prinzie and van den Poel [6] have shown that the tree
structure of Random Forests can be replaced by simpler
learning methods such as Naive Bayes without decreasing
the performance. Especially the low computational and

memory costs of Random Naive Bayes makes it suitable
for applications where computational power and memory
are limited or if very large datasets have to be processed.
Hence, the goal of this work is to adapt this method to the
on-line domain.

Inspired by the on-line Random Forest approach of Saf-
fari et al. [7], we propose a novel on-line learning method
based on Random Naive Bayes classifiers. Compared to on-
line Random Forests, our algorithm simplifies the implemen-
tation and configuration of on-line randomized learners. In
addition, we benefit from the lower memory consumption,
high computational efficiency, and fast convergence. We
show that our on-line version is able to compete with on-line
Random Forests and on-line boosting on different datasets
and the task of visual tracking.

In Section II, we first briefly review Random Naive
Bayes and derive an on-line formulation. Section III delivers
several experiments on both machine learning and tracking
tasks. Finally, the paper concludes with Section IV.

II. ON-LINE RANDOM NAIVE BAYES

In the following, we give an introduction to Naive- and
Random Naive Bayes classification. Subsequently, we de-
velop an on-line formulation, which can be used for various
applications.

A. Naive Bayes

Given a training dataset X = {(x1, y1), · · · , (xN , yN)},
where x ∈ RD are the samples in a D-dimensional feature
space and y ∈ {1, · · · , K} are the corresponding labels for
a K-class classification problem, then Bayes’ theorem can
be formulated as

p(y = i|x) =
p(i)p(x|i)

p(x)
, (1)

where p(i) is the class label prior, and p(y|x) is the unknown
probability distribution of the joint space of features x and
labels i.

Since these distributions are unknown, we need to esti-
mate them using the given training data. Here, Naive Bayes
(NB) is a popular method to simplify this estimation, where
we assume independence of features given the class labels

p(x1, x2, . . . , xD|i) ∼ p(x1|i)p(x2|i) . . . p(xD|i), (2)

where xd denotes the dth dimension of the feature vector
x. Despite of the naive independence assumption, Naive
Bayes delivers good results [8], [9], [6]. In computer vi-
sion, features are usually pieces of local information, thus
considering them independently is a feasible assumption.
Assuming independence and uniform label distribution, a
classifier F (x) can be written as

F (x) = arg max
i

D∏
d=1

p(xd|i). (3)

Thereby, the classification result can be calculated by build-
ing the product of all class probabilities for the current
feature values.

B. Randomized Learning

Randomized learning methods build on mainly two ideas:
using (a) random input selection and (b) random feature
selection to train an ensemble consisting of classifiers of
similar type. The main advantages of these methods are the
increased stability and decreased variance of the resulting
classifier. Using random input selection (e.g., bagging [10]),
several classifiers are trained on different subsets of the
training space and additively combined to an ensemble.
Bagging has shown to improve the final classifier in terms
of stability and classification accuracy and helps to avoid
overfitting. In order to perform bagging on-line, Oza [11]
proposed to model the sequential arrival of the data by a
Poisson distribution.

Using randomized decision trees in a bagged ensemble
leads to Random Forests. To transform off-line Random
Forests [1] to the on-line domain, Saffari et al. [7] proposed
a tree growing scheme to establish decision trees on-line.
They initialize each tree node with a number of random
tests and perform splitting of this nodes after a sufficient
number of samples have been processed and a splitting
criterion is satisfied. The particular node is then frozen by
selecting the random test with the highest quality. Since the
splitting criterion is a crucial part of the algorithm, it has to
be designed and configured very carefully to achieve good
performance. As the node count grows exponentially with
the tree depth, the memory consumption of this approach
cannot be neglected.

Recently, Prinzie and Van den Poel [6] generalized the
idea of off-line Random Forests (RF) to MultiNomial Logit
and Naive Bayes. They showed that the Random Naive
Bayes (RNB) classifier using both, bagging and random fea-
ture selection, achieves competitive performance to Random
Forests (RF). Hence, we transform their approach to the on-
line domain.

C. On-line Learning

When creating the RNB classifiers ensemble, for each
classifier we randomly select F features out of the feature
pool D. The probability distribution p(xf |y) of each feature

is then modeled for each class y. The probability of a sample
observation x belonging to the class y can then be described
as

p(x|y) ∼
B∑

b=1

F∏
f=1

pb(xf |y), (4)

where we combine B randomly trained Naive Bayes classi-
fiers, each using F ≤ |D| features. Following the results of
Geurts [12], using randomized threshold selection instead of
random input selection does not decrease the performance
of the classifier and bagging can be skipped. We perceived
similar results for the proposed formulation, even using
histograms instead of binary decisions.

Since we want to enable on-line learning for our RNB
ensemble, we need to estimate the probability distribution
for the given feature xf on-line. We propose to use equally
binned histograms to estimate the probability distributions
since they are very fast and easy to implement. Moreover,
histograms are applicable to incremental learning and can
handle multi-modal distributions easily. Thus, they perfectly
fit into our targeted learning scheme.

Since some learning problems require temporal knowl-
edge weighting, we have to consider unlearning of informa-
tion. This is required, for instance, if we have to cope with
temporary noise or outliers and concept drift. We propose
to use an iir-like (i.e., infinite impulse response) filtering
for each histogram bin, where the value of each bin can be
calculated as

wnorm
t0 =

t0∑
t=−∞

wt · rt0−t, (5)

where wt is the learned sample weight at time t. t0 represents
the time of the current update. The speed of forgetting can
be defined with the parameter r.

To enhance the significance of the feature pool, we de-
cided to build random hyperplanes within our feature space.
These hyperplanes xh are computed as a weighted linear
combination of the features x in the form xH = wT x, where
the weights w ∈ [−1, 1]D for each feature are randomly
chosen and

∑D
d=1 |wd| = 1. The weight vector w is chosen

very sparse in order to only create small local subspaces. A
common heuristic would be the selection of H ≈ log D [1])
features with non-zero weights. Experiments show that this
gives great improvement of classification performance (see
Table II) due to the capturing of dependencies between
different object parts.

III. EXPERIMENTS

In the following, we demonstrate the proposed method for
different applications, showing that competitive results can
be obtained. To show the generality, we apply the method
to different machine learning datasets. We compare our
approach to on-line Random Forests (ORF) [7] and on-line
AdaBoost (OAB) [13]. Subsequently, we apply our method

to visual tracking and compare to current state-of-the art
methods.

A. Machine Learning

For evaluation, we use the DNA, Letter, and USPS datasets
from the LibSVM Repository1 and g50c from the Semi-
Supervised Benchmarks2 and the same configuration of
our ORNB algorithm for all machine learning experiments
(B = 200, F = 20 and H = 2). We process all datasets
10 times and report the average classification error. We
compare to on-line AdaBoost (OAB) (200 selectors, each
100 features) and on-line Random Forest (ORF) (200 trees
with max. depth of 10), both trained for 5 epochs. For multi-
class datasets, we employ one-vs-all for OAB. Table I shows
that the ORNB classifier outperforms the OAB classifier and
reaches comparable results to the ORF.

Dataset ORNB OAB ORF
DNA 0.098 0.146 0 .112
Letter 0 .196 0.223 0.169
USPS 0 .183 0.184 0.127
g50c 0 .125 0.309 0.124

Table I
AVERAGE CLASSIFICATION ERROR (BOLD: BEST RESULT, ITALIC:

SECOND BEST).

Due to the small parameter set, we can deemonstrate
the influence of each parameter easily (see Table II). It
shows that the dimension of the hyperplane features H
and the number of features F have large influence on the
classification performance, while the bag size B mainly
reduces the variance of the classifier.

Parameter Setting and classification error
B 50 100 200 500 1000
error 0.167 0.141 0.125 0.109 0.103

F 1 5 10 20 50
error 0.182 0.126 0.122 0.125 0.133

H 1 2 3 5 10
error 0.294 0.125 0.115 0.089 0.094

Table II
PARAMETER INFLUENCE (BOLD: STANDARD SETTINGS USED FOR

OTHER EXPERIMENTS).

Finally, we analyzed the runtime complexity and memory
consumption of the compared methods. For training, all
methods have a linear relation between training data and
runtime (ignoring the calculations of boosting loss and tree
splits), but ORNB only needs one training epoch and reaches
the final classification performance after approximatley 40%
of the training data for the used datasets. During testing,

1http://www.csie.ntu.edu.tw/˜cjlin/libsvm/
2http://www.kyb.tuebingen.mpg.de/ssl-book/

Sequence ORNB OAB [14] ORF [7] MIL [15]
Sylvester3 0.75 0 .65 0.62 0.60

David3 0.79 0.26 0 .69 0.57

Face Occlusion 24 0.82 0.68 0 .72 0.68

Table III
AVERAGE OVERLAP SCORE (BOLD: BEST RESULT, ITALIC: SECOND

BEST).

OAB is the fastest, evaluating only a subset of weak learners,
while ORF depends linearly on the tree depth and ORNB on
the number of features. The memory consumption of OAB
and ORNB is linearly related to the classifier size, but grows
exponentially for ORF.

B. Visual Object Tracking

Finally, we compare the performance of ORNB to
OAB [14] and ORF [7] for the task of tracking using a
forgetting rate r of 0.95, which corresponds to a stable
model and slow adaptions. Additionally, we state the results
of On-line MILBoost [15], which can be seen as current
state-of-the-art method for this task. We use the overlap-
criterion of the VOC Challenge [16], which is defined as
Aoverlap = RT ∩RGT /RT ∪RGT , where RT is the tracking
rectangle and RGT the groundtruth. Due to randomization
within the algorithms, we report the average overlap score
over 5 runs. To offer a fair comparison, we only use simple
Haar-like features and a completely randomized feature pool.
The initial training is done only on virtual samples generated
out of the first frame (i.e., affine transformations of this
frame). We use three benchmark sequences including vari-
ations in illumination, pose, scale, rotation and appearance,
and partial occlusions.

The experiments show that tracking with ORNB is re-
sistant to various appearance variations (see Figures 1, 2,
and 3 for some illustrative examples) and achieves superior
results to OAB, ORF and MIL for the tested sequences.
Even if our approach results in a rather stable classifier,
it is able to adapt to certain changes over time due to
the forgetting rate. The alignment of the detections is very
accurate, which guarantees high quality of the samples used
for self-updating. The conservative forgetting rate allows for
recovery after occlusions, but preserving a certain amount
of adaptivity.

IV. CONCLUSION

Motivated by recent work on on-line Random Forests and
the efficiency of Naive Bayes classifiers, we derived an on-
line multi-class Random Naive Bayes (ORNB) algorithm.
In particular, we combined an ensemble of Naive Bayes
classifiers using random feature selection and histograms to
establish a robust and fast classifier. To show the efficiency

3http://www.cs.toronto.edu/˜dross/ivt/ [17]
4http://vision.ucsd.edu/˜bbabenko/project miltrack.shtml

(a) Sylvester (b) Tracking Score

Figure 1. Illustrative examples for Sylvester sequence (red: ORNB; blue:
OAB; yellow/black: ORF).

(a) David (b) Tracking Score

Figure 2. Illustrative examples for David sequence (red: ORNB; blue:
OAB; yellow/black: ORF).

(a) Face Occlusion 2 (b) Tracking Score

Figure 3. Illustrative examples for Face Occlusion 2 sequence (red: ORNB;
blue: OAB; yellow/black: ORF).

and the generality of the approach, we applied it to multi-
class classification and visual tracking. For both cases,
we showed that competitive results can be obtained. The
main advantage of our method is the simplicity (e.g., low
memory consumption, reduced computational complexity,
small parameter set, high parallelization potential), which
makes the method highly applicable.

Future work will focus on several issues within the
learning algorithm: using the out-of-bag-error enables (a)
classifier selection depending on the error and (b) alterna-
tive forgetting methods. Further a heterogeneous classifier
ensembles (e.g., mixing of random naive bayes and random
trees) or heterogeneous feature pools (e.g., color, local binary
patterns, histogram of oriented gradients) could improve
the performance. Additionally, ORNB classifiers could be
used as weak learners for other high-level on-line learning
algorithms, such as on-line boosting.

ACKNOWLEDGMENT

This work was supported by the FFG projects EVis
(813399) and OUTLIER (820923) under the FIT-IT pro-
gramme.

REFERENCES

[1] L. Breiman, “Random forests,” Machine Learning, 2001.

[2] J. Shotton, M. Johnson, and R. Cipolla, “Semantic texton
forests for image categorization and segmentation,” in Proc.
IEEE CVPR, 2008.

[3] V. Lepetit and P. Fua, “Keypoint recognition using random-
ized trees,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, 2006.

[4] M. Özuysal, M. Calonder, V. Lepetit, and P. Fua, “Fast
keypoint recognition using random ferns,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, 2009.

[5] T. Sharp, “Implementing decision trees and forests on a gpu,”
in Proc. ECCV, 2008.

[6] A. Prinzie and D. Van den Poel, “Random multiclass clas-
sification: Generalizing random forests to random mnl and
random nb,” in Database and Expert Systems Applications,
2007.

[7] A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof,
“On-line random forests,” in Proc. IEEE OLCV Workshop,
2009.

[8] P. Domingos and M. Pazzani, “On the optimality of the simple
bayesian classifier under zero-one loss,” 1997.

[9] D. J. Hand and K. Yu, “Idiot’s bayes: Not so stupid after all?”
International Statistical Review, 2001.

[10] L. Breiman, “Bagging predictors,” in Machine Learning,
1996.

[11] N. C. Oza, “Online ensemble learning,” Ph.D. dissertation,
University of California, Berkeley, 2001.

[12] P. G. June, “Extremely randomized trees,” in Machine Learn-
ing, 2003.

[13] C. Leistner, A. Saffari, P. M. Roth, and H. Bischof, “On
robustness of on-line boosting - a competitive study,” in Proc.
IEEE OLCV Workshop, 2009.

[14] H. Grabner and H. Bischof, “On-line boosting and vision,” in
Proc. IEEE CVPR, vol. I, 2006, pp. 260–267.

[15] B. Babenko, M.-H. Yang, and S. Belongie, “Visual tracking
with online mulitple instance learning,” in Proc. IEEE CVPR,
2009.

[16] M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn,
and A. Zisserman, “The pascal visual object class challenge
2007,” in VOC, 2007.

[17] D. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, “Incremental
learning for robust visual tracking,” Intern. Journal of Com-
puter Vision, 2008.

