
Hough-based Tracking of Non-Rigid Objects ∗

Martin Godec Peter M. Roth Horst Bischof
Institute for Computer Graphics and Vision

Graz University of Technology
[godec|pmroth|bischof]@icg.tugraz.at

Abstract

Online learning has shown to be successful in track-
ing of previously unknown objects. However, most ap-
proaches are limited to a bounding-box representation with
fixed aspect ratio. Thus, they provide a less accurate fore-
ground/background separation and cannot handle highly
non-rigid and articulated objects. This, in turn, increases
the amount of noise introduced during online self-training.

In this paper, we present a novel tracking-by-detection
approach to overcome this limitation based on the
generalized Hough-transform. We extend the idea of
Hough Forests to the online domain and couple the voting-
based detection and back-projection with a rough segmen-
tation based on GrabCut. This significantly reduces the
amount of noisy training samples during online learning
and thus effectively prevents the tracker from drifting.

In the experiments, we demonstrate that our method suc-
cessfully tracks a variety of previously unknown objects
even under heavy non-rigid transformations, partial occlu-
sions, scale changes and rotations. Moreover, we compare
our tracker to state-of-the-art methods (both bounding-box-
based as well as part-based) and show robust and accurate
tracking results on various challenging sequences.

1. Introduction
In computer vision, visual object tracking is a major

component for a wide range of applications. Domains
such as surveillance, driving assistant systems, interactive
games, or augmented reality require robust and reliable ob-
ject detection through video sequences. While for many
tasks the object is known in advance, there are numerous
applications where the object to track is unknown (e.g., col-
lision avoidance, video re-targeting, or image stabilization).

A recent and popular way to address this lack of knowl-
edge is to apply online learning to train a discriminative ob-
ject detector during tracking and to adapt the detector to

∗This work has been supported by the Austrian FFG project MobiTrick
(8258408) under the FIT-IT program.

(a) (b) (c)

(d) (e) (f)

Figure 1. Tracking of non-rigid objects: simple bounding-box
initialization in the first frame (a) and continuous tracking and seg-
mentation of the object (b) to (f) (green: initialization; red: track-
ing result).

changes of the object over time (e.g., [2, 3, 13]). These ap-
proaches formulate tracking as alternation between object
detection and online learning where the current prediction is
used to update the classifier. In this setting a detector for an
arbitrary object can be trained from scratch. Only the initial
bounding-box containing the object is needed and the type
of object is not restricted to specific classes or categories.

While having many advantages (e.g., improving perfor-
mance over time, online adaption of the object and the back-
ground model, ability to derive a discriminative object de-
tector at any time, ...), the main challenge is to avoid drifting
while still being adaptive to changes in the object’s appear-
ance. Thus, we have to distinguish between allowed trans-
formations (e.g., non-rigid deformations, rotations, appear-
ance changes) and invalid ones (e.g., occlusions, drifting).
This problem is well-known as the template update problem
[24] or the stability-plasticity dilemma [15] and has been
addressed more or less successfully by using e.g., more ro-
bust learning algorithms (e.g., [28]), a different learning
paradigm (e.g., [3, 14]), multiple different classifiers (e.g.,

1

[29, 19]), or coupling a conservative learning framework to
a very adaptive tracking approach [18].

However, most of the existing approaches are limited to
a rectangular bounding-box. Therefore, they have to cope
with a rather inaccurate object description (e.g., part of the
bounding-box may consist of background). To avoid this
problem, non-rigid (e.g., articulated) objects can be rep-
resented by a part-based representation, such as the very
prominent approach of Felzenszwalb et al. [9]. Even more
detailed models are obtained using the generalized Hough-
transform [10, 23, 25], where a large number of small object
parts are combined in a voting-based framework. However,
these methods need a very large amount of labeled train-
ing data. Thus, such approaches are well suited for detec-
tion/tracking of object classes that are known in advance
(e.g., pedestrians [11]) but are infeasible for tracking of un-
known objects.

In this work, we address two major limitations of previ-
ous approaches in the tracking-by-detection domain: First,
we get rid of the bounding-box limitation by transferring
the Hough-based classification framework to the online do-
main. This allows us to robustly detect non-rigid objects.
Second, we use back-projection to locate the support of
our detection and to guide a segmentation process which
roughly separates the object from the background. The
rough segmentation delivers a more precise description of
the object and is used to decrease the noise in the on-
line learning stage which would be introduced by a simple
bounding-box. Thereby, our approach allows tracking of
objects with changing aspect ratio, scale, and orientation.

The overall principle is depicted in Figure 1. Starting
from a bounding-box initialization, the Hough-based detec-
tor is continuously trained with the current object appear-
ance and guides the segmentation process. Our approach
robustly tracks the object during non-rigid transformations,
appearance changes and partial occlusions.

1.1. Related Work
Javed et al. [17] and Avidan [2] initiated the use of online

learning for object detection and tracking. Subsequently,
Grabner et al. [13] transfer Boosting for feature selection
[33] to the online domain and apply it, among other tasks, to
visual tracking of objects. From that time, there is a reason-
able interest in online learning for the task of visual track-
ing.

By defining tracking as an unsupervised online learn-
ing problem, Grabner et al. [14] successfully apply semi-
supervised online boosting. To avoid drifting, only the
training samples defined in the very first frame are consid-
ered as correctly labeled, while all samples generated by the
classifier during runtime are considered as unlabeled. Al-
ternatively, Babenko et al. [3] define tracking as a multiple-
instance learning problem, where the current tracking po-

sition is considered uncertain and several positive samples
are selected close to the current object position, arranged
in a so-called bag. These learning concepts shift the prob-
lem of the sample selection from the tracking application
towards the learning algorithm. Saffari et al. [28] transform
Random Forests to the online learning domain. They use it
for tracking and interactive segmentation because Random
Forests have high robustness to noise. Learning of a stable
object detector during tracking is the main motivation for
the approach of Kalal et al. [18]. They combine an adaptive
Lukas-Kanade-tracker and several restrictive learning con-
straints to establish an incremental classifier and to avoid
drifting over time. Thus, the detector is quite robust and
enables reliable object re-detection if the used short-term
tracker fails. However, the final object detector is still based
on a bounding-box.

To avoid the limitations of existing bounding-box track-
ers, Nejhum et al. [30] propose a tracker for articulated ob-
jects. They use blocks of appearance and shape descriptions
but assume stationary foreground appearance. Kwon and
Lee [20] define a fixed number of object parts that are auto-
matically renewed during tracking and track the geometric
relations of these parts over time. Additionally, they apply
Basin Hopping Monte Carlo (BHMC) sampling to reduce
the computational complexity. Bibby and Reid [5] over-
come the tracking problem within a probabilistic frame-
work. However, the high complexity of their framework
makes if computationally infeasible. Thus, they separate the
tracking of non-rigid objects into registration, segmentation
based on level-sets and online appearance learning for con-
tinuous refinement of both object and background models.
Beside that, there exist various trackers based on segmen-
tation, but they either need prior knowledge (e.g., [8]), use
only very simple object appearance models (e.g., color his-
tograms [5]), or perform offline processing of the sequence
(e.g., [16, 32]).

In the domain of generic object detection, part-based rep-
resentations are able to improve detection results for vari-
ous categories of objects that contain intra-class variations.
Felzenszwalb et al.demonstrate that the deformable parts
model [9] allows to reliably detect objects even under heavy
non-rigid transformations and partial occlusions. Using a
latent SVM, they train a discriminative part-based object
detector which is able to handle a small number of parts se-
lected automatically during training phase. However, due to
the complexity of the approach it is infeasible for real-time
applications and online learning so far.

A different, recently revisited approach overcoming the
limitations of bounding-boxes is the Generalized Hough
Transform [4, 21]. In several recent publications, it is suc-
cessfully applied to object detection [10, 23, 25], action
recognition [34] and tracking [11]. Though, in the case of
tracking, the detector is only able to track objects from a

certain class and learns to distinguish a specific instance
from all other instances in an online manner. In addition
to the detection of objects, the Hough-based classification
framework also allows to determine the support of a detec-
tors decision (i.e., which positions in the image voted for
the assumed object center position). This issue has been ad-
dressed in detail by Razavi et al. [27] and is of major interest
for our work.

2. Hough Forests
Random Forests (RF) [6] are of great interest for the

computer vision domain because of their speed, paralleliza-
tion characteristics and robustness to noisy training data.
They are used for various tasks, such as key-point recog-
nition [22] or semantic segmentation [31]. Before we in-
troduce our approach, we will give a brief introduction to
Random Forests and the integration of the Hough votings.

2.1. Random Forests

Considering an F -channel feature space (the channels
may encode e.g., colors, derivatives, histograms of gradi-
ents, ...), we draw samples 〈x, y〉, where x is a feature vec-
tor of size F ×n×n (corresponding to a rectangular image
patch of size n × n) and y ∈ Y denotes the corresponding
class label (Y = {−1,+1} for binary classification). We
access values in the samples by x(f, p), where f ∈ F cor-
responds to a specific feature channel and p ∈ N2 defines a
position within the rectangular image patch.

To build a classifier, tree-like structures are used, where
binary splitting tests are applied at all nodes of the tree (ex-
cept the leaves). The used binary tests are defined as

tf,pa,pb,θ(x) =

{
1 if x(f, pa)− x(f, pb) > θ

0 otherwise
, (1)

where θ denotes a random threshold.
Since each tree node splits the training samples into two

subsets according to its left and right child node, the ba-
sic idea of RFs is to perform this splitting recursively until
the subsets are internally consistent (i.e., belonging to the
same class y) or a maximum depth dT has been reached.
Random Forests [6] perform an extensive selection of bi-
nary tests that optimize a certain criterion (e.g., Gini-index,
information gain) for each node during training.

The statistics within the leaf nodes model the probability
Py(x) of the sample subset ending up in this node and being
of class y. The overall classifier H is constructed by an
ensemble of T classification trees and can be written as

H(x) = argmax
y

T∑
t=1

P ty(x), (2)

where P ty is the probability of class y in the specific tree t.

2.2. Hough Voting
While the leaf nodes in RFs only store the probability of

a sample ending up in this node being of class y, a Hough
Forest additionally stores votes d ∈ R2 that point toward
the expected object center. Thus, a training sample for a
Hough Forest consists of the triplet 〈x, y,d〉, where d is
the displacement vector to the objects center position (only
contained in positive (i.e., y = +1) samples). The distribu-
tion of these votes v within each leaf node can be modeled
by a sum of Dirac measures according to the displacement
vectors d from all samples 〈x,+1,d〉 that ended up in this
specific leaf node. While training a tree node of a Hough
Forest, either the information gain or the uncertainty of the
displacement vectors of the given training set is optimized
while selecting the best test [11].

During evaluation the voting map can be generated by
accumulating the voting vectors v, weighted by the fore-
ground probability P+1(x) of the corresponding leaf node,
for all possible locations in the image. The intensity of the
voting map on a specific position corresponds to the proba-
bility of an object being centered there.

2.3. Support
Beside the detection capabilities, the voting mechanism

of Hough Forests can also be applied backwards to detect
the support of a specific position. Given a local maximum
at position m, we define the support of this maximum as
the sample set S(m, ρ) containing all samples x that have
voted to the center position m with maximum position de-
viation ρ. By using the corresponding voting vectors v, we
can back-project the original position of samples x onto the
image space. In this way, we obtain a sparse point-set of
positions supposable belonging to the object that voted for
the center position m.

3. Hough-based Online Tracking
Based on the work of Gall et al. [11], we use a Hough-

voting based classification framework for tracking, which
we transfer to the online learning domain. Therefore, we
have to model foreground probabilities and voting maps
within each leaf node online. Since the online training sam-
ple generation is a very crucial part, we have to ensure high
accuracy and low label noise. Therefore, we propose to use
a rough segmentation of our object, initialized by the sup-
port set S of the detected object center. We then use this
segmentation to accurately update our classifier, which al-
lows learning of highly non-rigid object deformations dur-
ing tracking. Figure 2 illustrates the application flow and all
parts of our tracking system.

3.1. Extremely Randomized Tree Structure
Before the Hough-based classifier can be applied for de-

tection, the tree structure and the statistics in the leaf nodes

Figure 2. Tracking Loop: Hough-based object detection, back-
projection and supporting image positions, guided segmentation,
robust updating and tracking result (red: foreground support, seg-
mentation and updates; blue: background segmentation and up-
dates)

have to be established. In the Hough Forest approach of
Gall et al. [11], the tree is trained using a large amount of
training data. They use two types of splitting nodes: (a)
classification nodes, that try to separate positive and nega-
tive training samples, and (b) regression nodes, that try to
cluster voting vectors within the positive training samples
presented to a specific tree node. This results in homoge-
neous statistics within the leaf nodes where samples have
similar appearance and similar displacement from the ob-
ject center. However, to generate this structure, all training
data has to be available in advance. In our case, given only
a single labeled sample, we perform random initialization
of the tree structures. This avoids over-fitting to the single
sample which would lead to bad generalization of the clas-
sifier over time since the object may change it’s appearance.
Following the approach of Geurts et al. [12], we completely
randomize our tests and thresholds and abstain on optimiz-
ing of splitting tests or thresholds in the tree nodes. This is
also highly related to the work of Ozuysal et al. [26]. To ini-
tially populate the statistics within the leaf nodes we apply
online learning, as described subsequently, using the data
provided by the very first frame.

Due to the complete randomization, we cannot guarantee
the expressiveness of the trees which may lead to a very
sparse population of the leaf nodes. Therefore, we use a
larger number of trees within our classifier and measure the
amount of populated leaf nodes per tree as

ξt =

2dT∑
n=1

δ(η+n + η−n), (3)

with δ(·) being the step function, η+n and η−n being the num-
ber of positive and negative samples in leaf node n and dT
being the depth of the tree. This measure is used to select
T trees which have the highest population ξt within our en-

semble, which we combine using equal weights. Due to
the ongoing training of our trees, the configuration of our
ensemble may change during tracking.

3.2. Online Leaf Node Statistics

To establish a Hough-based classifier, we have to model
(a) the foreground probability of the leaf node and (b) the
corresponding voting map during online training. We model
the foreground probability incrementally by counting posi-
tive and negative samples arriving at a specific leaf node
during runtime. Since this would limit the adaptivity of the
classifier due to saturation effects, we apply an iir-filtering
like forgetting function,

η+n =

t0∑
t=−∞

N+
t · τ t0−t, (4)

where η+n is the weight of positive training data in leaf
node n and N+

t is the amount of positive samples at time
t. t0 denotes the current time and τ ∈ (0...1) the forgetting
speed. The same function is applied to the weight of neg-
ative data η−n , respectively. Additionally, we normalize the
foreground probability P+

n in each leaf node n to simulate
an equal amount of positive and negative training data for
each tree.

Since the tests in our classification tree are not trained
to cluster similar voting directions, we have to handle a
very diverse set of voting vectors within a single leaf node.
Therefore, we discretize the voting space into small rect-
angular cells and measure the weight of each of these cells
incrementally. When the classifier is applied to a certain im-
age position, we retrieve the corresponding leaf node n and
select a subset of strong voting vectors from the collected
voting map (see Figure 3). This is done by picking v vot-
ing cells with the largest weights ωcell and setting their vote
strength to

ωvote = P+
n · ωcell. (5)

To adapt the vote map to the current object configuration,
we apply the same forgetting scheme as described in Eq. (4)
to each cell in our voting map individually.

The described adaptations allow online training of
Hough Forests using the current frame and to detect the ob-
ject in the subsequent frame. Therefore, we apply the clas-
sifier to all positions in the image and accumulate the re-
sponding votes and their weights. After performing a non-
maxima suppression, we assume the maximum to be the
current object position.

3.3. Back-projection and Support

As denoted in Section 2.3, the Hough-voting framework
can also be used to detect the support S of a given image po-
sition m using an uncertainty ρ. This is especially interest-
ing for tracking of non-rigid objects, because the resulting

(a) (b) (c)

Figure 3. Voting Map: (a) training / input votes, (b) weighted
voting cells, (c) weighted output votes for v = 3.

point set shares a stable displacement according to the ob-
ject’s center position. Our basic observation is that even if
the object undergoes heavy deformations from one frame to
another, there are still several parts of the object that keep
a stable geometric configuration. Since the Hough-based
voting framework works with a very large number of small
patches, we have a high probability that the majority, or at
least the stable parts of the object, will be covered by such
supporting points. Since we adapt the voting map over time,
the stable parts are not static but may change over time.
Similar to the appearance model, the voting directions just
have to fit the current object configuration.

3.4. Closing the Tracking-Loop

Up to now, we have defined all parts that are necessary
to perform online learning in a Hough-voting based classifi-
cation framework. However, there is a crucial part missing
to close the tracking loop: online training sample selection.
Selecting the right update strategy is an important part for
online tracking-by-detection. The major problem is that the
correctness of the tracking result is not guaranteed (due to
misalignments, occlusions or cluttered background) but the
learning algorithm has to generate training samples includ-
ing as little noise as possible. To avoid the problem of a
coarse bounding-box annotation, we want to separate the
object from the background on a more fine-grained level to
get more accurate training data. Therefore, we use the sup-
port S of the detected object position (i.e., the parts having
a stable geometric relation to the object center) to guide a
rough segmentation process that extracts the object. Even if
this segmentation is not very precise, it lowers the amount
of noise which is introduced to the online learning. We ap-
ply the well-known GrabCut [7]1 algorithm to establish a
reasonable binary segmentation using the color channels,
initialized by the support S(m, ρ) of our object position as
foreground and a maximum-object-sized rectangle as back-
ground. This rough segmentation separates our image into
two regions: positive samples, located on the object and
negative ones, located in the background. Since we do not
rely on an exact segmentation (due to e.g., missing parts,

1We used the implementation from http://opencv.willowgarage.com.

over-segmentations) we consider a narrow band in-between
these two sets as uncertain and do not use this region for
training.

To be adaptive to geometric reconfiguration of the object,
we shift the object’s center position to the current center-of-
mass in the foreground segment. Thus, the object center
detected by our classifier represents the center of the cur-
rently visible part of the tracked object, because we do not
distinguish between occlusions and geometric reconfigura-
tion of the object. However, this simple but efficient strat-
egy delivers accurate training data which is used to update
our classifier during tracking. If the segmentation fails, our
tracker acts like a bounding-box-based tracker, but Random
Forests are known to be robust to noise and are able to han-
dle a notable amount of incorrectly labeled samples.

4. Evaluation
To demonstrate the performance of our tracking ap-

proach denoted as HoughTrack (HT), we evaluate and
compare it to existing approaches using two different
datasets. The first dataset was originally defined to evaluate
bounding-box trackers and is used extensively in many pub-
lications. We evaluate our approach on this dataset to show
the general applicability of our tracking approach. Addi-
tionally, we collected a set of very diverse and challeng-
ing sequences including highly non-rigid object transforma-
tions.

We use the same settings for all sequences: the classi-
fier pool consists of 20 trees and we pick the T = 10 trees
with the highest population for detection. Our trees are fully
grown to a maximum depth of dT = 8 and we are using
Lab-color space (3 channels), first and second derivatives in
x and y direction (4 channels) and a 9-bin histogram of gra-
dients (9 channel) as feature channels xf . The used patch
size of our samples is 12× 12 and we return v = 10 strong
votes from a leaf node if a sample ends up there. Our for-
getting constant τ is set to 0.9 and the maximum support
deviation ρ is 0.5.

4.1. Standard Dataset

For quantitative analysis, we use the publicly available
tracking dataset by Babenko et al. [3], which consists of
8 sequences collected from several different publications
and an overall size of more than 5000 frames. We com-
pare to MILTrack [3] using the original configuration of 50
weak classifiers and Online Random Forests [28] using 50
trees and standard settings provided by the implementation.
Since the compared trackers only report bounding-boxes,
we also convert our result to bounding-boxes of original
size, centered around the center-of-mass of our segmenta-
tion. Table 1 clearly shows that our approach delivers com-
petitive results, even not considering partial or full occlu-
sions in the evaluation due to the lack of annotations.

http://opencv.willowgarage.com

Sequence HT MIL [3] ORF [28]
David 100 84 95
Sylvester 99 93 71
Girl 86 85 99
Face Occlusion 1 100 91 100
Face Occlusion 2 100 94 70
Coke 24 46 17
Tiger 1 45 78 27
Tiger 2 71 78 21

Average 78 81 63

Table 1. Babenko Sequences: Percentage of correctly tracked
frames (score > 0.5) for all sequences and average.

Based on the ground-truth annotation included in the
dataset of Babenko et al. [3], which is represented by a
simple bounding-box of the same size as the initialization,
our tracker cannot be compared fairly with other bound-
box-based trackers because object occlusions are ignored
completely. To alleviate the influence of occlusions to the
overall performance, we measure the tracking accuracy us-
ing the Agarwal-criterion [1], which is defined as score =
RT∩RGT

RT
, where RT is the tracking rectangle and RGT the

ground truth. We report the amount of successfully tracked
frames (score > 0.5), since this value is less sensitive to
the effect described above. Figure 4 shows some selected
frames from the dataset and demonstrates that the raw ac-
curacy values from Table 1 fail to meet the true performance
of our tracking approach.

4.2. Tracking of Non-Rigid Objects

Since the intended purpose of our tracking approach is
the tracking of objects that may deform during runtime, we
want to demonstrate the performance on several challeng-
ing sequences. Therefore, we have collected several videos
showing different ranges of complexity and non-rigid defor-
mations, consisting of about 2500 frames. We compare to
Basin Hopping Monte Carlo Tracking (BHMC)2, because
this tracker solves a similar task. We also include the se-
quences provided by the authors in our comparison (Trans-
former, Diving, High Jump, and Gymnastics).

We also list the results of Online Random Forests
(ORF)3, a bounding-box-based tracker that is not designed
to cope with the amount of transformation presented in this
videos. Since this tracker cannot adapt the aspect ratio of
the bounding-box, we accept the tracking result to be cor-
rect if the center position of the tracked bounding-box is
roughly correct, although the result is much more inaccu-
rate than using the two other approaches.

Table 2 depicts tracking results of the selected ap-
proaches evaluated on our sequences. We have denoted the

2Implementation from http://cv.snu.ac.kr/research/˜bhmctracker/.
3Implementation from http://lrs.icg.tugraz.at/download/.

percentage of frames for each sequence until the tracking
approach fails by visual inspection. Figure 5 shows some
selected frames of our sequences and our tracking results.

Sequence HT BHMC [20] ORF [28]
Cliff-dive 1 100 100 100
Motocross 1 100 5 15
Skiing 60 0 5
Mountain-bike 100 50 100
Cliff-dive 2 100 30 50
Volleyball 100 60 45
Motocross 2 100 25 10

Transformer 100 100 100
Diving 35 100 30
High Jump 100 100 5
Gymnastics 10 100 65

Average 82 61 48

Table 2. Tracking of non-rigid objects: Percentage of frames
correctly tracked until failure.

4.3. Discussion

We have defined a maximum object size that is used for
background initialization of our segmentation algorithm. If
the segmentation fails, it is not allowed to grow beyond this
maximum scale. This prevents leakage of the object seg-
mentation. This effect can be seen in sequence Cliff-dive 2
(3rd row in Figure 5). It is clearly visible that the segmen-
tation changes over time and it gets more accurate during
tracking.

Since we use a rectangular initialization of our tracker
in the first frame, the support of our detection in the sub-
sequent frames may also include background positions be-
cause they have also been included in the initial training
set. This may end up in confusion of the classifier. How-
ever, these votes disappear as soon as the object moves and
the according votes do not match the support criterion any
more. Only if the majority of the support originates from the
near background of the object, the recognized object center
will be supported by the background and the tracker is not
able to follow the object any longer. This effect may occur
when there is very cluttered background (Sequence Diving)
or the segmentation algorithm fails due to similar colors in
the background (Sequence Gymnastics). Since our classi-
fier’s structure is created without any training data, we have
used the same binary test within a whole tree level. Thus,
our implementation is very related to Random Ferns [26].
For comparison to future approaches, our reference imple-
mentation and the used sequences are available online4.

4http://lrs.icg.tugraz.at/research/houghtrack/.

http://cv.snu.ac.kr/research/~bhmctracker/index.html
http://lrs.icg.tugraz.at/download/
http://lrs.icg.tugraz.at/research/houghtrack/

(a) Coke (b) David (c) David (d) Face Occ. 1 (e) Face Occ. 2 (f) Face Occ. 2

(g) Girl (h) Girl (i) Sylvester (j) Sylvester (k) Tiger 1 (l) Tiger 2

Figure 4. Illustrative Tracking Results: Selected frames from the Babenko Sequences.

5. Conclusion
In this work, we present a tracking approach that is

able to handle non-rigid object deformations, part- and self-
occlusions and transformations such as rotation or scaling
quite naturally. By the combination of a Hough-voting
based classification framework, online learning techniques,
and an out-of-the-box segmentation algorithm we are able
to track various objects in several challenging sequences.
We use the classification framework for both detection of
the object and finding the support of the currently estimated
object position to guide the segmentation process. The seg-
mentation allows for a rough per-pixel separation of object
and background which itself enables more robust training
of the classifier. If the segmentation fails and background is
included in the training process, our learner is able to handle
a large amount of noise.

In future work, we plan to investigate the robustness of
our learner and the appropriate integration of prior informa-
tion. To further enhance the tracking, the incorporation of
a motion model and a more advanced occlusion handling
that also supports re-detection of the object would be bene-
ficial. Issues regarding the speed can be addressed by paral-
lelization of all modules of our tracker, especially because
Random Forests/Ferns can be parallelized easily. Due to
the high parallelization capabilities, implementation on a
Graphics Processing Unit (GPU) for the whole approach
(including segmentation) would be beneficial. That would
also allow for the use of more complex segmentation al-
gorithms which would further improve the overall perfor-
mance of our approach.

References
[1] S. Agarwal, A. Awan, and D. Roth. Learning to detect ob-

jects in images via a sparse, part-based representation. IEEE
Trans. PAMI, 2004. 6

[2] S. Avidan. Ensemble tracking. In Proc. CVPR, 2005. 1, 2
[3] B. Babenko, M.-H. Yang, and S. Belongie. Visual tracking

with online multiple instance learning. In Proc. CVPR, 2009.
1, 2, 5, 6

[4] D. Ballard. Generalizing the hough transform to detect arbi-
trary shapes. Pattern Recognition, 1981. 2

[5] C. Bibby and I. Reid. Robust real-time visual tracking using
pixel-wise posteriors. In Proc. ECCV, 2008. 2

[6] L. Breiman. Random forests. Machine Learning, 2001. 3
[7] A. B. Carsten Rother, V. Kolmogorov. Grabcut: Interactive

foreground extraction using iterated graph cuts. ACM Trans-
actions on Graphics, 2004. 5

[8] D. Cremers and G. Funka-lea. Dynamical statistical shape
priors for level set based tracking. IEEE Trans. PAMI, 2006.
2

[9] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part
based models. IEEE Trans. PAMI, 2010. 2

[10] J. Gall and V. Lempitsky. Class-specific hough forests for
object detection. In Proc. CVPR, 2009. 2

[11] J. Gall, N. Razavi, and L. van Gool. On-line adaption
of class-specific codebooks for instance tracking. In Proc.
BMVC, 2010. 2, 3, 4

[12] P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized
trees. Machine Learning, 2006. 4

[13] H. Grabner, M. Grabner, and H. Bischof. Real-time tracking
via on-line boosting. In Proc. BMVC, 2006. 1, 2

[14] H. Grabner, C. Leistner, and H. Bischof. Semi-supervised
on-line boosting for robust tracking. In Proc. ECCV, 2008.
1, 2

[15] S. Grossberg. Competitive learning: From interactive activa-
tion to adaptive resonance. Cognitive Science, 1987. 1

[16] M. Grundmann, V. Kwatra, M. Han, and I. Essa. Efficient hi-
erarchical graph based video segmentation. In Proc. CVPR,
2010. 2

[17] O. Javed, S. Ali, and M. Shah. Online detection and clas-
sification of moving objects using progressively improving
detectors. In Proc. CVPR, 2005. 2

Figure 5. Illustrative Tracking Results: Initialization (first column) and selected frames (column 2 to 6) (green: initialization; red:
tracking result; best viewed in color). More results can be found at http://lrs.icg.tugraz.at/research/houghtrack/.

[18] Z. Kalal, J. Matas, and K. Mikolajczyk. P-N learning: Boot-
strapping binary classifiers by structural constraints. In Proc.
CVPR, 2010. 2

[19] T. K. Kim, B. Stenger, T. Woodley, and R. Cipolla. Online
multiple classifier boosting for object tracking. In Proc. On-
line Learning for Computer Vision Workshop, 2010. 2

[20] J. Kwon and K. Lee. Tracking of a non-rigid object via patch-
based dynamic appearance modeling and adaptive basin hop-
ping monte carlo sampling. In Proc. CVPR, 2009. 2, 6

[21] B. Leibe, A. Leonardis, and B. Schiele. Combined object cat-
egorization and segmentation with an implicit shape model.
In In ECCV workshop on statistical learning in computer vi-
sion, 2004. 2

[22] V. Lepetit and P. Fua. Keypoint recognition using random-
ized trees. IEEE Trans. PAMI, 2006. 3

[23] S. Maji and J. Malik. Object detection using a max-margin
hough transform. In Proc. CVPR, 2009. 2

[24] L. Matthews, T. Ishikawa, and S. Baker. The template update
problem. IEEE Trans. PAMI, 2004. 1

[25] R. Okada. Discriminative generalized hough transform for
object dectection. In Proc. ICCV, 2009. 2

[26] M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua. Fast key-
point recognition using random ferns. IEEE Trans. PAMI,
2010. 4, 6

[27] N. Razavi, J. Gall, and L. van Gool. Backprojection re-
visited: Scalable multi-view object detection and similarity
metrics for detections. In Proc. ECCV, 2010. 3

[28] A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof.
On-line random forests. In Proc. On-line Learning for Com-
puter Vision Workshop, 2009. 1, 2, 5, 6

[29] J. Santner, C. Leistner, A. Saffari, T. Pock, and H. Bischof.
PROST Parallel Robust Online Simple Tracking. In Proc.
CVPR, 2010. 2

[30] S. Shahed Nejhum, J. Ho, and M.-H. Yang. Visual track-
ing with histograms and articulating blocks. In Proc. CVPR,
2008. 2

[31] J. Shotton, M. Johnson, and R. Cipolla. Semantic texton
forests for image categorization and segmentation. In Proc.
CVPR, 2008. 3

[32] D. Tsai, M. Flagg, and J. M.Rehg. Motion coherent tracking
with multi-label MRF optimization. In Proc. BMVC, 2010.
2

[33] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In Proc. CVPR, 2001. 2

[34] A. Yao, J. Gall, and L. van Gool. A hough transform-based
voting framework for action recognition. In Proc. CVPR,
2010. 2

http://lrs.icg.tugraz.at/research/houghtrack/

