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Abstract. Active Shape Models are commonly used to recognize and locate dif-
ferent aspects of known rigid objects. However, they require an off-line learning
stage, such that the extension of an existing model requires a complete new re-
training phase. Furthermore, learning is based on principal component analysis
and requires perfect training data that is not corrupted by partial occlusions or im-
perfect segmentation. The contribution of this paper is twofold: First, we present
a novel robust Active Shape Model that can handle corrupted shape data. Sec-
ond, this model can be created on-line through the use of a robust incremental
PCA algorithm. Thus, an already partially learned Active Shape Model can be
used for segmentation of a new image in a level set framework and the result of
this segmentation process can be used for an on-line update of the robust model.
Our experimental results demonstrate the robustness and the flexibility of this
new model, which is at the same time computationally much more efficient than
previous ASMs using batch or iterated batch PCA.

1 Introduction

Prior knowledge of the object contour/shape is used to improve the result in many com-
puter vision approaches dealing with segmentation, object detection or tracking. A com-
mon approach, to model different aspects of rigid objects in a shape prior formalism, is
the use of Active Shape Models (ASMs) proposed by Cootes et al. [4, 5]. The standard
ASM framework consists of two stages: (1) the modeling/learning and (2) the segmen-
tation/detection stage.

In this paper we use a level set segmentation framework. Level set representa-
tion [14] is an established technique for image segmentation. Over the years several
different level set models of ASMs have been presented (e.g., [6,16]). In particular, we
use the level set representation of Rousson and Paragios [16]. To avoid unnecessary
computation and numerical errors, we work with the level set shape representation and
avoid a conversion to the classical landmark representation used in [5].



In the learning stage, a set of registered training shapes is used to model different
aspects of a model. Generally ASM approaches use a batch (off-line) version of Princi-
pal Component Analysis (PCA) [11] for learning, that has two main disadvantages: (1)
the approach is not robust in the recognition nor in the training [12, 18] (but, we might
receive data that is corrupted by partial occlusions or imperfect segmentation) and (2)
all training data has to be provided a priori, thus, hand segmentation is required and the
shape model cannot be extended as new segmentation results become available.

Various approaches have been proposed to introduce robustness in the recognition
stage (e.g., [1,12,15]). For these methods it is assumed that the samples in the learning
stage are undisturbed. Robust learning is a more difficult problem, since there is no
previous knowledge that can be used to estimate outliers. Several methods have been
proposed to robustly extract the principal axes in the presence of outliers [7,21]. Other
approaches use robust M-estimator [7] or are based on the EM formulation of PCA [17,
18, 20]. Using a robust approach in our framework has two advantages: (1) the robust
reconstruction from the ASM allows a much better segmentation of occluded objects
and (2) robust learning on the improved segmentation results provides a better shape
representation.

We use an incremental PCA approach in our ASM. Applying an incremental method,
we can efficiently build and update an ASM that is used for the segmentation process,
i.e., we can use the partially learned ASM to perform segmentation and use the seg-
mentation result to retrain the ASM. Different incremental PCA approaches have been
proposed that are based on incremental SVD-updating (e.g., [2, 9]). Recently even ro-
bust and incremental [13, 19] approaches have been proposed. In particular we apply a
simplified version of the approach of Skočaj and Leonardis [19] to learn the ASM that
will be explained in Section 2.2.

Applying this incremental and robust PCA method, we need a priori only a small
hand segmented data set to initialize our ASM. This first model provides shape priors
for the segmentation process. Furthermore, the Active Shape Model can be successively
updated with new data from the segmentation process.

The outline of the paper is as follows: Section 2 explains our system and gives a
short description of its components. In Section 2.1, we describe the shape registration.
In Section 2.2, we introduce in detail the Robust Incremental PCA. Experiments are
presented in Section 3 and finally, conclusions are drawn in Section 4.

2 Incremental Robust Active Shape Model

Fig. 1 depicts our proposed method, which is split into two components: (i) the seg-
mentation module and (ii) our novel ASM module. For the segmentation, we use the
approach proposed by Fussenegger et al. [8] which is based on the level set formulations
by Rousson and Paragios [16] and Brox and Weickert [3].

The output of the segmentation module is the distance functionΦ(x), Φ : Ω → IR,
with Φ(x) > 0, if x lies in the shape andΦ(x) < 0, if x lies out of the shape.Ω is the
image domain andx denotes a pixel inΩ. In order to avoid unnecessary computation
and numerical errors, we use directly this distance function as the shape representation



instead of the landmark representation used in [4, 5]. However, our ASM can be easily
adapted to alternative shape representations for use with other segmentation approaches.

In a first step, the ASM module is initialized with a training set of non corrupted,
aligned shapes characterizing different aspects of an object to learn a first Active Shape
Model. This learned ASM is then used in the segmentation process. After each level
set iteration step the current resultΦi is passed from the segmentation module to the
ASM module. A registration process (Section 2.1) applies a similarity transformation
A on Φi to map it withΦM in the best way.ΦM is the mean shape calculated over the
already learned shapes.Φi is then projected to the eigenspace and robustly reconstructed
(Section 2.2). The reconstructioñΦi is passed to the segmentation module and used as
a shape prior in the next level set iteration step. This is repeated until the segmentation
process ends. The final result is used to update and improve our ASM.

Fig. 1. Our System consisting of two interacting components: The level set segmentation [8] and
our novel Active Shape Model.

2.1 Shape registration

For the shape registration, we assume a global deformationA betweenΦM (the mean
shape) andΦ (the new shape) that involves the parameters[A = (s; θ; T)] with a scale
factors, a rotation angleθ and a translation vectorT [16]. The objective function

E(ΦM , Φ(A)) =
∫

Ω

(sΦM − Φ(A))2dx (1)

can be used to recover the optimal registration parameters. The rigid transformation
A is dynamically updated to mapΦM andΦ in the best way. Thus, the calculus of
variations for the parameters ofA yields the system

∂s

∂t
= 2

∫

Ω

(sΦM − Φ(A))(ΦM −∇Φ(A)
∂

∂s
A)dx

∂θ

∂t
= 2

∫

Ω

(sΦM − Φ(A))(−∇Φ(A)
∂

∂θ
A)dx

∂T
∂t

= 2
∫

Ω

(sΦM − Φ(A))(−∇Φ(A)
∂

∂T
A)dx. (2)

Fig. 2(a-c) shows three example shapes. Fig. 2(d) and 2(e) show all three shape
contours before and after the registration process.



(a) (b) (c) (d) (e)

Fig. 2. Three example shapes before and after registration.

2.2 Robust Incremental PCA

For batch PCA all training images are processed simultaneously. A fixed set of input
imagesX = [x1, . . . xn] ∈ IRm×n is given, wherexi ∈ IRm is an individual image
represented as a vector. It is assumed thatX is mean normalized. LetQ ∈ IRm×m

be the covariance matrix ofX, then the subspaceU = [u1, . . . , un] ∈ IRm×n can be
computed by solving the eigenproblem forQ or more efficiently by solving SVD ofX.

For incremental learning, the training images are given sequentially. Assuming that
an eigenspace was already built fromn images, at stepn + 1 the current eigenspace
can be updated in the following way [19]: First, the new imagex is projected in the
current eigenspaceU(n) and the image is reconstructed:x̃. The residual vectorr =
x − x̃ is orthogonal to the current basisU(n). Thus, a new basisU′ is obtained by
enlargingU(n) with r . U′ represents the current images as well as the new sample.
Next, batch PCA is performed on the corresponding low-dimensional spaceA′ and
the eigenvectorsU′′, the eigenvaluesλ′′ and the meanµ′′ are obtained. To update the
subspace the coefficients are projected in the new basisA(n+1) = U′′T

(
A′ − µ′′1

)

and the subspace is rotated:U(n+1) = U′U′′. Finally, the meanµ(n+1) = µ(n) +
U′µ′′ and the eigenvaluesλ(n+1) = λ′′ are updated. In each step the dimension of
the subspace is increased by one. To preserve the dimension of the subspace the least
significant principal vector may be discarded [10]. To obtain an initial model, the batch
method may be applied to a smaller set of training images. Alternatively, to have a fully
incremental algorithm, the eigenspace may be initialized using the first training image
x: µ(1) = x, U(1) = 0 andA(1) = 0.

This method can be extended in a robust manner, i.e., corrupted input images may
be used for incrementally updating the current model. To achieve this, outliers in the
current image are detected and replaced by more confident values: First, an image is
projected to the current eigenspace using the robust approach [12] and the image is
reconstructed. Second, outliers are detected by pixel-wise thresholding (based on the
expected reconstruction error) the original image and its robust reconstruction. Finally,
the outlying pixel values are replaced by the robustly reconstructed values.

3 Experiments

For the experiments, we have created several different data sets:teapot, African man,
elephantandoctopus(Fig. 3). The first one (Fig. 3(a)) was created artificially by us-
ing 3D-MAX. The others are representing real world objects where the images were



acquired in two different ways: a smaller number of images was obtained using a turn-
table and a homogeneous background, such that we can use the level set segmentation
without any shape-prior (Fig. 3(b)-(d)). These views are used to build the initial consis-
tent model. Depending on the complexity of the object, i.e., the complexity of the ob-
ject’s shape,10 up to80 views are needed. The consistent model is necessary for robust
reconstruction of outlying values in the input shapes resulting from over-segmentation
and under-segmentation in further steps. Additionally, more complex images (hand held
presentations of the objects with cluttered background) are acquired and used to demon-
strate the incremental update and robustness of the method (Fig. 3(e)-(f)).

(a) (b) (c) (d) (e) (f)

Fig. 3. Examples of our data sets:teapot, African man, elephantandoctopus.

To show the benefit of the incremental method we trained classifiers using different
PCA approaches on theteapotdata set. In total 85 images were processed in the training
stage where only 10 eigenvectors were used for reconstruction. The obtained classifiers
were evaluated on an independent test set of 10 images.

First, Fig. 4(a) shows that the incremental on-line method yields similar results as
the “iterated batch” method (batch PCA is applied when a new image arises) that is
applied in most applications. The reconstruction errors of the incremental PCA, the
“iterated batch” PCA and the batch PCA are compared for an increasing number of
training shapes and eigenvectors. The reconstruction error is similar for both, the in-
cremental and the iterated batch method. Both error curves are continuously decreasing
when the number of training shapes is increased and they are approaching the results
of the batch method (trained from the full set of training shapes). Thus, there is no real
loss of accuracy (for our application) in using the incremental approach. But as can be
seen in Fig. 4(b) there are huge differences in the computational costs for the differ-
ent methods; the learning times were obtained by evaluating the training in MATLAB
on a 3GHz machine. The results for the whole training set containing 85 images are
summarized in Table 1. Since the matrix operations are performed on smaller matrices
only (less memory has to be allocated) for this data set the incremental method is even
computationally cheaper than the batch method. But, as the main point, compared to
the iterated batch “incremental” approach the computational costs of the incremental
method are only approximately1/40!

methodincremental PCAbatch PCAiterated batch PCA
time 4.72s 6.55s 205.38s

Table 1.Performance evaluation.
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Fig. 4. Incremental PCA approach evaluated on theteapotdata set: (a) incremental PCA performs
similar as incremental batch PCA, (b) incremental PCA is computationally much cheaper than
incremental batch PCA.

As the applied incremental PCA method can easily be extended in a robust manner
we want to show the advantages of robust incremental learning. For this purpose an
initial classifier for the octopus is trained using only 15 clean shapes to get a consis-
tent starting model. Later on, the training is continued from corrupted data. To simulate
over-segmented and under-segmented shapes the corrupted data is created by randomly
adding black and white bars occluding 25% of the image. By adding these shapes the
non-robust model gets more and more corrupted (see (Fig. 5(c) for the first 5 eigen-
images) while a stable model is estimated by using the robust approach (see Fig. 5(a)
for the first 5 eigenimages). Examples of reconstructions are shown in Fig. 5(b) (robust
eigenspace) and Fig. 5(d) (non-robust eigenspace).

(a) (b)

(c) (d)

Fig. 5. Robust incremental vs. plain incremental approach: (a) eigenspace obtained by robust
incremental learning from noisy data, (b) reconstruction from robust eigenspace, (c) eigenspace
obtained by incremental learning from noisy data, (d) reconstruction from non-robust eigenspace.

To show the increasingly better segmentation results when incrementally updat-
ing the current model with newly obtained shapes, the more complexoctopusdata set
was evaluated. In total 85 training shapes were processed where 35 eigenvectors were
used for reconstruction. Fig. 6 shows different level set segmentation results using our



ASM in different training stages. For Fig. 6(b), the segmentation is done without a
trained ASM. In this case the segmentation fails completely. In Fig. 6(c), we show the
final shape prior provided from the initialized ASM (40 “off-line” training shapes) and
the corresponding segmentation. The segmentation has been improved significantly but
still some errors are present. Afterwards, our ASM is incrementally updated with new
“on-line” training shapes. Fig. 6(d) shows the results after 40 additional incrementally
obtained shapes. The segmentation is perfect and the segmentation result depicted in
Fig. 6 can then be used to add a new aspect to our ASM.

(a) (b) (c)

(d)

Fig. 6.Original image (a) and level set segmentation without an ASM (b). Estimated shape prior,
with an ASM learned from 40 training shapes and corresponding level set segmentation (c).
Estimated shape prior, with an ASM learned from 80 training shapes and corresponding level set
segmentation (d).

For a more general evaluation different models (varying the number of processed
training shapes) were evaluated on a set of 10 independent test images. For this purpose
the shapes in the test set were reconstructed using the previously trained models and
the reconstruction errors were analyzed. According to the number of processed shapes
(10 to 85) up to 35 eigenvectors were used for reconstruction. The results are shown
in Fig. 7(a). It can be seen that the reconstruction error is decreasing if the number
of learned shapes (and thus the number of eigenimages used for reconstruction) is in-
creased; a better model is obtained! Examples of continuously improving ASMs are
shown in Fig. 8.

Furthermore, the robust extension of the approach was evaluated on theAfrican man
data set. The reconstruction error3 was analyzed when the portion of noise is increased.
The results are shown in Fig. 7(b). While the reconstruction error is continuously grow-
ing for the standard approach the performance of the robust method is not decreased
even in cases of up to 25% occlusion. Thus, these robustly obtained reconstructions

3 The reconstruction error was computed from the undisturbed original images. Alternatively,
the distance between the learned eigenspace and the projected shape may be used as measure-
ment (which will yield similar curves).
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Fig. 7. Better segmentation results by robust incremental ASM: (a) increasing the size of the
model decreases the reconstruction error, (b) smaller reconstruction error when applying the ro-
bust method even for corrupted data.

(a) (b) (c) (d)

Fig. 8. Improving ASM by updating with new shapes: (a) ASM learned from 10 frames, (b) ASM
learned from 20 frames, (c) ASM learned from 40 frames, (d) ASM learned from 80 frames,

can be used to update the current ASM as it can be seen in Fig. 9. The object was
presented in a realistic scenario with background clutter by hand from varying views
and under different illumination conditions. The registered segmentation without using
a shape prior in Fig. 9(b) contains holes and over-segmentations. Thus, the standard
reconstruction depicted in Fig. 9(c) is corrupted. But as shown in Fig. 9(e) the robust
approach provides a perfect reconstruction that can be used to update the ASM. In addi-
tion, Fig. 9(d) shows the corrupted segmentation result obtained by using the standard
reconstruction as shape prior while the segmentation result obtained by using the robust
reconstruction shown in Fig. 9(f) is perfect.

Finally, we show some examples of segmentations using previously trained Active
Shapes Models. In Fig. 10(a), we use the level set segmentation based on [8] without any
shape information. The other three Figures 10(b)-(d) are segmented with three different
ASMs. On all three objects, we achieve excellent segmentation results, even for Fig.
10(d), where the lower part of the object is highly occluded, our robust ASM is able to
segment the object correctly.



(a) (b) (c) (d)

(e) (f)

Fig. 9. Robust PCA onAfrican mandata set: (a) original data, (b) segmentation and registration,
(c) reconstruction, (d) segmentation result with (c) as shape prior, (e) robust reconstruction, (f)
segmentation result using (e) as shape prior.

(a) (b) (c) (d)

Fig. 10. Level set segmentation results based on [16]: (a) segmentation without a shape prior;
(b)-(d) segmentation using different ASMs.

4 Conclusion

We have introduced a novel robust Active Shape Model, that can be updated on-line.
Using a robust, incremental PCA allows a successive update of our ASMs even with
non perfect data (i.e., corrupted data by partial occlusions or imperfect segmentation).
For the segmentation and shape representation, we use the work of Rousson et al. [16]
but our ASM can easily be adapted to other segmentation approaches and shape repre-
sentations. We performed experiments on various data sets with different objects. The
advantages of the robust, incremental PCA over the standard batch PCA were shown,
and we also showed excellent results using different ASMs for segmentation. Even
highly occluded objects in a cluttered background can be segmented correctly. Com-
pared to the standard approach the computational costs can be dramatically reduced.
Moreover the user interaction is reduced to taking a smaller number of images on a turn
table under perfect conditions, i.e., manual segmentation can be completely avoided!
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