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Abstract—We propose a novel multiple model fitting method
based on outlier insensitive evolutionary dynamics, fulfilling
several important requirements. Our method automatically
identifies a unspecified number of models and is robust to noise
and outliers in the data. Furthermore, we are able to handle
overlapping models, by allowing that data points are assigned to
more than one model. This is implicitly handled during model
fitting and not as a post-processing step. Gross outliers are
directly identified, by letting some points unassigned. We also
introduce a technique, considering nearest neighbor analysis,
to significantly reduce computation time, while maintaining
model fitting accuracy. We show experiments on real-world
and synthetic data, achieving accurate model fitting results also
demonstrating an application of plane fitting on a consumer
hardware providing RGB-D video streams.

I. INTRODUCTION

Robustly fitting models to data plays an important role
in computer vision, since observations and measurements
are usually quite noisy and are mostly contaminated with
a large number of outliers. Since outlier rates beyond 50%
are prevalent in many computer vision applications, robust
statistical approaches like RANSAC have to be applied. In
many applications more than a single model has to be fitted
to the data, which further complicates the task. To robustly fit
multiple models to outlier corrupted data, methods in general
have to cope with four different types of data points: (a) inliers
to a single model, (b) inliers to multiple models (if models
overlap), (c) pseudo outliers, i. e. outliers to the current model
but inliers to other models and (d) gross outliers, not belonging
to any model. These different types of data points pose specific
requirements on a multiple model fitting procedure.

First, since the number of models is a-priori unknown, the
method has to automatically identify this number. Second, the
method has to be robust to noise and has to cope with all
aforementioned types of outliers. Third, data points belonging
to several models should not adversely influence the model
fitting accuracy. Fourth, each model should be assigned with an
intuitive measure of model fitting quality, to ease rejection of
low-quality models. Fifth, the method should be able to return
unassigned data-points, i. e. gross outliers should be implicitly
identified. In this paper, we present a novel method for multiple
model fitting which addresses all aforementioned requirements.
Figure 1 illustrates such a desired result for the task of line
fitting. Related work in this field, partly addresses some of the
aforementioned points as it is discussed next.

The most common approach for single model fitting
is RANSAC [1], which is successfully applied in several
computer vision applications. RANSAC randomly selects
minimal sample sets to estimate model hypotheses. For each
hypothesis, a so-called consensus set is calculated, which

Fig. 1: Illustration of robust multiple model fitting. Our method
automatically identifies the correct number of models (5) and
the assignment of data points to these models. Different models
are shown in different colors and multi-assigned data points are
highlighted in bold (where lines cross).

includes all data points that fit to the model according to an
a-priori specified inlier threshold [2]. The hypothesis having
the largest consensus set is finally used to estimate the model
parameters in a least-squares manner. RANSAC only fits
a single model to the data. A straightforward solution for
obtaining several models with RANSAC would be to apply it
sequentially, by simply removing already assigned data points.
Obviously, inaccurate estimates of the initial models adversely
affect the later model fitting accuracy and such an approach
is not optimal. This issue was addressed in [3], where several
models are fitted in parallel (multi-RANSAC). Nevertheless,
this approach still fails when models are strongly overlapping
and the number of models to obtain has to be defined in
advance. In [4] RANSAC is tuned to the specific task of
image matching (PROSAC), where the random sampling of
the hypotheses is based on drawing progressively larger sets
of top ranked correspondences obtained from feature matching.
Although improving speed, such an approach requires a
measure of data point quality, which is not easily obtainable
for tasks like plane fitting.

The second group of algorithms in this field is based on the
Hough transform concept. Here, the model parameter space is
binned and minimal sample sets are randomly generated. The
corresponding model parameters are inserted into a parameter
histogram. The models are then identified as local maxima
within the parameter space, which enables much more intuitive
extraction of multiple models [5]. Nevertheless, identifying
local maxima is a complex task and the accuracy is limited.

A third group of algorithms in this field focuses on solving
the multiple model fitting problem by energy minimization
approaches [6], [7]. Such methods have the advantage that
they provide some guarantee on solution optimality, but
nevertheless have high computational complexity because of



their implicit complex problem formulation and mostly some
unintuitive regularization parameters have to be tuned.

Available model fitting approaches can furthermore be
distinguished concerning the internal representation of the data,
where mainly three different types of spaces are considered:
(a) parameter, (b) residual and (c) conceptual.

The most common approach, as considered in [3], [5] is
to directly use the parameter space, where the distribution of
residuals per hypothesis is analyzed. Since such approaches
neglect equivalences between the models, in [8] a change of
perspective was suggested. There authors proposed to analyze
the similarities between the residuals of each data point to
all hypothesized models. This idea is based on the fact that
data point residuals cluster together to true models, if the
model hypotheses are calculated in a random manner. However
mode finding in this residual space is still quite difficult as
shown in [3]. The same residual representation was used
in [9], where a statistical learning approach for the task
of model fitting was introduced. A novel kernel (Ordered
Residual Kernel) for comparing data points was described,
where mainly similarities between the nearest neighbor sets,
concerning the residual representation, are calculated. The
proposed method reduces the number of parameters to be
fixed by using standard statistical approaches applicable for
such Mercer kernels. Nevertheless, the method includes an
error-prone outlier rejection step and requires a subsequent
model-merging step since it provides highly over-segmented
model fitting results. A third representation was used in [10],
where authors follow the idea of residual analysis as in [8],
but in contrast switch to a conceptual representation, where
each data point is represented by a binary vector showing
the consensus set to the hypothesized models. This allows
similarity analysis using set overlap criterions like Jaccard
distances, and therefore the method was denoted as J-Linkage.
Nevertheless, J-Linkage does not allow overlapping models,
i. e. makes a unique assignment of data points to models.
Furthermore, all outliers appear as small clusters and a
cumbersome rejection strategy has to be applied to reject
invalid models.

We propose a novel method which in analogy to [10],
[8] aims at clustering data points by considering the similarity
of their residuals to randomly selected hypotheses. The core
part of our method are evolutionary dynamics for identifying
data-points that have a high internal coherency concerning
the similarity of residuals to the hypothesized models. Our
main contribution is a novel formulation, which allows the
assignment of data points to several, potentially overlapping
models in an implicit manner. This additionally enables to
automatically identify all gross outliers. We further introduce
a way to speed up computation time without affecting the
accuracy of model fitting.

II. MULTIPLE MODEL FITTING

Our method is based on evolutionary dynamics for fitting
multiple models to outlier corrupted and noisy data. In a first
step, described in Section III, we follow the same procedure
as in RANSAC and use a pre-defined number of randomly
selected minimal sample sets to generate a set of model
hypotheses, but in contrast afterwards switch to a conceptual

representation to define pairwise similarities between the data
points. In Section IV we then introduce the evolutionary
dynamics to robustly fit multiple models to the data points
by analyzing the obtained pairwise similarity matrix. Finally,
in Section V we show promising performance in a line fitting
experiment and demonstrate an application for fitting planes
to a RGB-D stream.

III. RANDOM SAMPLING AND CONCEPTUAL
REPRESENTATION

The first step of our method is similar as in standard
RANSAC procedures. We randomly generate M minimal
sample sets (e. g. each set has three elements for a plane fitting
task), sampling from the provided N data points. Then, we
identify the so-called consensus set for each of the M models,
i. e. we find all data points which have a distance to the model
within a pre-defined threshold. Based on these consensus sets,
we can build an N × M binary assignment matrix A with
elements aij , where aij is 1 if data point i lies within the
threshold range from the model j and 0 otherwise. We now
consider each row Ai. as a novel, conceptual representation
of the data points, each representing the assignments to the
randomly hypothesized models. Since, as outlined before,
data points belonging to the same model will have a similar
conceptual representation, we can use this representation as
basis for our model fitting procedure.

As next step, we build an N × N affinity matrix M by
comparing the obtained conceptual representations Ai. using
any available distance measure. For this reason, we define for
each data point, its corresponding assignment set Si by

Si =
{
s1i , s

2
i , . . . s

ni
i

}
, (1)

where the si represent the models that contain data point i
within the defined threshold range and ni is the number of
elements in the set, i. e. |Si| = ni. Based on these sets, we can
apply any set-distance measure to define our affinity matrix
M. Following [10] we also use the Jaccard distance, which is
an intersection-over-union measure defined as

Mij =
|Si ∪ Sj | − |Si ∩ Sj |

|Si ∪ Sj |
, (2)

where |Si| is the number of elements in the set Si. In such a
way, we finally provide the N ×N affinity matrix M, where
data point pairs (i, j) belonging to the same model will have
high affinity values Mij , as input to the model fitting method
as it is described in the next section.

IV. EVOLUTIONARY DYNAMICS FOR MODEL FITTING

The next step is to fit an undefined number of models to the
data using the conceptual representation that was introduced in
the previous section. Such a method has to be robust against
noise and outliers and should not be adversely affected by
overlapping models. Since data points belonging to the same
model will have a similar conceptual representation, they will
cluster together in the conceptual space. Thus, valid models
can be identified by applying a proximity-based clustering
approach on the obtained pairwise affinity matrix M.



We analayze a wide-spread clustering criterion and aim
at optimizing the intra-cluster coherency f (x) for each fitted
model defined as

f (x) = xT M x , (3)

where x is a model-specific indicator vector of size N × 1,
such that xi = 1 if data point i is part of the fitted model and
0 otherwise. Our goal is to find the optimal indicator vector
x∗ for each model by optimizing

x∗ = argmax
x

f (x) . (4)

The most common way to find a solution of such an
optimization problem is to apply a spectral analysis on
the matrix M, as e. g. done in spectral clustering [11].
Nevertheless, in our model fitting scenario, it is important that
this optimization step is robust, since we have to deal with a
large number of outliers. For this reason, we propose to use
dynamics from the field of game theory for this step that have
shown to be more robust to outliers and to outperform spectral
approaches [12], [13]. Using these dynamics we iteratively
approach an evolutionary stable strategy (ESS) for each fitted
model. Every ESS represents a set of data points having high
intra-cluster coherency x∗ according to the similarity of their
conceptual representations, i. e. each ESS contains data points
that fit to a common model. The different ESSs are found
subsequently. Nevertheless, we introduce an approach that
guarantees that each found ESS is a solution of the original
formulation, thus the ordering in which the ESSs are found
does not matter and even significantly overlapping models can
be handled.

We first review the evolutionary process for maximizing the
intra-cluster coherency in Section IV-A. Then in Section IV-B
we outline our extensions for handling multiple models.
Section IV-C describes how we can speed up our method while
maintaining the overall model fitting performance.

A. Evolutionary dynamics

For fitting models, we propose to use evolutionary
dynamics from the field of game theory, which is a tool for
predicting how players behave in strategic situations (games).
Each player has a set of available actions and the obtainable
reward depends on the set of actions played by each player.
In this paper we focus on a non-cooperative two player
game, where players are in a competitive setting and the
possible actions are adapting the probabilities of assigning the
data points to the model. Final result of the non-cooperative
game is an evolutionary stable strategy (ESS) which is the
outcome of an evolutionary process that unfolds over time.
Game theoretical approaches were recently gaining increased
popularity in the field of computer vision, e. g. for matching
image segments and points [14], for finding common spatial
visual patterns in images [12] and for clustering [15], [13].

We first review replicator dynamics which is the currently
most popular strategy to obtain an ESS in non-cooperative
two player games. Replicator dynamics are a first order
evolutionary dynamic from the field of game theory having

several important properties like simple implementation and
short computation time. The goal of the dynamics is to estimate
an N×1 assignment vector x∗ as the ESS (equilibrium) of the
game, which implicitly maximizes the intra-cluster coherency
x∗ shown in Equation 3 and thus identifies a set of data points
belong to the same (currently analyzed) model. Replicator
dynamics are an iterative procedure defined as

xt+1
i = xti

(M xt)i
xtTM xt

, (5)

where xt is the assignment vector at time t. As a necessary
additional constraint x has to lie on the simplex ∆ defined as

∆ =
{
x ∈ RN : xi ≥ 0 and 1T x = 1

}
, (6)

where 1 is an N -dimensional vector of ones, i. e.
∑
xi = 1.

The dynamics start with a random initialization Π which
also has to lie on the simplex. We always initialize the
dynamics by a slightly perturbed version (added random noise)
of the barycenter of the simplex. Starting from Π, replicator
dynamics find an optimal affinity vector x∗ = argmaxx f (x)
lying on the simplex which is a local (!) maxima of the
coherency function f (x). Finally, all entries of the solution
x∗ that have a value above zero, define the assignment of
each data point to the current model. We define this set as the
support σ (x) by

σ (x) = {i : xi > 0} , (7)

i. e. the support of the ESS directly defines the consensus
set of the model. The simplex ∆ is invariant under the
replicator dynamics formulation, which means that every
trajectory starting on the simplex (random initialization) will
remain on the simplex. Furthermore, the coherency f(x) is
strictly increasing along any trajectory of the dynamics given
in Equation 5. The final solution provided by the dynamics
is the sought evolutionary stable strategy (ESS), which is a
stricter formulation of the well-known Nash equilibrium from
game theory. For more details and convergence proofs of these
dynamics see e. g. [16].

The intuition behind such an approach is as follows: the
hypotheses, that each data point belongs to the currently
analyzed model, compete with each other. Each data point
gains support from compatible points and competitive pressure
from all other data points during the evolutionary process,
where compatibility is defined according to the similarity
of the conceptual representations. This competitive setting
iteratively reduces the number of data points by driving
inconsistent hypotheses to extinction, finding a model with
high internal coherency, which is unaffected (!) by outliers.
Once a model is found, we identify (similar as in RANSAC)
the corresponding model parameters in a least-square manner
using the identified inliers defined by the support σ (x).
Furthermore, the coherency as defined in Equation 3 can
be directly used to quantify the model fitting quality, which
enables to directly reject weak model hypotheses.



B. Multiple model fitting using evolutionary dynamics

It is important to note, that the dynamics as described
before, only find a single evolutionary stable strategy (ESS)
per run, i. e. only a single model is fitted. Since we aim
at identifying all models, we have to apply the dynamics
several times. The most simple approach would be to start
the dynamics multiple times from random initial points,
hoping to converge to different ESSs. However, obviously
this is a quite inefficient way to explore the solution space.
Another naive approach, as it was e. g. suggested in [16],
is to use a peeling-off strategy, i. e. one can iteratively
remove all inliers from the data after each step. Such an
approach heavily resembles a sequential RANSAC concept,
possessing the same drawbacks like incapability of handling
overlapping models, since data points only contribute once in
such a setting. Furthermore, such a sequential fitting procedure
changes the optimization problem in every iteration, which
might introduce ESSs that do not exist in the original problem
formulation. Thus, we require a novel method, which maintains
all inliers during multiple model fitting and directly returns
all models having a coherency above a pre-defined threshold.
Furthermore, we can guarantee that all provided solutions are
ESSs of the original problem formulation.

We also use an iterative approach, but in contrast to
the aforementioned approaches, we only adapt the values in
the affinity matrix M after finding a valid model, without
removing any already assigned data points. Adapting the
affinity matrix M ensures that the optimization process
subsequently addresses all valid models. In such a way, all
data points possibly contribute to all extracted models, which
enables to handle even severely overlapping models.

Let us assume that we already have found a solution x∗
a and

its corresponding consensus set σ (x∗
a), which defines the a-th

model Ma. We use the obtained solution x∗
a to downweight

entries in the affinity matrix by

Ma+1 = Ma − λ
(
x∗T
a x∗

a

)
, (8)

where λ is a parameter to fix how much emphasis should be
put onto the update. We aim at preserving the internal energy
(sum over all affinities) of the dynamics, by setting

λ =

N∑
i=1

N∑
j=1

Mij

N∑
i=1

N∑
j=1

(x∗T
a x∗

a)

. (9)

Using the updated affinity matrix Ma+1 we apply the
evolutionary dynamics described in the previous section and
identify our corresponding solution x∗

a+1 for the next model.

It is important to note that, since we adapt the original
affinity matrix M in this step, the obtained solution might
not be a valid ESS of the original problem formulation. To
overcome this issue, we inject our obtained solutions x∗

a into
the simplex to define a new initialization vector Π by

Πi =

{
1/nσ if i ∈ σ (x∗

a)
0 else , (10)

where nσ is the number of elements in the support, i. e. nσ =
|σ (x∗

a)|. We then apply the dynamics again, but this time using
the original affinity matrix M and the updated initialization
vector Π. The returned solution is then considered as the
fitted model, and in such a way, we can guarantee that all
obtained solutions are evolutionary stable strategies of the
original problem formulation (since we are using the original
affinity matrix). Thus, we iteratively obtain fitted models
that all are solutions of our original problem formulation.
This process is repeated until we obtain a model having a
coherency below a fixed threshold δ. Model fitting results are
not sensitive to δ, since invalid models have a significantly
lower intra-cluster coherency. Please note, that after iteratively
fitting the models, there might still exist data points that are
not assigned to any of the models. All these points are directly
identified as gross outliers, and we do not have to perform
any error-prone outlier identification or cluster post-processing
step, as it is e. g. required in [10], [9]. Algorithm 1 summarizes
our algorithm in detail.

Algorithm 1: Multiple model fitting method
Input: Data points i
Output: Model set M = {M1,M2, . . . ,MA}

1 Randomly generate model hypotheses and get
consensus set for each hypothesis

2 Build affinity matrix M, analyzing conceptual
representation (Equation 2)

3 repeat
4 Apply evolutionary dynamics (Section IV-A) to

obtain solution x∗
a

5 if a 6= 1 then
6 Inject solution into original problem formulation

and apply dynamics to obtain final inlier set
σ (x∗

a) (Equation 10)
7 Do Least Square Fitting on inlier set to get model

parameters for Ma

8 Update affinity matrix (Equation 8)
9 until obtained model has coherency below δ;

10 return All models Ma and corresponding inliers σ (x∗
a)

C. Efficiency improvements

If we directly apply the dynamics as presented before we
have a complexity quadratic in the number of data points N .
Nevertheless, we can significantly speed up the dynamics by
exploiting the properties of the task that we aim to solve, which
is quite similar to the idea proposed in PROSAC [4].

The core insight is, that for obtaining local maxima of
the coherency function, not all other data points have to
participate in the game, i. e. have to contribute to the dynamics.
This has a straight forward intuition that data points of a
valid model group quite closely together using our conceptual
representation as similarity measure. Furthermore, data points
having a low pairwise affinity do not crucially influence
the evolutionary dynamics shown in Equation 5. Thus, the
number of data points considered could be limited, allowing
to significantly reduce computation time without affecting the
model fitting quality.

Therefore, we make our input affinity matrix M sparse and
only consider the K nearest neighbors of each data point,



Fig. 2: Synthetically generated line fitting examples. Number
of outliers (0 to 250), σ of Gaussian noise (0.0025 to 0.025)
and number of lines (1 to 5) are adapted.

which reduces the complexity of the dynamics from N2 to
N K, where K � N . Please note, that the nearest neighbors
can be easily identified during building the affinity matrix. In
fact as it is shown in the experimental section, K can be fixed
to only a fraction of N (e. g. 5%) resulting in the same model
fitting quality. In such a way, by fixing K to a small number,
we can significantly speed up our model fitting method.

V. EXPERIMENTS

We evaluate our proposed method on synthetic and real
world data. In Section V-A we describe an experiment for
line fitting on synthetically generated 2D point sets and
evaluate our contribution concerning the nearest neighbor
based sparsification of the affinity matrix, demonstrating
that the same model fitting quality is achievable at reduced
computation time. Finally, in Section V-B we demonstrate the
applicability of the proposed method for real-time plane fitting
on video streams obtained by the Microsoft Kinect sensor.

A. Fitting multiple lines

This experiment analyzes randomly generated synthetic 2D
line fitting examples. Some typical examples are visualized
in Figure 2. Each test case includes a number 1 ≤ K ≤ 5
of randomly generated lines each consisting of 100 inliers
points which are contaminated with Gaussian noise of varying
σ from 0.0025 to 0.05. Additionally 0 to 300 gross outlier
points are randomly inserted in our considered image range
of [0 1] × [0 1]. While by adapting the variance σ and the
number of outliers L we can test the robustness of the analyzed
methods concerning noise and outliers, increasing the number
of lines K aims at evaluating how well the methods cope with
overlapping models.

We test the performance of our method by analyzing 10
repetitions for each parameter setting. Our method consistently
identifies the correct number of lines yielding a fitting accuracy
compareable to RANSAC in all cases, until the number of
outliers is beyond 240 or the noise level is higher than 0.04.
Starting from these values performance breaks down, because
the algorithm fails to fit the right number of lines.

Furthermore, we demonstrate the applicability of our
proposed concept for reducing computation time as described
in Section IV. We use the same experimental setup as
described before, this time analyzing the fitting error for
different percentage of data points considered in each dynamic
evolution process. Experiments showed that results stay the
same down to considering only 5% of the data points as

nearest neighbors, which leads to a speed-up of approximately
40 in our implementation. Further reducing K below 5%
degrades performance a lot, since then the data point affinities
are not connected anymore, which prevents correct model
fitting.

B. Plane fitting on video streams

As main experiment, we applied our proposed method for
fitting planes to 3D data points sampled from a video stream
obtained by the Microsoft Kinect depth sensor using videos
from the RGB-D Dataset and Benchmark [17], which is a
recently released benchmark for the evaluation of visual SLAM
systems. The data set provides color and depth images of a
Microsoft Kinect sensor recorded at full frame rate (30 Hz)
and sensor resolution (640x480), which makes it suited for
our plane fitting task.

For evaluation we equidistantly sample points within the
range of 0 to 5 m from the camera center in each frame. We
afterwards apply our multiple model fitting procedure on the
corresponding 3D world coordinates of the sampled points. We
fixed the inlier threshold to 5 cm, the number of hypothesized
models to 1000, the number of nearest neighbors K to 5%,
the minimum size of a consensus set to 40 and the coherency
threshold δ again to 0.25.

We show the corresponding videos for plane fitting on these
streams in the additional material. Some exemplary results
selected from different sequences of the benchmark are shown
in Figure 3. The individual planes are highlighted by different
markers and are colored based on the plane normal, so that
parallel planes get assigned the same color. Please note, that
each frame is processed in a completely independent manner,
i. e. no type of tracking is considered. As can be seen our
method accurately finds the dominant planes in the sequences.
Our current implementation in Matlab runs in approximately
1 frame per second, which would presumably enable real-time
plane fitting on Microsoft Kinect depth sensors using an
optimized implementation.

VI. CONCLUSION

In this paper we proposed a novel method for fitting
multiple models to data points corrupted with outliers and
noise. Our method fits model hypotheses by analyzing the
conceptual representation of data points using evolutionary
dynamics from game theory. Robust fitting results are
obtained while we are able to guarantee that all obtained
models are solutions of a wide-spread intra cluster coherency
maximization problem, which is unaffected by outliers. In
such a way, we are able to handle even severely overlapping
models. We further described a way to significantly reduce
the computation time by considering only nearest neighbors in
the evolutionary process, nevertheless yielding the same model
fitting accuracy. Experiments for fitting lines to synthetically
generated 2D point sets demonstrated promising results, and
we furthermore showed accurate results for fitting multiple
planes to video streams obtained by the Microsoft Kinect depth
sensor.



Fig. 3: Fitting planes to a video stream obtained by the Microsoft Kinect depth sensor. The identified planes are highlighted by
different markers and are colored based on the plane normal, so that parallel planes get assigned the same color (best viewed in
color).
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