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Abstract
In this paper we present an efficient algorithm for cam-

era tracking applicable for mobile devices. In particular, the
work is motivated by the limited computational power and
memory, precluding the use of existing methods for estima-
tion of the 6-DoF pose of a mobile device (camera) relative
to a previously unknown planar object. Similar to existing
methods, we introduce a keypoint based approach. We estab-
lish a relationship between the object and its image by select-
ing keypoints on the object, preferably such with a distinctive
appearance, and identifying their location within subsequent
images. In contrast to existing works, we solve the problem of
re-identifying such feature points by robustly learning their
appearance with an on-line learning algorithm. We demon-
strate the proposed algorithm, hence not limited to this ap-
plication, in the context of AR. In particular, we give several
qualitative and quantitative evaluations showing the benefits
of the proposed approach.

1 Introduction
For many applications in computer vision and graphics the
exact position and orientation (together called the pose) of
a moving camera, relative to the depicted objects, has to
be estimated. This process of continuously recovering the
camera’s pose is known as visual camera tracking. The
majority of successful methods are based on local feature
points, i.e., they try to identify points that can be robustly
re-identified in different views. In this way, typical problems
such as partial occlusions or specular reflections, that make
detection of parts of the object impossible, can be handled
by redundancy.

The first steps are identifying interesting feature points
and describing them such that a re-identification under
slightly different conditions (viewing angle, lighting, etc.)
is possible. Next, when a set of correlations of 2D points in
the current image and 3D points in the world is established
and the geometrical constellation of the points (i.e., their
coordinates) on the object is known, the correct pose
(matching those two sets of points) can be estimated. This
is called the Perspective-n-Point problem.

Essentially, there are two backgrounds from which most
of the camera tracking approaches emerged, namely Struc-
ture from Motion (SfM) and Simultaneous Localization and
Mapping (SLAM). SfM is mainly targeted at reconstructing
Figure 1: A planar textured target augmented with a virtual
soccer field. The user can explore the virtual world by view-
ing the target from different angles and the tracker keeps the
virtual image well aligned to the ground plane.

a perfect model in an off-line manner, where all images are
available and processing time is only of limited importance.
Thus, bundle adjustment can be used to achieve very accu-
rate results [18, 2, 13, 4, 24]. Such systems are used, for in-
stance, in the post production of movies. This line of work is
clearly not suited for applications in real-time, low resources
domains. SLAM, on the other hand, was originally devel-
oped for robot self localization. Thus the goal is to build and
constantly refine a rough model of the environment, just de-
tailed enough to fulfill tasks such as navigation planning with
obstacle avoidance, and at the same time always have a good
estimate of the current pose. As pointed out in [1], there are
still differences in the prerequisites for traditional SLAM al-
gorithms used in robot navigation and those of camera track-
ing for hand-held mobile devices. The main difference is that
the movement of a hand-held camera can be very fast and un-
predictable and thus no reliable motion models can be con-
structed. Additionally, motion blur and occlusions might de-
grade the image, thus, one has to deal with situations where
tracking fails and has to be recovered without any external
support.
1
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This problem gets more difficult, if we want to track a
camera in a previously unknown environment. Hence, the
system has to identify interesting local feature points and to
learn their appearance for robust re-identification. Addition-
ally, the initially unknown virtual coordinate system used to
render virtual objects, should be oriented and scaled rela-
tive to the target. Thus, we have to specify the initial virtual
coordinate system at startup. In our case this is realized by
user interaction. Furthermore, since no predefined geomet-
rical model of the target object is available, the use of model
based approaches (e.g., [7, 11, 20, 17]) is prohibited. Instead
the location of chosen keypoints on the object with respect
to the virtual coordinate system (i.e., 3D world coordinates)
must be calculated. For the first frame, with the initial pose
given by the user, this is straight forward. But during oper-
ation, when certain points fail to be tracked or become in-
visible, new keypoints have to be initialized for tracking and
their 3D coordinates have to be calculated from estimates of
the current pose (subjected to noise, in a robust manner).

This process of continuously estimating the pose, and at
the same time constructing a model of the environment, is
known as simultaneous localization and mapping (SLAM) or
as parallel tracking and mapping (PTAM) [3, 9, 27, 1]. The
method combines the advantages of accurate model building
with a probabilistic framework, constructing a full covari-
ance matrix of all model points and optimizing a robust cost
function with bundle adjustment, while still tracking in real-
time. This is achieved by splitting the two processes apart.
Tracking is performed for every frame on a small subset of
the 3D map constructed up to this point. Map building is de-
ferred to a background thread, only triggered for keyframes,
which are selected with a certain distance in time and only if
the current pose is robust and shows a significantly different
view of the scene.

One application that requires highly accurate camera pose
estimation is mobile augmented reality (AR). In general,
augmented reality systems allow the user to experience the
real environment augmented by artificially computer gener-
ated objects. The user can see the virtual objects as if they
were present in the real world. To give the user the consis-
tent impression of a virtual object really living in the natu-
ral space, it is absolutely crucial that the images of the vir-
tual objects are well aligned with the environment (i.e., well
registered), depending on the user’s current point of view.
Thus, a strong requirement on the algorithms in this field is
real-time capability under limited computational resources.
Although mobile hand-held devices evolve rapidly and com-
ponents for fast floating-point operations and even dedicated
graphics hardware with good performance are integrated into
these systems, the power of a fully equipped desktop com-
puter is not at hand.

Hence, the goal of this work was to develop an efficient
camera tracking method that can be applied within the con-
text of mobile AR. Figure 1 illustrates such a system in ac-
tion. An arbitrary planar target defines the ground plane and
is augmented by a virtual interactive soccer field. The small
cubes show the locations of tracked object features. The
color indicates if the feature was found in the current image
and its position was geometrically consistent with the oth-
2

ers (green/light) or not (blue/dark); only the green cubes are
used for pose estimation.

Even though recent advances in mobile device hardware
make it possible to use systems such as PTAM for mobile
AR, we want our system to run on platforms lacking the
power to run background jobs and to perform affine warps
of keypoints for template matching. To overcome these lim-
itations, more efficient trackers can be applied. For instance,
in [25] the authors show that by using a combination of a
modified version of SIFT and FERNS [16] very fast and sta-
ble tracking results can be achieved on standard low cost
hand-held devices like mobile phones. However, the target
objects have to be known in advance for off-line keypoint
classifier learning. Similarly, recently an algorithm for track-
ing planar textured objects by its natural features has been
proposed [6]. It defines tracking as a classification prob-
lem, learning classifiers for each point to track on-line. Com-
pared to methods utilizing image patches or other keypoint
descriptors such as SIFT [12, 10] this method is especially
interesting because of its low performance and memory re-
quirements.

Since the tracker presented in [6] is computationally very
efficient even on low performance hand-held devices, it is
highly interesting for our target application, i.e., mobile AR.
However, to meet the requirements of our application, sev-
eral extensions are required. First, a mapping of tracked key-
points to a virtual coordinate system to deliver a global cam-
era pose estimate relative to the target object has to be estabil-
ished. Additionally, amendments were made to the process
of searching for object features and the policy of exchange
of features. Finally, the whole system was integrated into the
OpenTracker framework, to serve as pose estimation module
in the Studierstube Augmented Reality framework1.

The rest of the paper is organized as follows. Section 2
gives an overview on the algorithms building the basis for
our approach. Section 3 gives a short overview of the com-
plete system’s design and a detailed explanation of the track-
ing process. In Section 4 qualitative and quantitative experi-
ments analyze the system’s capabilities, and finally, Section 5
gives a short discussion and conclusion.

2 Camera Tracking and Pose Estimation
In the following, we give an overview on the algorithms
building the basis for our work, i.e., on-line learning for fea-
ture tracking and stable and efficient pose estimation.

2.1 Tracking
The work at hand is built on the tracker presented in [6],
which is able to robustly track a large variety of textured
planar objects. In our case, the re-identification of feature
points can be formulated as a classification problem between
successive frames. As a first step, interest points are ex-
tracted from the current frame (e.g., Harris corners [8]) and
a subset of fixed size is selected (preferably uniformly dis-
tributed over the target object). For each of them a classifier
is trained to distinguish a small patch around the keypoint
from the rest in the image (i.e., other keypoints on the object,

1http://www.studierstube.org/
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as well as in the background). For training the classifiers On-
line Boosting for Feature Selection [5] is used. Tracking is
then performed by classifying all interest points in the new
frame and selecting the one with highest confidence as a can-
didate match for the associated keypoint in the last frame.
These candidates are verified for geometric consistency by
robustly estimating a homography between the constellations
in the two successive frames (using RANSAC). This allows
for robust re-detection of points with slightly changed ap-
pearance in the next frame and subsequently incorporation
of the new appearance by on-line learning, thus adapting
to context specific transformations of the patch. In contrast
to [14] the matching of keypoints is more robust and faster
and can therefore be applied on the whole image instead of
just a small surrounding. Thus, allowing for very fast cam-
era movement and fast recovery from tracking failure due to
strong motion blur or full occlusion.

Additionally, a feature exchange mechanism increases the
adaptivity. If one of the initially chosen features cannot be
re-detected reliably over time, the system can discard such a
feature and initialize a new classifier for a different interest
point. For that purpose, a simple confidence measure is cal-
culated, estimating the probability to re-detect each feature
in the next frame from its detection history:

Pi,t+1 = β · Pi,t + (1− β) · δi, (1)

where Pi,t+1 is the probability to re-detect feature point i in
the next frame; δi is 1 if it was detected in the current frame;
0 otherwise; β ∈ R, 0 ≤ β ≤ 1, determines the influence of
the feature point’s history.

2.2 Pose Estimation
The natural feature tracker described above successfully
tracks the location and orientation of planar objects through-
out a video, but it does not establish a virtual coordinate
system and thus also does not calculate a 6-DoF camera
pose relative to it. The frame to frame homographies
implicitly encode the camera motion between frames and
concatenating the homographies would thus give a pose
relative to the first frame. But since every homography is
estimated, such a scheme would sum up the individual errors
and make it susceptible to drift. Furthermore simple plane
to plane homography calculation does not take into account
internal camera parameters available from calibration, but
includes them in the estimation procedure. Altogether
recovering the pose directly from a summed up homography
would not deliver the accuracy and stability of registration
needed in AR.

When internal camera parameters are available, image
points can be transformed into the coordinate system of an
ideal pinhole camera, and finding the pose that matches the
correspondences of 3D points in the world and their 2D pro-
jections on the current camera’s image plane is known as
the Perspective-n-point (PnP) problem. Formally, the prob-
lem is stated as follows: Points on the object with the three
dimensional coordinates Mi = (Xi, Yi, Zi) are being pro-
jected perspectively to the points mi = (ui, vi) on the im-
age plane (i = 1, . . . , n) by the 3 × 4 projection matrix P
defined up to scale s:

sm̃i = PM̃ i. (2)

In the case of a perspective camera P can be further de-
composed into

P = K [R|t] , (3)

where [R|t] is the composition of a 3× 3 rotation matrix R
and a 3 × 1 translation vector t, describing the rotation and
translation of the world coordinate system to the camera co-
ordinate system, i.e., the camera’s pose. They are also called
the camera’s external parameters.

K is the camera calibration matrix, holding the cam-
era’s internal parameters, describing how points expressed
in the camera coordinate system are projected onto the im-
age plane:

K =

fu s u0

0 fv v0
0 0 1

 , (4)

where fu and fv are the camera’s focal length multiplied by
the pixel resolution along the u- and v-axis of the image;
u0 and v0 define the image origin’s offset to the camera’s
principal point (the point where the optical axis intersects
the image plane); s is the skew factor usually being 0 un-
less the camera’s u- and v-axis are not perpendicular. In our
case, these parameters were estimated using publicly avail-
able software2.

Consequently the task is to find P (i.e., given K, find
[R|t]) that satisfies Equation (2) for a given set of point cor-
respondences mi ↔M i. Since in real world measurements
we always have to deal with noise, in general, there will be no
solution fitting all points perfectly, and one has to search for
a P that fits best, i.e., minimizes an error function. Essen-
tially, either the image space error Eis or the object space
error Eos can be taken. Eis describes the total residue of
projections of the M i onto the image plane by P , to the ac-
tual measured mi. Eos sums up the perpendicular distance
of M i to rays coming from the camera defined by P and
going through mi. Minimizing Eis would be preferable for
AR because it directly defines how well the final rendering
is aligned to the image, unfortunately, it is very hard to effi-
ciently formulate the PnP problem in terms of Eis, resulting
in that most methods optimize Eos.

Solving the PnP problem has been investigated thor-
oughly and various methods exist with different computa-
tional complexity, speed and stability of convergence, ro-
bustness, and accuracy. For our purpose, we are espe-
cially interested in the case where the world coordinates of
the object are coplanar. Since this is a special case, lead-
ing to singularities in most mathematical formulations. For
many algorithms there exist special extensions for this case
(e.g., [15]). Particularly challenging effects in the planar case
with noisy measurements are pose ambiguities arising in cer-
tain configurations (distant camera or steep viewing angle).
In [22], an algorithm is presented that pays special atten-
tion to those cases and basically iteratively refines both pos-
sible solutions until one is more probable and thus avoids

2Camera Calibration Toolbox for MATLAB: http://www.
vision.caltech.edu/bouguetj/calib_doc/
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randomly choosing one solution for each frame, making the
final outcome jump around. Since this method delivers very
accurate results and an efficient implementation is available,
we use it to solve the pose estimation task in this work.

3 NaturalFeatureTracker for AR
In the following, we give a detailed overview of our natu-
ral feature tracker built on the algorithms discussed in Sec-
tions 2.1 and 2.2 and show how it can be included into an AR
system.

3.1 NaturalFeatureTracker
The following is an outline of the process of tracking and
pose estimation within the NaturalFeatureTracker (NFT). In
the beginning, as mentioned above, the system needs to be
initialized with a definition of the target object to track and
the ground plane of the virtual coordinate system relative to
it in the first frame. When the user decides to start, the cur-
rent frame is frozen, and the user clicks the four corner points
of the rectangular planar target region. The rest of the sys-
tem does not rely on a rectangular target area, but it gives a
convenient way to enter the initial pose and scale. The aspect
ratio of the target area is not predefined, but can be calculated
along with the initial pose [23]. Every new frame arriving is
first preprocessed by a conversion to gray-scale and smooth-
ing with a Gauss kernel for noise reduction. Subsequently
Harris-corners [8] are extracted as interest points (however,
any other interest point detector for which fast implementa-
tions exist could be used).

Feature Point Matching On the first frame, classifiers are
trained to re-detect feature points in follow-up frames. Using
the target region the keypoints found in the image are split
into object and background keypoints. For a fixed number of
keypoints on the object, chosen such as to cover most of the
area, classifiers are initialized by learning the patch around
the respective location as positive; patches around all other
object keypoints or those in the background are learned as
negative. Starting from the second frame, classifiers for a set
of feature points have already been initialized and can then be
used to re-identify them in the current image. This is done by
evaluating every classifier on all candidate keypoints in the
new frame and choosing the one with the highest confidence.

Since this mapping might include false matches, a
(RANSAC style) verification step is introduced. A series of
random subsets of 4 point correspondences is created and
for each of them a homography is calculated, mapping the
locations of the points in the previous frame to the current
ones. By applying each homography to all points in the last
image and comparing the distance of the mapped points to
the locations of the re-identified matches, inliers supporting
the homography can be found. The homography with most
inliers and smallest total error (distances) is chosen as
the correct one. Only inliers of the best homography are
considered as true matches and used further on.

Feature Classifier Update The classifiers of all positively
re-identified feature points are updated with a positive patch
around the new location and a random negative one. Thus,
scene specific appearance changes of feature points are incre-
4

mentally learned on-line. The others are not updated, since
they might not have been found, because they currently are
occluded.

Pose Estimation Taking all features for which the world
coordinates and the position on the current frame are known,
a pose that projects the keypoints from world coordinate sys-
tem to the respective current keypoint coordinates on the
image can be found by solving the PnP problem with the
method described in Section 2.2. For the first frame world
and image coordinates are only known for the corners of the
initial object region defined by the user. For all consecutive
frames matched and verified feature points for which world
coordinates have been calculated before are included.

Map Building Using the current pose, world coordinates
for new object features are calculated by projecting the image
coordinates back onto the object plane. This calculation is
repeated on a series of frames for which poses have been
recovered to have a set of world coordinate estimates over
time. These can be averaged (again with outlier removal) to
reduce the influence of noisy pose estimates. Only if a new
object feature is considered stable enough, it is included in
the pose estimation.

Feature Exchange As a final step the quality of the tracked
object features is evaluated. Features that have not been
found in a certain number of frames are dropped and replaced
by new ones initialized on a new interest point on the object.
Since for accurate pose calculation it is beneficial to have
matched feature points not clustered on one spot in the im-
age but spread over the entire object, the target object region
is split into a 3x3 grid and new keypoints are selected prefer-
ably in cells with few tracked feature points.

One improvement to speed up the process of feature point
recognition is to reduce the search area. In this way, not every
classifier has to be matched to every interest point. A com-
mon way is to use an EKF (Extended-Kalman-Filter) frame-
work with a motion model to predict the locations of the ob-
ject features in the next image. This works especially well for
robot navigation tasks, where accurate motion models can
be constructed and often some kind of control and odometry
data is available. Since camera motion of hand-held cam-
eras cannot be estimated very well, it is a safe bet to take the
simplest model, which is to just assume small motions with
equal probability for all directions. Thus, we define a small
radius around the locations of feature points in the previous
frame as the search area. Only if no match can be established
or too few matches remain as inliers of the best homography,
the search radius is increased until, if necessary, the whole
image is searched again (tracking loss recovery).

3.2 AR System
The overall AR system including the previously introduced
tracker, based on the Studierstube framework, is shown in
Figure 2. The video capturing module OpenVideo acquires
the camera’s current picture, which is sent to the Studierstube
core and forwarded into its event system, which is responsi-
ble for all interactions, and holds an instance of OpenTracker
for tracking all moving artefacts relevant to the AR applica-
tion. On the arrival of the image, OpenTracker notifies all
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subcomponents that registered for video events. The natural
feature tracker developed for this work was implemented as a
plug-in module for OpenTracker. It receives the image, cal-
culates the pose and returns it to OpenTracker, from where it
is propagated to the Studierstube core, which makes it pos-
sible to use it in the scene graph as the pose of the virtual
camera, used to render the augmented scene on top of the
camera’s image.

Studierstube

VideoComponent

EventSystem

OpenTracker Context

SceneGraph

VideoBackground

World Transformation

rendering

OpenTracker

NaturalFeatureTrackerModule

EventSink

Pose

OpenVideo

Camera

VideoSink

NaturalFeatureTracker

Image Capture

Image Processing
Keypoint Extraction
Feature Management

Feature Recognition Pose Calculation

LibRPPVision_FW

PoseImage

PoseImage

Image

Figure 2: Dataflow within the Studierstube system with Nat-
uralFeatureTracker for camera pose estimation: from image
acquisition to pose calculation and final output of the aug-
mented image

4 Experimental Results
Since the target application of this work is mobile augmented
reality, we first present some qualitative results, showing the
natural feature tracker working in two AR scenarios. Fig-
ure 3 shows the system, augmenting an ortho-photo of the
Jakominiplatz at the center of Graz with a 3D model of the
place’s subsurface infrastructure (gas and water pipelines).
The data was taken from the Vidente3 project, targeted at
helping construction workers in planning projects [21]. Fig-
ure 4 shows an interactive soccer field, rendered on top of
any kind of planar surface. Users can investigate the scene,
plant trees and make balls jump by using the tracked camera
as an input device.

The first quantitative evaluation investigates the accuracy
of the resulting pose. We compare the pose coming from

3http://www.studierstube.org/vidente
Figure 5: Target with fiducial markers to be tracked by AR-
ToolkitPlus and content tracked by NaturalFeatureTracker.

our tracker with the one returned by the marker-based tracker
ARToolkitPlus [26] on a specifically designed target shown
in Figure 5. The ARToolkitPlus module calculates the pose
from the markers, whereas the NFT is initialized to track the
image. Figure 6(a) shows the path of the camera as recorded
by our tracker, while Figures 6(b) and 6(c) show the differ-
ences between the positions and orientations for each frame.
The results are very similar, demonstrating the capability
of the classifiers to locate the feature points and the robust-
ness and accuracy of the pose estimation. The differences in
translation remain below 0.5%. The angle between the cam-
eras’ orientations has a mean value of 0.45◦ with a standard
deviation of 0.27◦.

In addition, to have a steerable environment for the pose
and to have ground-truth, synthetic scenes were constructed.
One particular challenge for pose estimation from natural
features on planar targets are situations where the viewing
angle gets steep. The features are perspectively maximally
distorted and in the case of a 90◦ angle reduced to a line.
We want to investigate how our on-line learners can adapt to
continuous perspective distortion of the features. Figure 7(a)
shows the results of the first synthetic scene, in which the
target object initially faces the camera and is then rotated to
the side. Multiple clips were recorded with different rotation
speeds, defining the x-axis of the figures. The blue line (dots)
shows the mean value and the standard deviation of the last
angle at which the target was successfully tracked in a series
of trial runs. However, the tracker might have failed before
and recovered, indicated by the red line (crosses) showing
the range of angles at which the tracker failed the first time.
Figures 7(b) and 7(c) show the according errors in position
and orientation for successfully tracked frames.

With the second experiment, we tested the system’s ca-
pability to track objects continuously rotating in front of the
camera, around its viewing axis. If there is too much rota-
tion, feature points get lost and feature exchange will have
to kick in to continue operation. Results are shown in Fig-
ure 8. As the results show, tracking works fine up to an angle
of about 60◦ for both kinds of rotations and rotation speeds
up to 2◦ per frame, which makes 30◦ per second at a frame
rate of 15 fps. One conclusion that can be drawn from both
5
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(a) (b) (c)

(d) (e) (f)

Figure 3: Tracking sequence of an ortho-photo of Jakominiplatz augmented with sub-surface infrastructure (gas and electricity
pipelines): (a) initial frame showing the aligned sub-surface infrastructure models and the feature points as cubes, (b) fast camera
movement causes the tracker to fail on one frame, (c) tracking is recovered in one of the subsequent frames, (d) continuous
tracking even when several feature points cannot be detected in the current frame (zoomed in and occluded), (e) when zooming
out again after a longer period of close-up frames, the feature exchange mechanism placed all the features in the formerly visible
area (feature points clustered in top right), (f) some frames later the feature points spread out again to cover the entire object.

(a) virtual soccer field (b) a different target object (c) zooming in and placing a new ball

Figure 4: Rendering an interactive animated virtual soccer field on top of different grass-textured objects: (a) and (b) different
grass textures, robust tracking of the whole region or a sub-area; (c) additional virtual objects (bouncing balls and trees) can be
added interactively by pointing the cross-hairs at the desired location on the ground and pressing a key.
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Figure 6: Comparison of the camera poses calculated by NaturalFeatureTracker and ARToolkitPlus on a short video sequence.
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(a) Average rotation angle for which tracking
failed the first time (red/crosses) and up to which
tracking worked (blue/dots).

0 2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

140

160

rotation speed (deg. per frame)

m
ea

n 
po

si
tio

n 
er

ro
r 

(%
 o

f t
ar

ge
t w

id
th

)

(b) Mean value and standard deviation of cam-
era position error for continuously tracked frames
(green/dots) and for frames where tracking was
recovered after failure (blue/crosses).
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(c) Mean value and standard deviation of camera
orientations error for continuously tracked frames
(green/dots) and for frames where tracking was
recovered after failure (blue/crosses).

Figure 7: Results of tracking an ortho-photo of Jakominiplatz rotating about the world coordinate frame’s y-axis for different
rotation velocities
experiments is that the Haar-features, forming the base of
the classifiers’ decisions, perform badly on increasingly ro-
tated patches. When pure rotation exceeds about 30◦ lots
of feature points are lost. For slow rotations, adaptation to
the rotated appearance of the patches is possible, but the dis-
criminative power is lost and hence, the effect of learning
has a smaller impact on the angle up to which the target can
be tracked, than the initialization of new features gradually
replacing old ones that cannot be found anymore.

The second observation is that the accuracy of the result-
ing pose drops as soon as the tracker lost the object in one
frame, even if the tracker finds enough correct matches again.
This is illustrated in Figures 7(b), 7(c), 8(b) and 8(c). The
green lines (dots) show the mean and standard deviation of
errors in position and orientation for all frames, from the be-
ginning to the point when tracking starts to fail. For small
rotation speeds the translation error is usually around 1% of
the target object’s width and the error of the rotation angle is
about 1◦. The blue lines (crosses) however show the errors
in position and orientation when tracking was recovered af-
ter failing on one frame. The poses returned in those cases
are not really suitable for AR purposes any more. The same
applies for fast camera rotation (about 10◦ per frame) already
on consistently tracked frames.

Finally, we evaluate the performance in terms of computa-
tion time. As the primary target platform an ultra-mobile PC
(UMPC): Sony Vaio VGN-UX50 (1.06 GHz) was chosen.
The built-in rear camera’s resolution was set to 320x240.
Additional experiments were conducted on the development
platform: Sony Vaio VGN-FE11M, Intel Core2 Duo (1.66
GHz). Apart from the slightly faster CPU clock speed, the
laptop has the advantage of the dual core architecture, allow-
ing the multi-threaded Studierstube framework to basically
dedicate one core to the tracker only. Here the camera is a
standard WebCam and with a resolution of 640x480. Ta-
ble 1 shows the profiling data of two experiments on both
platforms. The most essential observation is, that without
restriction of the search area, the matching of all classifiers
to all interest points is the dominating performance bottle-
neck. With search area restriction in place, it becomes a mi-
nor factor and the remaining costly tasks are the extraction
of interest points and the update of the classifiers. For the
former, faster methods could be considered (e.g. [19]), the
latter is constitutive to this approach, but could be sped up a
little, by working on some implementation issues. Summing
it up, one can see that interactive frame rates can be achieved
even on the UMPC, if some form of search area restriction
is applied.

Platform UMPC Laptop
Image res. 320x240 640x480
# Interest Points 200 300
# Tracked Features 25 30
Search area restr. no yes no yes
Task t(ms) t(ms) t(ms) t(ms)
Img. cap. & prep. 7 6 15 15
Interest Points 15 13 31 30
Feat. Matching 108 8 46 23
Homography 5 4 2 2
Feat. Update 22 20 10 11
Feat. Exchange 0.5 0.5 0.5 0.1
Pose est. 3 3 1.2 1.1
Total 166 58 111 65

Table 1: Timing of the algorithm’s steps per frame.

5 Discussion and Conclusion
For many applications in computer vision, the exact estima-
tion of the 6-DoF pose of the camera, has to be estimated,
which is referred to as camera tracking. One prominent ap-
plication is mobile AR (in unknown environments). How-
ever, due to limited computational power and memory on
mobile devices state-of-the-art approaches such as SLAM
or SfM can not be applied. Hence, in this paper we pro-
posed an efficient camera tracking approach that is highly
applicable for mobile devices. The key idea is to apply an
on-line learning method to robustly identify keypoints by
adaptively learning scene specific representations. Hence,
a real-time capable natural feature tracker can be derived,
which together with a robust pose estimation builds the ba-
sis for the camera tracker. Since our target application was
7
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(a) Average rotation angle for which tracking
failed the first time (red/crosses) and up to which
tracking worked (blue/dots).
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(b) Mean value and std. dev. of camera position
error for (green/dots) continuously tracked frames
and (blue/crosses) after recovering from failure.
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(c) Mean value and std. dev. of camera orientation
error for (green/dots) continuously tracked frames
and (blue/crosses) after recovering from failure.

Figure 8: Results of tracking an ortho-photo of Jakominiplatz rotating in front of the camera (i.e.around the z-axis) for different
rotation velocities (synthetic scene created with Blender).
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mobile AR, the tracker was integrated into the Studierstube
AR framework, where OpenTracker and our NaturalFeature-
Tracker submodule are used to determine the position and
orientation of the tracked camera. The experimental results
show promising results of the working system under real-
live conditions. Interactive frame rates can be reached and
the registration of virtual content to the scene shown in the
camera’s image show good visual results. Future work will
include finding better mechanisms for feature exchange and
including new features which can handle rotations consider-
ably better.
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