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Abstract. Visual surveillance data might encompass vast data amounts.
Given the amount of data the need for search and data exploration arises
naturally. Various authorities such as infrastructure operators and law
enforcement agencies are confronted with search needs based on a visual
description and/or behavioral patterns (motion path, activity) in order
to find a ”needle in a haystack of digital data”. In this paper we present
a framework which allows for an efficient search in visual surveillance
archives. The paper describes following core algorithmic components of
the search framework: Human detection employing pedestrian-specific
shape and motion cues along with occlusion modelling; Tracking of mul-
tiple interacting pedestrians using a hierarchical spatio-temporal associ-
ation scheme. Finally, pedestrian re-identification is demonstrated based
on appearance matching in order to recognize a given person across a net-
work of spatially disjoint cameras. We present results1 for the detection,
tracking and re-identification subtasks on various challenging datasets
and describe the overall framework in detail.

1 Introduction

Exciting perspectives are emerging in the field of visual surveillance. Due to the
rapidly growing amount of cameras and video data there is a need for quickly pin-
pointing relevant data within the ”sea” of irrelevant. Manual search or browsing
in such large archives is typically not feasible, since it is extremely time consum-
ing, exhausting, and most likely unsuccessful because relevant data represents
only a small fraction of the entire dataset. Consequently security-critical events
often go undetected or cannot be prevented. This reduces the effectiveness of
video surveillance systems. To render a video searchable, intermediate represen-
tations of the visual content are required. The set of these representations is
often termed meta-data. Core algorithmic functionalities such as human detec-
tion and segmentation, tracking and appearance modelling are needed to derive

1 The presented work is a compilation of our results originating from three (ICIP’12 [6],
ECVW’11 [4], ICIP’10 [5]) papers, complemented by recent, mostly implementation
and engineering results and achievements.
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Fig. 1. The overall algorithmic framework performing the core analysis tasks (also
termed as visual analytics). Visual data from surveillance archives or from camera
nodes are used as an input. Visual analysis (as a service) generates intermediate repre-
sentations (meta-data) and the final search result in form of a ranked list of hypothetical
matches.

reliable representations which generate the meta-data. In recent years there has
been an increased interest in visual surveillance search, also called as forensic vi-
sual search within the domain of visual analytics; nevertheless only few systems
address the search task in the surveillance context. A relevant example is the
IBM Smart Surveillance System [1], which is able to index a video according to
multiple search criteria, thus allowing for various query types such as dominant
object colors, object size and type and visual features of the human face. Berriss
et al. [2] employ the MPEG-7 dominant color descriptor to efficiently associate
and retrieve the same person across camera views in a retail environment.

We demonstrate a visual search framework (see Figure 1) and its main algo-
ritmic components in great detail. The visual search task is accomplished by de-
tecting pedestrians in videos, tracking them over time and generating a discrimi-
native representation (meta-data) for all detected humans. These representations
can be then used in a query-by-example manner to compare a query image to
the pool of detected objects and retrieve a list of similarity-ranked potential
matches. The main algorithmic components of the search framework are: First,
real-time human detection accomplishing promising results in challenging scenes
is presented, using the fast integral image based contour integration concepts pre-
sented in our previous paper [3]. Next, a computationally efficient multiple object
tracking is described based on a simple spatio-temporal grouping scheme [5] and
hierarchical partitioning of observations. Finally, a highly accurate pedestrian
re-identification method is demonstrated adopting 4D spatial-color histogram



Pedestrian Detection, Tracking and Re-Identification for Search 3

representations and the Large Margin Nearest Neighbor (LMNN) metric learn-
ing step [6] to estimate the transition between camera pairs.

The paper is structured as follows. The presented work includes several al-
gorithmic topics, therefore we provide a brief state-of-the art description for all
related subtasks in Section 2. Section 3 provides a concise overview on the overall
visual search framework. Section 4, 5, and 6 describe the algorithmic solutions
for pedestrian detection, tracking and re-identification, also including character-
istic results for these core algorithmic units. Finally, Section 7 summarizes and
concludes the paper.

2 Related work

In this section we describe the most relevant work related to the individual
algorithmic topics.

Pedestrian detection: The need for automated detection of humans in
digital images is substantial. The human detection task is a core issue in many
applied fields of computer vision such as video surveillance, automotive safety
and human-computer interaction. During the last two decades the pedestrian
detection problem has received a great amount of interest and various represen-
tations and detection schemes have been proposed. The conventional blob-based
object representation scheme is being gradually complemented or even replaced
by representations and detection schemes primarily originating from the domain
of visual object recognition. A typical example for such a novel scheme is the
use of part-based representations encoding structure coupled with discriminative
classification [7]. Variability of the human shape is treated in most cases by a set
of local part models. Zhao and Nevatia [8] use a parametric human body model
composed of elliptic shapes and probabilistically infer the most likely human
configuration in the image using a computed motion segmentation. Blob-based
motion segmentation is also used by Rodriguez and Shah [9] to implicitly cap-
ture local shape variations by learning a codebook of local descriptors. Lin et
al. [10] decompose the human body into parametric parallelogram-shaped parts
and generate a compact shape tree for efficient model evaluation. Recent re-
views include [11–13] which benchmark state-of-the art schemes with respect to
multiple criteria of practical relevance (most importantly scale and occlusion).

Multiple human tracking: Several tracking approaches exist relying on
global data association techniques, which relate to our employed method. Markov
Chain Monte Carlo techniques [14, 15], iteratively sample the hypothesis space
and typically require a large number of iterations to find the close-to-optimum
solution. Several recent techniques employ hierarchical association concepts to
reduce the space of possible associations. Fei et al. [16] propose a graph-based
optimization to solve the association problem and perform tracklet linking in
several stages. Zhang et al. [17] also use a graph-theoretic approach (min-cost
flow) to iteratively expand and associate the set of observations to form trajec-
tories. Xing et al. [18] and Huang et al. [19] present a similar concept of first
constructing tracklets using a conventional tracking method which is followed by
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a one-step or multiple-step association stage. Problems with noisy and missing
data still persist in all of these approaches, and the computional cost of associa-
tion techniques is significant when tracking in dense or moderately dense (> 20
targets) scenes.

Pedestrian re-identification: Recognizing an individual person across a
network of spatially disjoint cameras or distinct video streams by an informative
description for human appearance is challenging. Each step of the representa-
tion process is associated with ambiguities. Many of the proposed person re-
identification methods try to find a very distinctive and at the same time robust
feature representation for describing a person’s appearance. For instance, Wang
et al. in [20] divide the image of a person into regions and capture their color
spatial structure in a co-occurrence matrix. However, their approach is limited
to people seen from similar viewpoints, an assumption that can not be made in
most realistic setups. In [21], Farenzena et al. segment the silhouette of a person
in order to find symmetry and asymmetry axes, which are then used for accu-
mulating color and texture features. Cheng et al. [22] apply Pictorial Structures
to tackle the person re-identification task. A body configuration composed of
chest, head, thighs and legs is fit onto pedestrian images and used to extract
per-part color information. Other methods build on learning to obtain a more
discriminative feature model. For instance, Lin et al. [23] proposes to learn pair-
wise dissimilarities applicable for nearest neighbor classification. Prosser et al.
[24] regard the person re-identification problem as a ranking problem and learn
a subspace where the potential true match gets the highest rank. However, all of
these methods ignore a simple given information: the transition from one cam-
era to the other. Modeling the brightness transfer function between cameras can
learn photometric changes. Metric learning [25] can also enable a more effective
classification.

In our visual surveillance search framework we combine several state-of-the
art algorithmic components which allow for an accurate visual search, while
maintaining fast computation and small meta-data memory footprint for index-
ing and searching large scale data.

3 The overall search framework

The visual search framework employs two stages: indexing (generating meta-
data) and similarity-based search. The indexing step is based on the visual anal-
ysis of the raw visual input: objects (pedestrians) are detected and tracked in
order to reliably segment them in space and time, and ultimately to derive spe-
cific appearance representations for these image regions. In the second search
step, the input of the visual search is an image exemplar (such as a snapshot of
a person). A discriminative description (meta-data descriptor) is derived from
this query image and it is compared to the previously computed descriptions.
Based on these comparisons a ranked list of hypothetical matches is returned.
Coupled with the visual appearance constraints, conventional spatio-temporal
constraints or rules limiting space and time can also be used to guide or com-
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plement the search process. Based on the returned list of potential matches the
user has also the possibility to interactively refine the query by specifying details
(e.g. which visual detail should the system focus on) and thus guiding the search
framework towards the sought object.

In this paper we focus on the indexing step since it is the primary component
containing relevant computer vision algorithms, often also termed visual analyt-
ics. All search system components are embedded into a framework following a
service-oriented architecture strategy, implying that each component can be in-
dependently invoked as a networked service. Individual algorithmic components
can thus be executed in a distributed manner within a network. For the sake of
completeness we briefly describe the individual system services, while the visual
analytics part is described in much more detail. The individual core services are
the following functionalities:

(i) multiple video archives and camera inputs - our framework is ca-
pable to access a wide range of networked devices (archive systems, cameras) by
using standard communication protocols.

(ii) visual analytics - visual analysis contains three relevant steps in form
of detection, multiple object tracking and appearance-based modeling.

(iii) configuration and meta-data database services - parameters and
generated meta-data such as the spatial and temporal location of objects, spa-
tial extents and motion path, corresponding bitmaps and derived appearance
descriptors are stored in a database. This database represents much less data
than the original visual input and can be searched efficiently.

(iv) user interface and visualization - Visualization and interaction in
form of services allow the user to carry out search on a remote client, such as a
personal computer or mobile device.

In the following sections we describe the invidual vision algorithms (detection,
tracking and appearance modeling) - carried out during the indexing phase as
part of the visual analytics services - and their outcomes in more detail. Within
the framework human detection aims at the generation and segmentation of
image regions depicting humans; tracking plays a significant role to derive time-
aggregated visual representations for each individual; finally, re-identification
attempts to retrieve corresponding pedestrian image pairs within the large un-
structured dataset of all pedestrian images.

4 Pedestrian detection

Given a digital image we would like to estimate the spatial configuration of hu-
mans (c∗) such that the hypothesized configuration best describes the observed
image features I. Hence the detection task is postulated as a maximum a poste-
rior (MAP) estimation problem:

c∗ = argmax
c

P (c|I), (1)

A configuration encompasses a set of human hypotheses c = {h1, h2, . . . , hn},
where n denotes the number of humans forming the configuration. A given hu-
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Fig. 2. Screenshot displaying sample pedestrian detection results.

man hypothesis hi is characterized by a foot position xi in the image and a
corresponding shape Ci represented by a contour template: hi = {xi, Ci}. Ac-
cording to Bayes theorem the posterior probability is proportional to:

P (c|I) ∝ P (I|c)P (c), (2)

where P (I|c) is the joint image-based likelihood and P (c) denotes the prior
probability of a configuration. Next, given this equation we describe the prior
term and image-based measurement term in more detail and outline their role
within the overall detection framework.

Employed priors: All spatial arrangements of individual human models are
considered equally probable, therefore the prior depends on individual human
model parameters (C) only. We assume that pedestrians stand upright on a
common ground plane. We perform an off-line calibration step estimating a
model H(x) of the projected 2D human height in the scene. The estimated
human height at a given image location is governed by the function H (x) =
Hi (x)N

(
μh, σ

2
h

)
, where N is a Gaussian distribution (μh=1.0, σh= 0.08).

The variable human shape is modeled by a set of contour models. The vari-
ation of model parameters is learned in the following manner: 120 pedestrian
images of the INRIA dataset [26] were annotated manually by adjusting a pro-
totype contour set consisting of 13 oriented line segments to the human shapes
seen in the training images. Annotated shapes - obtained for frontal and side
views - were registered with respect to each other using foot and head locations
on a common vertical human axis. A Point Distribution Model [27] represent-
ing the characteristic variation of segment end point coordinates is learned and
kT (kT=30) shape samples {Ti}i=1..kT

are generated by considering only the
principal modes of variation.

Joint image-based likelihood: The employed cues are shape and motion.
Shape models are matched to edge-based image observations and motion proba-
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Fig. 3. Top row: Sample detection results and mean occlusion rates (latter computed
from annotations) obtained for the PETS2009 dataset [28]. Bottom row: Obtained
detection and false alarm rates computed from all frames when using our framework.

bilities are computed from a binary map of moving foreground and static back-
ground generated by a conventional adaptive background modeling approach.
Assuming independence between the two cues the image-based likelihood can be
written as :

P (I|c) = P (Ic|c) P (Im|c), (3)

where P (Ic|c) and P (Im|c) denote the shape-based and motion-based likeli-
hoods, respectively.

A final joint optimization step estimates the configuration maximizing the
posterior given the computed shape and motion-based probabilities. The opti-
mization employs a greedy pruning strategy starting out from an initial pedes-
trian configuration (obtained by local maximum search and subsequent non-
maxima suppression), where the computed image-based likelihoods and a local
occlusion analysis are used to retain valid pedestrian hypotheses. Figure 2 shows
a screen capture with a sample output of our real-time human detector demon-
strator.

Results: Experiments carried out using the PETS2009 dataset [28] target
the evaluation of detection performance as a function of varying human density.
Manual annotation of the three sequences was used to generate ground truth for
pedestrian location and visibility (occlusion rate between individuals). As it can
be seen from Figure 3 detection and false alarm rates are significantly affected by
the increasing human density from Scene 1 to Scene 3: heavily occluded persons
remain often undetected and high human density produces clutter, thus leading
to an increased rate of false alarms.

The framework was implemented for the CPU, the GPU and as a hybrid
implementation. Figure 4 displays timing measurements using different tem-
plate settings and implementations for the template matching step, which is the
computationally most costly part of the framework. The total run-time of the
complete algorithm on PAL resolution (720×576 pixels) images is 31 ms, 27 ms,
and 23 ms for the CPU, GPU, and hybrid version, respectively. The employed
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Fig. 4. Timing measurements for the template matching step: different implementa-
tions with different combinations of optimization measures.

hardware was an Intel Xeon CPU with 4 physical and 4 virtual cores @ 2.93GHz,
12 GB RAM and a NVIDIA GeForce GTX 460. As it can be seen, the thoroughly
optimized CPU implementation is not far behind the GPU implementation. The
above experimental results show that the detection framework is capable of re-
liably detecting humans in moderately crowded scenarios at a high speed and it
exhibits a slow degradation of detection performance at higher human densities.

5 Multiple pedestrian tracking

Our proposed approach is a data-oriented tracking method which relies on (i)
two sets of observations (X and Xweak) provided by the human detector [3] and
(ii) a prior height model H(y).

The first set of observations X = {xi} is generated by the detector using
its optimum detection threshold Topt. The second disjoint set of observations
Xweak = {zi} is created by collecting detection responses between Topt and a
much lower detection threshold Tweak. This second set of weak evidence is used
only at the final association stage to select optimum trajectory hypotheses. The
threshold values Topt and Tweak are learned from a set of training videos by
locating the optimum working point in their respective ROC curves.

The primary set of detection responses consists at the frame ti of the at-
tributes xi = (xi, yi, ai, oi, ti). xi and yi denote the image coordinates, ai is a
set of appearance-based descriptors and oi is a binary flag of occlusion status
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Fig. 5. Simplified illustration of the individual association steps. Left: Estimated tra-
jectory segments (green) by local PCA. Center: Conservatively constrained linking be-
tween segments. Right: Final association step taking also weak evidence (sub-threshold
detection responses (gray dots)) into account.

(set to 1 when more than half of the pedestrian’s area is dynamically occluded,
as quantified by the detector). The appearance ai =

{
aupi , alowi

}
is captured by

computing Sigma Set [29] descriptors using the Lab and first derivative channels
for the upper and lower halves of each detected object. The secondary set of
weak evidence consists of the spatio-temporal coordinates only: zi = (xi, yi, ti).

The height model H(y) of the projected 2D human height in the scene is
obtained by an off-line calibration step.

Low-level association stage: The observationsX are aggregated over time
in the space-time volume. Aggregated observations exhibit a clear large-scale
structure. In order to reveal the correlated structure of data we apply Principal
Component Analysis (equivalent to the analysis of the local structure tensor)
locally (further on denoted as local PCA or LPCA) to a subset of data points.
The first grouping step is performed by the LPCA analysis and it generates a set
of trajectory segments S = {Sk} where

{
Sk = (x1

k, y
1
k, t

1
k, x

2
k, y

2
k, t

2
k, āk, qk)

}
. The

first six coordinates denote the tail and head points of the segment, āk represents
an aggregated appearance descriptor and qk is a quality measure. The individual
steps of segment and descriptor generation are described as follows:

1. An initial observation xj is chosen. (see Figure 5 left).

2. An analysis window (blue circle in Figure 5) with a radius of γH(yj)
(γ = 0.5) is used to locate the density maximum of local data distribution. Mean
shift iterations using a uniform kernel are performed starting from (xj , yj , tj)
until convergence, which center the analysis window onto the data.

3. At the located density maximum x’ an eigenvalue decomposition of the
local covariance matrix estimate is performed yielding a sorted set of eigenvalues
(λ1

k, λ
2
k, λ

3
k) in descending order and corresponding eigenvectors (red ellipse in

Figure 5).

4. Given the obtained approximation by a linear subspace we use the principal
eigenvector to generate an oriented line segment (further on denoted as trajectory
segment) to represent the local trend in the data distribution. The segment
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Fig. 6. (top row): Example tracking results obtained for the PETS2009 S2.L1 sequence.
(bottom row): Example tracking results obtained for the the railway station sequence.

is represented by the tail (x1
k, y

1
k, t

1
k) and head (x2

k, y
2
k, t

2
k) end points centered

around x’.
5. Based on the obtained eigenvalues the extent of anisotropy is estimated.

If the underlying data structure is strongly correlated, then the ratio between
the principal axis and both of the minor axes should be large. Otherwise, the
data is isotropically scattered, which is an indication that no clear trend in
the distribution can be estimated. Therefore, we formulate the quality measure
qk ∈ [0, 1] of the estimated principal component as:

qk = 1− exp

(
− λ1

k

λm
k + δ

)
, (4)

where λm
k = max(λ2

k, λ
3
k) and δ is small value to prevent division by zero.

6. An aggregated set of descriptors is computed for the segment from observa-
tions contributing to the LPCA estimate. The Sigma Set descriptors are compact
and they can be easily aggregated by computing the arithmetic mean over a set
of descriptors. Occluded observations (oj = 1) contribute to the upper-body
aggregated descriptor only.

7. A next observation is chosen to start from step 1 again. In our case obser-
vations having contributed to an LPCA estimate are excluded from the set of
possible starting points.

Mid- and high-level association stages: The goal of this association
stage is to a perform ’safe’ linking between nearby consistent trajectory seg-
ments. Association is performed only for segments with qk > Tq (Tq = 0.95).
We express the link probability between two trajectory segments as the prod-
uct of motion-based, appearance-based and time-based affinities, derived from
measured kinematic smoothness, appearance similarity and temporal ordering
between individual trajectory segments. Using the estimated pairwise affinities
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between segments and the standard Hungarian algorithm [30] we determine the
optimal assignment within a spatio-temporal window around sampled segment
locations. In the final high-level association stage the kinematic constraints are
relaxed and weak evidence in form of sub-threshold detection responses is used
to infer possible links between trajectory fragments (see Figure 5 right). More
details on the data association scheme can be found in our paper [5].

Results: Example tracking results are shown for two video sequences. Video
sequence 1 is the PETS 2009 S2.L1 dataset [28] depicting some walking people.
The second video sequence shows a varying (from sparse to dense) density of
crowd at a railway station. Results of the proposed tracking approach yield sig-
nificantly better results than a conventional frame-to-frame association scheme
(not shown), while exhibiting only slightly higher computational overhead.

6 Pedestrian re-identification

In this section we describe the last step of the visual analysis (indexing) part
of the search framework where discriminative appearance features are extracted
from the pedestrian image patches segmented by the previous detection and
tracking steps. The pedestrian appearance modeling and re-identification step is
illustrated in Figure 7. In particular, in order to better cope with photometric
variations across different cameras, we build on two appearance modeling stages.
First, we introduce a compact structure-encoding descriptor, which is mainly
based on color information. Second, based on this description we learn a metric
from a training set containing annotated matching image pairs, which yields a
considerably better representation for the final nearest neighbor classification
based matching step.

Fig. 7. Person re-identification system consisting of three stages: (a) feature extraction,
(b) metric learning, (c) nearest neighbor classification.
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Appearance modeling: A common approach to describe human visual
appearance is via color histograms. Conventional color histograms lack spatial
information therefore much effort has been untertaken to incorporate spatial
features in order to enhance structural specificity. Joint feature space repre-
sentations are appealing since they can be easily constructed, nevertheless, with
increasing dimensionality they become sparsely populated, generate a large mem-
ory footprint and comparison between features becomes difficult. We employ a
simple concept to approximate a high-dimensional distribution within a 4D fea-
ture space by a set of its projections: normalized height and Lab color coordinates
are quantized to 40 bins and features of each pixel are mapped into three 2D
histograms spanned by the height -L, height -a and height -b channels. Note that
the current implementation still uses different appearance features for tracking
and re-identification, a deficiency which will be removed in the near future.

Histogram-based features are known to benefit from computing the χ2 dis-
tance in favor of the Euclidean distance. Thus, to bridge the gap between our
histogram-based features and the proposed learning algorithm we first perform
a homogeneous kernel mapping as proposed by [31]. In this way, the mapping
enables to approximate the χ2 distance without implications on the learner.
Further, after obtaining the kernel mapping we perform a PCA to reduce the
dimensionality of the feature space.

Metric learning for person re-identification: Metric learning allows to
optimize ranking or classification results by exploiting the intrinsic structure of
the feature space. One appealing class of metric learning algorithms is Maha-
lanobis distance learning. Given two data points xi ∈ R

d and xj ∈ R
d, the

squared Mahalanobis distance is estimated by

d2M(xi,xj) = (xi − xj)
�M(xi − xj), (5)

where M � 0 is a positive semidefinite matrix.
In this work we build on Large Margin Nearest Neighbor (LMNN) [32] metric

learning, which aims at improving k-NN classification. It has shown to yield
robust results over a wide range of applications. The main idea of LMNN is
to establish a local perimeter plus margin around each instance. Samples with
different labels that invade the perimeter (impostors) are penalized, yielding the
following objective function:

ε(M) =
∑
j�i

[
d2M(xi,xj) + μ

∑
l

(1− yil)ξijl(M)

]
. (6)

The first term minimizes the distance between target neighbors xi, xj , in-
dicated by j � i. The second term denotes the amount by which impostors xl

invade the perimeter of i and j, where the slack variable ξijl(M) is given by

ξijl(M) = 1 + d2M(xi,xj)− d2M(xi,xl). (7)

More details on the metric learning step can be found in our paper [6].
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Fig. 8. (Left): CMC plots for the VIPeR dataset for different applied metrics. (Right):
Sample outputs for person re-identification. The leftmost column shows individual
query images; the second column displays corresponding true matches, while the image
rows further to the right show the corresponding ranked lists of best matches. Color
coding shows the quality of obtained match (green = good, red = poor).

Matching: During the learning stage, the thus obtained features are used
as input for learning the Mahalanobis matrix M. During matching using Eq. (5)
the distances between the query image sample and the set of stored images in a
database (so-called probe set) are estimated, and a ranking is provided.

Results: We evaluated our approach on the VIPeR dataset [33]. The VIPeR
dataset contains 632 person image pairs. The main challenges are viewpoint, pose
and illumination changes between the two images of an individual. For evaluation
on this dataset, we followed the procedure described in [33]: the 632 image pairs
are randomly split into a training and a test set of equal size, and images of pairs
in the test set are randomly assigned to the probe and the gallery set. Each image
from the probe set is then matched with all images from the gallery set. The
whole procedure is repeated 10 times and the average performance is depicted
in form of Cumulative Matching Characteristic (CMC) curves [20], representing
the expectation of finding the true match within the first n ranks.

The corresponding results are shown in Figure 8, where we compare the orig-
inal descriptor to the proposed metric-based evaluation. For the latter one PCA
was used to reduce the number of dimensions to 45. It can be seen that due
to the dimension reduction no performance is lost, and it is revealed that esti-
mating the camera transition by a learned metric leads to superior results. In
addition, as a simple baseline, we also show results obtained via Linear Discrim-
inant Analysis (LDA) (carried out within the original feature space), which can
be considered as a simple metric learner.

The above described algorithmic components have been used to build a final
visual search framework. Within this framework human detection targets the
generation and segmentation of image regions depicting humans; tracking plays
a significant role to derive aggregated visual representations for each individual;
finally, re-identification focuses on the discriminative matching of corresponding
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pedestrian image pairs within the large unstructured dataset of all pedestrian
images. The current implementation does not take spatial or temporal relations
between pedestrian pairs into account when performing re-identification; this is
a complementary information which can be easily integrated into the matching
step.

7 Summary and conclusions

In this paper we presented a powerful visual search tool and its algorithmic
components which allow for appearance-based similarity search of pedestrians in
large surveillance archives or between spatially disjoint camera views. Most of the
system’s time-critical components have been implemented in a parallel fashion
on general purpose graphics hardware or as optimized code for the CPU which
allow for a significant acceleration of computations. The high computational
speed and the highly specific visual representation with small memory footprint
allow for time and memory efficient indexing (meta-data generation) and search
in large datasets.
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