Robot Vision: Structure-from-Motion (SFM)

Prof. Friedrich Fraundorfer

SS 2025

Outline

- SfM concept
- SfM pipeline
- Image similarity using visual words
- Incremental geometry estimation
- Bundle adjustment

Structure-from-Motion (SfM) concept

Structure-from-Motion (SfM) concept

Initialize Motion $(P_1, P_2 \text{ compatible with F})$

Initialize Structure (minimize reprojection error)

Extend motion (compute pose through matches seen in 2 or more previous views)

Extend structure (Initialize new structure, refine existing structure)

Structure-from-Motion (SfM) core pipeline

Feature extraction

- Extract features (point locations and descriptors) for each of the N images
- SIFT features are recommended (best working features for matching right now)
- GPU accelerated implementations exist

Coarse matching

- To avoid NxN feature matching
- Many possible image pairs in the dataset will not have overlap, detailed feature matching will produce no matches for such pairs
- Cluster similar images by similarity using visual words
- Detailed matching will only be performed for similar images

Visual words

Histogram of visual words (bags of words)

Detailed matching

Typically using an approximated nearest neighbor (ANN) algorithm

Geometric verification and epipolar graph

- Geometric verification of 2-view matches using fundamental matrix or essential matrix computation
- Epipolar graph: Is a plot of the number of geometrically verified 2-view feature matches
- Defines the sequential order for geometry processing

Image similarity

Epipolar graph

Geometry estimation

- Following the sequence ordering from the epipolar graph geometry is estimated for all images
- Geometry estimation is an alternating scheme:
 - Estimate camera pose of new images (position, rotation)
 - Triangulate new 3D data points seen in new image
 - Refinement by non-linear optimization (Bundle adjustment)

Compute camera poses of the first two images from feature matches

P = K[I|0]

P' = K'[R'|t']

Computation of first 3D points by triangulation

Triangulate all feature matches of the first images

P = K[I|0]

P' = K'[R'|t']

 First refinement of camera poses and 3D points by non-linear estimation of the re-projection error through bundle adjustment

Start processing the next image

• First, create feature matches to all the previous, neighboring images

P = K[I|0] P' = K'[R'|t']P'' = ?

- Feature matches give correspondences to already computed 3D points
- From corresponding 2D and 3D points the pose of the new camera can be computed using the PnP-Algorithm

Repeat the process starting again from triangulation of new features

Bundle adjustment

- Levenberg-Marquard optimization of re-projection error
- Parameters are camera poses and all 3D points (millions of parameters to optimize!)

$$\min_{P_j, X_i} \left(\sum_i \sum_j \|x_{i,j} - P_j X_i\| \right)$$

Bundle adjustment (BA)

objective function to be minimized

Gauss-Newton update equation

Calculating the update vector d

$$J_{k-1}^{T}J_{k-1}d_{k-1} = -J_{k-1}^{T}\varepsilon_{k-1}$$
$$Ax = b$$

- J ... npxN matrix (n ... #cameras, p ... #points, N ... #parameters)
- residual vector e is computed from e=||x-PM|| for every iteration
- Then the values for the Jacobian J are computed for every iteration

The Jacobian J (example for 3 cameras and 4 3D points)

- J ... npxN matrix (n ... #cameras, p ... #points, N ... #parameters
- M .. 1x3 matrix, P ... 1x11 matrix

- J^TJ is called the "Hessian Matrix" (symmetric matrix)
- U ... 11x11 symmetric matrix, V ... 3x3 symmetric matrix
- W ... 11x3 matrix

$$\begin{bmatrix} U & W \\ W^T & V \end{bmatrix} \begin{bmatrix} d(P) \\ d(M) \end{bmatrix} = \begin{bmatrix} n(P) \\ v(M) \end{bmatrix}$$

 $\begin{bmatrix} I_{11(n-1)} & -WV^{-1} \\ 0_{3px11(n-1)} & I_{3p} \end{bmatrix}$ Multiply the above equation with this line to obtain

$$\begin{bmatrix} U - WV^{-1}W^T & 0_{3p} \\ W^T & V \end{bmatrix} \begin{bmatrix} d(P) \\ d(M) \end{bmatrix} = \begin{bmatrix} n(P) - WV^{-1}v(M) \\ v(M) \end{bmatrix}$$

d(P) and d(M) are separated (first row only contains d(P))

d(P) can be computed solving this equation system of type Ax=b Only the matrix V needs to be inverted (efficiently possibly because it is block diagonal)

$$(U - WV^{-1}W^{T}) d(P) = n(P) - WV^{-1}v(M)$$

d(M) is computed by back-substitution

$$d(M) = V^{-1}(v(M) - W^T d(P))$$
²⁷