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Outline

▪ Ransac concept

▪ Ransac for fundamental matrix estimation

▪ Robust optimization (robust cost functions)
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Learning goals

▪ Understand the Ransac concept

▪ Be able to apply the equation for Ransac iterations

▪ Understand the use of Ransac for fundamental matrix estimation

▪ Understand the problem of least squares estimation with outliers

▪ Understand how robust cost functions work
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Robust estimation

▪ In computer vision the analogy to the line would be the fundamental 

matrix

Non-robust line estimate Robust line estimate
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Robust estimation in computer vision

▪ Outliers in general estimation

▪ Rare unexpected measurements that don‘t fit the model
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Robust estimation in computer vision

▪ Outliers in computer vision

▪ Frequent expected measurements that don‘t give useful information

6



Robust estimation in computer vision

▪ Multiple areas in computer vision require robust estimation techniques

▫ Fundamental matrix estimation

▫ Essential matrix estimation

▫ Camera pose estimation

▫ Camera calibration

▫ Triangulation

▫ Bundle adjustment

▫ 2D Registration

▫ 3D Registration 

▫ 3D Model fitting 

▫ Line detection

▪ Techniques:

▫ Ransac

▫ Robust loss functions for optimization
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Camera motion estimation
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Camera motion estimation
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Camera motion estimation
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Camera motion estimation
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RANSAC Example: Line extraction
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RANSAC Example: Line extraction

▪ Random sampling of 2 

points
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RANSAC Example: Line extraction

▪ Random sampling of 2 

points

▪ Calculate line model 

from this 2 data points
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RANSAC Example: Line extraction
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RANSAC Example: Line extraction

▪ Random sampling of 2 

points

▪ Calculate line model 

from this 2 data points

▪ Calculate residual error 

for each data point 

(normal distance to 

line)

▪ Select data points that 
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RANSAC Example: Line extraction

▪ Random sampling of 2 
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from this 2 data points
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RANSAC Example: Line extraction

▪ Random sampling of 2 

points

▪ Calculate line model 

from this 2 data points

▪ Calculate residual error 

for each data point 

(normal distance to 

line)

▪ Select data points that 

support current 

hypothesis

▪ Repeat sampling

▪ Until a hypothesis with 

a maximum number of 

inliers has been found
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RANSAC Algorithm

1. Initial: Let A be a set of N data points

2. Repeat

1. Randomly select a sample of s data points from A

2. Fit a model to these points

3. Compute the distance of all other points to this model

4. Construct the inlier set (i.e. count the number of data points whose 

distance from the model < threshold d

5. Store these inliers

3. Until maximum number of iterations reached

4. The model with the maximum number of inliers is chosen as the 

solution to the problem

5. Re-estimate the model using all the inliers
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How many iterations of RANSAC ?
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▪ The number of iterations N which is necessary to guarantee that at least 

a single correct solution is found can be computed by

▪ s is the number of data points from which a model can be minimally 

computed

▪ 𝜀 is the percentage of outliers in the data (can only be guessed)

▪ p is the requested probability of success

▪ Example: p = 0.99, s = 5, 𝜀 = 0.5 -> N = 145

𝑁 =
log(1 − 𝑝)

log(1 − 1 − 𝜀 𝑠)



How many iterations of RANSAC ?
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▪ RANSAC is an iterative method and it is non deterministic. It returns 

different solutions on different runs. 

▪ For reasons of reliability, in many practical implementations N is usually 

multiplied by a factor of 10

▪ More advanced implementations of RANSAC estimate the fraction of 

inliers adaptively, for every iteration, and use it to update N.



RANSAC iterations
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▪ N is exponential in the number of data points s necessary to estimate 

the model

▪ Therefore, it is very important to use a minimal parameterization of the 

model

Number of points (s)

p=0.99, e=0.5

8 7 6 5 4 2 1

Number of iterations (N) 1177 587 292 145 71 16 7
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Ransac for fundamental matrix estimation

▪ Inlier set for fundamental matrix estimation is set of correct image 

matches

▪ Cost function for Ransac: Epipolar distance
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x
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Why is least-squares not robust to outliers?

▪ Least squares means quadratic loss function

▪ Robust estimation can be achieved by different loss functions than 

quadratic

min
𝑥

෍

𝑖

𝑟𝑖
2(𝑥)
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loss

residual

𝐴𝑥 = 𝑏 ՜min
𝑥

𝐴𝑥 − 𝑏

𝑥 = (𝐴𝑇𝐴)−1𝐴𝑇𝑏



Robust optimization

▪ Iteratively reweighted least squares (IRLS)

▫ Estimates weights in every iteration to down-weigh outliers

▪ Non-linear optimization with robust loss function

▫ A robust loss function is used that down-weighs the influence of outliers

min
𝑥

෍

𝑖

𝜌𝑖 𝑓𝑖(𝑥𝑖)
2

min
𝑥

𝑤(𝐴𝑥 − 𝑏)
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min
𝑥

𝐴(𝑥) − 𝑏



Example: Gold standard method for fundamental matrix

▪ xi … image measurement

▪ P, P’ … camera matrices (will be optimized)

▪ Xi … 3D points (will be optimized)

27

min
𝑃,𝑃′,𝑋𝑖
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Non-linear estimation with robust loss function

▪ Non-linear optimization 

(e.g. Levenberg-Marquard)

▪ Squared error will be modified

by robust loss function 𝜌(𝑥)

▪ Loss function should be

differentiable

▪ Jacobian needs to be 

calculated

min
𝑥

෍

𝑖

𝜌𝑖 𝑓𝑖(𝑥𝑖)
2
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More robust loss functions

loss function p(x)

𝐿1 𝑥

𝐻𝑢𝑏𝑒𝑟 ቊ
𝑖𝑓 𝑥 ≤ 𝑘

𝑖𝑓 𝑥 > 𝑘 ൞
𝑥2/2

𝑘( 𝑥 −
𝑘

2
)

𝑇𝑢𝑘𝑒𝑦 ቊ
𝑖𝑓 𝑥 ≤ 𝑘

𝑖𝑓 𝑥 > 𝑘 𝑘2/6(1 − 1 −
𝑥

𝑐

2 3

)

𝑘2/6

𝐶𝑎𝑢𝑐ℎ𝑦 𝑘2

2
log(1 + (𝑥/𝑘)2)
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Effects of different loss functions

▪ L2 (quadratic) loss works fine for outlier-free data
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loss

residual

min
𝑥

෍

𝑖

𝑟𝑖
2(𝑥)L2 solution



Effects of different loss functions

▪ Outliers lead to wrong estimate
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loss

residual

min
𝑥

෍

𝑖

𝑟𝑖
2(𝑥)

L2 solution



Effects of different loss functions

▪ L1 loss leads to correct solution (estimation robust to outliers)
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loss

residual

min
𝑥

෍

𝑖

𝑟𝑖(𝑥)

L1 solution



Effects of different loss functions

▪ Does work for larger number of outliers as well
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loss

residual

min
𝑥

෍

𝑖

𝑟𝑖(𝑥)

L1 solution



Effects of different loss functions

▪ Breaks down eventually (> 50% outliers)

34

loss

residual

min
𝑥

෍

𝑖

𝑟𝑖(𝑥)

L1 solution



Effects of different loss functions

▪ However, can be solved with different cost function (e.g. Truncated L2)

▪ However, not easy to predict this behaviour
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min
𝑥

෍

𝑖

min(𝑟𝑖
2 𝑥 , 𝑡2)

loss

residual



Learning goals - Recap

▪ Understand the Ransac concept

▪ Be able to apply the equation for Ransac iterations

▪ Understand the use of Ransac for fundamental matrix estimation

▪ Understand the problem of least squares estimation with outliers

▪ Understand how robust cost functions work
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