Robot Vision: Image formation

Prof. Friedrich Fraundorfer
SS 2024

Outline

- Image formation
- The pinhole camera model
- The projection equation
- Camera matrix estimation

Learning goals

- To be able to explain the pinhole camera model
- To be able to explain the image projection process mathematically
- To be able to explain camera matrix estimation

The pinhole camera model

The pinhole camera model

From mm's to pixels

Matrix notation

$x_{\text {screen }}=f_{x}\left(\frac{X}{Z}\right)+c_{x}$
$y_{\text {screen }}=f_{y}\left(\frac{Y}{Z}\right)+c_{y}$
$\left(\begin{array}{c}f_{x} X+c_{x} Z \\ f_{y} Y+c_{y} Z \\ Z\end{array}\right)=\left[\begin{array}{ccc}f_{x} & 0 & c_{x} \\ 0 & f_{y} & c_{y} \\ 0 & 0 & 1\end{array}\right]\left(\begin{array}{c}X \\ Y \\ Z\end{array}\right)$
$K=\left[\begin{array}{ccc}f_{x} & 0 & c_{x} \\ 0 & f_{y} & c_{y} \\ 0 & 0 & 1\end{array}\right]$
$\left(\begin{array}{c}f_{x} \frac{X}{Z}+c_{x} \\ f_{y} \frac{Y}{Z}+c_{y} \\ 1\end{array}\right) \cong\left(\begin{array}{c}f_{x} X+c_{x} Z \\ f_{y} Y+c_{y} Z \\ Z\end{array}\right)$

- K-Matrix is often called "calibration matrix" or "interior orientation"
- Convert 2D image coordinates into 2D projective coordinates with image plane distance = 1

$$
K=\left[\begin{array}{ccc}
f_{x} & 0 & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right]
$$

$$
\left(\begin{array}{l}
x_{n} \\
y_{n} \\
1
\end{array}\right)=K^{-1}\left(\begin{array}{c}
x_{\text {screen }} \\
y_{\text {screen }} \\
1
\end{array}\right)
$$

$$
\begin{aligned}
& x_{\text {screen }}=f_{x}\left(\frac{X}{Z}\right)+c_{x} \\
& y_{\text {screen }}=f_{y}\left(\frac{Y}{Z}\right)+c_{y}
\end{aligned}
$$

- x_{n}, y_{n} are unit-less 2D projective coordinates with a z-distance of 1

Exterior orientation

Rigid transformations

- Coordinates are related by:

$$
X_{c}=R X_{w}+T
$$

$x \in \mathbb{R}^{n}$
$\mathrm{T} \in \mathbb{R}^{n}$
$R \in \mathbb{R}^{n \times n}$

$$
\left[\begin{array}{c}
X_{c} \\
1
\end{array}\right]=\left[\begin{array}{cc}
R & T \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
X_{w} \\
1
\end{array}\right]
$$

The complete projection equation

$$
\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=\left[\begin{array}{ccc}
f_{x} & 0 & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right) \boldsymbol{?}\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\left[\begin{array}{cc}
R & T \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]
$$

Perspective projection

- Mapping 3D projective space onto 2D projective space
- A projection onto a space of one lower dimension can be achieved by eliminating one of the coordinates
- General projective transformation in 3D is a 4×4 matrix

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{llll}
t_{11} & t_{12} & t_{13} & t_{14} \\
t_{21} & t_{22} & t_{23} & t_{24} \\
t_{31} & t_{32} & t_{33} & t_{34} \\
t_{41} & t_{42} & t_{43} & t_{44}
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right]
$$

- Image projection from 3D to 2D

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{llll}
t_{11} & t_{12} & t_{13} & t_{14} \\
t_{21} & t_{22} & t_{23} & t_{24} \\
t_{31} & t_{32} & t_{33} & t_{34}
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right]
$$

- The coordinate $x 4$ is dropped

$$
\left[\begin{array}{c}
x \\
y \\
W
\end{array}\right]=P_{3 \times 4}\left[\begin{array}{c}
X \\
Y \\
Z \\
W
\end{array}\right]
$$

The complete projection equation

$$
\begin{gathered}
\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=\left[\begin{array}{ccc}
f_{x} & 0 & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right) \quad \boldsymbol{?}\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\left[\begin{array}{cc}
R & T \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right] \\
\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=\left[\begin{array}{ccc}
f_{x} & 0 & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 \\
0 & 1 & 0 \\
0 \\
0 & 0 & 1
\end{array} 0\left[\begin{array}{cc}
R & T \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]\right. \\
\left(\begin{array}{c}
x \\
y \\
1
\end{array}\right)=\left[\begin{array}{ccc}
f_{x} & 0 & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ll}
R & T
\end{array}\right]\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{W} \\
1
\end{array}\right] \\
\left(\begin{array}{c}
x \\
y \\
1
\end{array}\right)=P_{3 \times 4}\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]
\end{gathered}
$$

Camera matrix

$$
\begin{aligned}
& P=K R[I \mid-C]=K[R \mid-R C]=K[R \mid t] \\
& t=-R C
\end{aligned}
$$

- Camera matrix P is a coordinate transformation and then a projection
- C ... 3x1 coordinate of the camera center in world coordinate
- R ... 3×3 rotation matrix representing the orientation of the camera coordinate frame
- K ... 3x3 calibration matrix

Line projection

- Point projection $x=P X$
- Line projection is more involved (line I is a 4×4 matrix)
- Therefore indirect projection:
$l^{\prime}=x^{\prime} \times y^{\prime}=P X \times P Y$
$L=\overline{X Y}$

Camera matrix estimation

- perspective-n-point problem
- Goal is to estimate camera matrix P such that $x_{1}=P X_{1}$
- $\mathrm{x}_{1}, \mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{2}, \mathrm{x}_{3}, \mathrm{X}_{3}$ are known
- Algebraic linear solution requires 6 3D-2D point correspondences, minimal nonlinear solution requires only 3

Camera matrix estimation

- Condition: Measurement vector x needs to have the same direction as projection of X (cross-product equals 0)

Camera matrix estimation

- Condition: Measurement vector x needs to have the same direction as projection of X (cross-product equals 0)

$$
\begin{aligned}
& x \times(P X)=0 \text { for all pairs } x \leftrightarrow X \\
& y\left(P_{3}^{T} X\right)-w\left(P_{2}^{T} X\right)=0 \\
& w\left(P_{1}^{T} X\right)-x\left(P_{3}^{T} X\right)=0 \\
& x\left(P_{2}^{T} X\right)-y\left(P_{1}^{T} X\right)=0 \\
& {\left[\begin{array}{ccc}
0 & -w X^{T} & y X^{T} \\
w X^{T} & 0 & -x X^{T} \\
-y X^{T} & x X^{T} & 0
\end{array}\right]\left[\begin{array}{l}
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right]=0}
\end{aligned}
$$

Recap - Learning goals

- To be able to explain the pinhole camera model
- To be able to explain the image projection process mathematically
- To be able to explain camera matrix estimation

