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Multi-View Stereo

▪ Input: set of images + camera poses (from SFM)

▪ Output: 3D model (as dense point cloud)
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Example
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Multi-View Stereo Pipeline
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Plane-sweep multi-view stereo

▪ Classical plane sweeping stereo [8]

▪ Sweep family of planes at different depths with respect to reference camera

▪ With CNNs: Warp deep features instead of raw pixel values
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Deep Learning for Multi-View Stereo (MVS)

▪ Advantages:

▫ fast

▫ usually works better in terms of completeness 

▫ can work on non-lambertian surfaces

▪ Disadvantages:

▫ often huge (GPU) memory requirements

▫ needs large amount of data to train on

▫ might fail in a completely new environment
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Deep Learning for MVS: Features

▪ Hand-crafted Features:

▫ Designed by human experts to extract a given set of chosen characteristics

▫ Trade-off between accuracy and computational efficiency

▫ e.g.: Census

▪ Learned Features:

▫ Extracted via Convolutional Neural Network (CNN)

▫ Learned from data
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Deep Learning for MVS: Regularization

▪ Needed to filter incorrect correspondences (e.g. from occlusions, noise)

▪ Traditional Regularization:

▫ Find local correspondences

▫ Apply regularization methods

- Semi global matching

- Belief propagation

- Graph cut

- Smoothness priors

▫ Apply filters

▪ Learned Regularization:

▫ Network learns to regularize raw feature output

▫ Often 3D convolutions
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Pre-process Images

▪ Crop/scale to fit network requirements

▫ Due to convolutions, width/height usually need to 

be a multiple of 2n (e.g. 32 or 64)

▫ Adjust camera parameters accordingly!

▪ Images usually need to be stacked in network -> need same sizes!

▪ Augment data for training: Change brightness, contrast, etc
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Deep Feature Extraction

▪ Acquired from RGB image via CNN

▪ Encode image information in a way that it can be 

compared to other images

▪ Can have many layers

▫ Usually a combination of 2D convolutions, Normalization and ReLU

▪ Original neighboring information can be encoded to smaller resolution

▫ Save memory for next step
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Deep Feature Extraction: 2D Convolution

▪ Example: Kernel=3x3, Stride = 1
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Deep Feature Extraction: 2D Convolution

▪ Example: Kernel=3x3, Stride = 3
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Deep Feature Extraction: 2D Convolution

▪ Input and output channels can be arbitrary (modelled through more kernel weights)
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Ex. Deep Feature Extraction: Simple Feature Net

kernel=3x3, stride=1, BN, ReLU

kernel=5x5, stride=2, BN, ReLU

kernel=3x3, stride=1
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Ex. Deep Feature Extraction: Unet

kernel=3x3, stride=1, BN, ReLU

kernel=3x3, stride=2, BN, ReLU

upsampling, scale=2
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Cost Volume

▪ Aggregate N feature volumes to one cost volume C via homography 

warping (plane sweep)

▪ Variance cost metric using the average feature volume:

▪ Each point in the cost volume can be seen as a similarity measure
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Cost Volume Regularization

▪ Raw cost volume 

▫ could be noise-contaminated

▫ has no smoothness constraint

▪ Use CNNs to regularize the 

obtained cost volume variance

▪ Usually 3D convolutions

18



Cost Volume Regularization

▪ Last 3D convolution layer maps output to single channel

▪ Search for lowest cost / highest probability
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Depth Inference

▪ Classification:

▫ Predicts label

▫ Discrete output: Class with highest probability

▫ Can be filtered through probability threshold

▫ Example: Class 4 has highest prob -> Result: 4

▪ Regression:

▫ Predicts quantity

▫ Continuous output

▫ Can be filtered through entropy threshold

▫ Example: 0.1*1 + 0.1*2 + 0.1*3 + 0.5*4 + 0.2*5 = 3.6 

20



Training loss: Classification

▪ Multi-class classification problem with cross entropy loss:
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Training loss: Regression

▪ Regress depth outputs using the soft argmin [7] operation and l1 loss:
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Post-Processing and Filtering

▪ Geometric verification

▫ Project each pixel into different view and back

▫ Check if reprojected image lies within some threshold

▪ Photometric verification

▫ Measures matching quality for each pixel

▫ Directly implemented in network: probability, standard deviation or entropy
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Datasets

▪ Quality of dataset very important for training

▪ Benchmarks for evaluation

▪ Examples: DTU, Tanks and Temples, ETH3D, Blended MVS
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DTU dataset

▪ http://roboimagedata.compute.dtu.dk

▪ Recorded using industrial robot arm with a structured light scanner

▪ Indoor, small scale, different light settings, 49 or 64 images per scene

▪ Ground-truth available as point clouds

▪ “Ground-truth” depth maps available from MVSNet

▪ Screened Poisson surface reconstruction: point cloud -> mesh

▪ Render mesh to each viewpoint

▪ Not perfect: holes and wrong labelling in depth maps

▪ Attention-Aware MVS [6]: improve ground-truth depth maps
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DTU dataset

26



Tanks and Temples dataset

▪ https://www.tanksandtemples.org/

▪ Ground-truth point cloud captured with industrial laser scanner

▪ Outdoor and indoor environments

▪ high-res video available for each scene
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Tanks and Temples dataset
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ETH3D dataset

▪ https://www.eth3d.net/datasets

▪ Ground-truth point cloud from laser scan

▪ 13 training and 12 test scenes in high resolution

▪ 5 training and 5 test videos in low resolution

▪ Challenging

▪ large image size

▪ large viewpoint change

▪ small amount of images

▪ Deep learning methods not (yet) competitive
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ETH3D dataset
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Evaluation

▪ Overall Score: mean of accuracy and completeness (DTU)

▪ Measures the mean distance to the groundtruth point cloud

▪ Lower is better

▪ F-Score: harmonic mean of precision and recall (TaT, ETH3D)

▪ Measured at a certain distance threshold d

▪ If either P(d) → 0 or R(d) → 0, then F(d) → 0

▪ Better summary measure than the arithmetic mean
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Examples

▪ MVSNet (ECCV 2018): CostRegNet after volume variance calculation

▪ R-MVSNet (CVPR 2019): regularizes 2D costmaps along depth direction via GRU to 

save memory

▪ MVSCRF (ICCV 2019): CRF after cost volume regularization

▪ CasMVSNet (CVPR 2020): Multiscale feature extraction, refine depth values in every 

step

▪ Cost Volume Pyramid (CVPR 2020)

▪ Attention-Aware MVS (CVPR 2020)
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HighRes-MVSNet: Evaluation DTU
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HighRes-MVSNet: Evaluation TaT
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