Robot Vision: Stereo Matching

Prof. Friedrich Fraundorfer

SS 2021

Outline

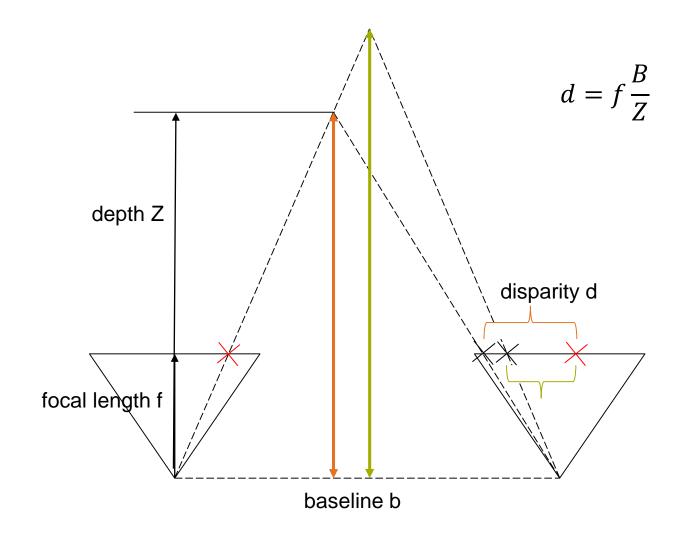
- Geometric relations for stereo matching
- Dense matching process
- Census Transform
- Dynamic programming
- Semiglobal matching
- Stereo matching with CNN's
- Monocular depth estimation

Dense matching

- SfM only gives sparse 3D data
- Only feature points (e.g. SURF) are triangulated for most pixel no 3D data is computed
- Dense image matching computes a 3D point for every pixel in the image (1MP image leads to 1 million 3D points)
- Dense matching algorithms need camera poses as prerequisite

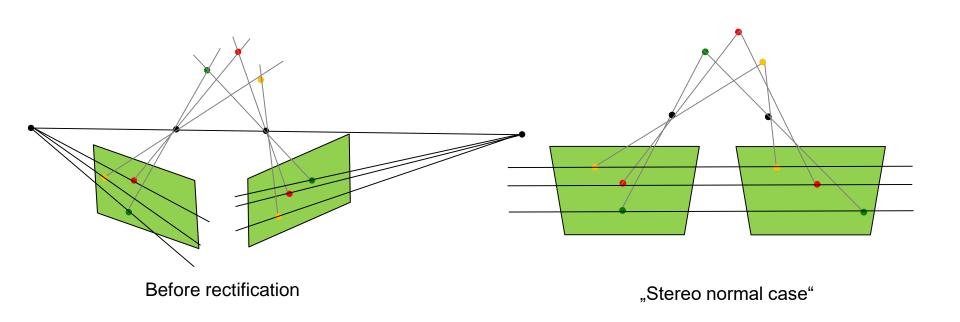
Geometric relation

- Stereo normal case
- Depth Z [m] can be computed from disparity d [pixel]

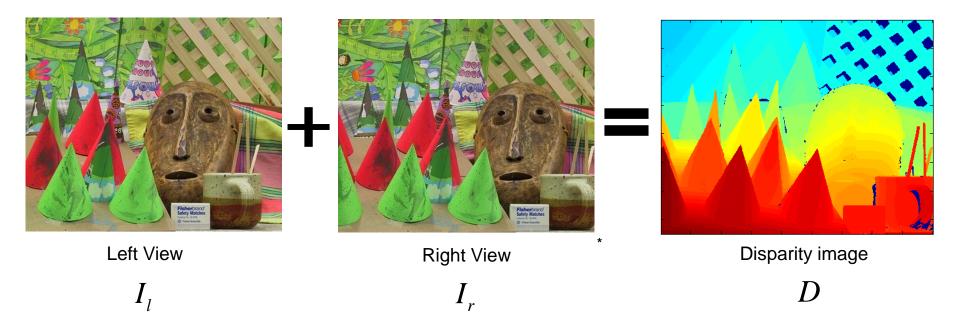


Rectification

- Image transformation to simplify the correspondence search
 - Makes all epipolar lines parallel
 - Image x-axis parallel to epipolar line
 - Corresponds to parallel camera configuration



Dense matching process



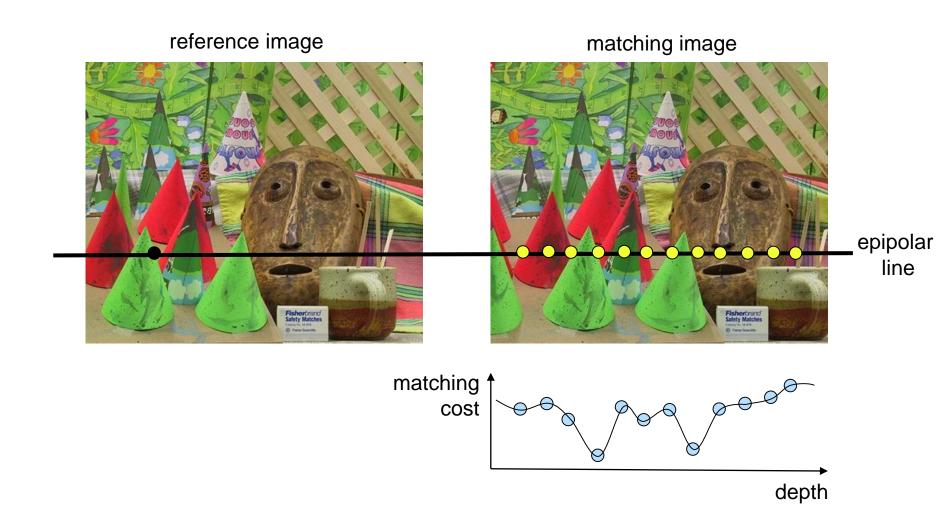
- Estimate disparity (depth) for all pixels in the left image.
 - Evaluate similarity measure for every possible pixel location on the line (e.g. NCC, SAD)
- Disparity d: Offset between pixel p in the left image and its corresponding pixel q in the right image.

Census Transform

- A popular block matching cost
- Good robustness to image changes (e.g. brightness)
- Matching cost is computed by comparing bit strings using the Hamming distance (efficient)
- Bit strings encode if a pixel within a window is greater or less than the central pixel (0 .. if center pixel is smaller, 1 .. if center pixel is larger)

89	63	72	
67	55	64	00000011
58	51	49	

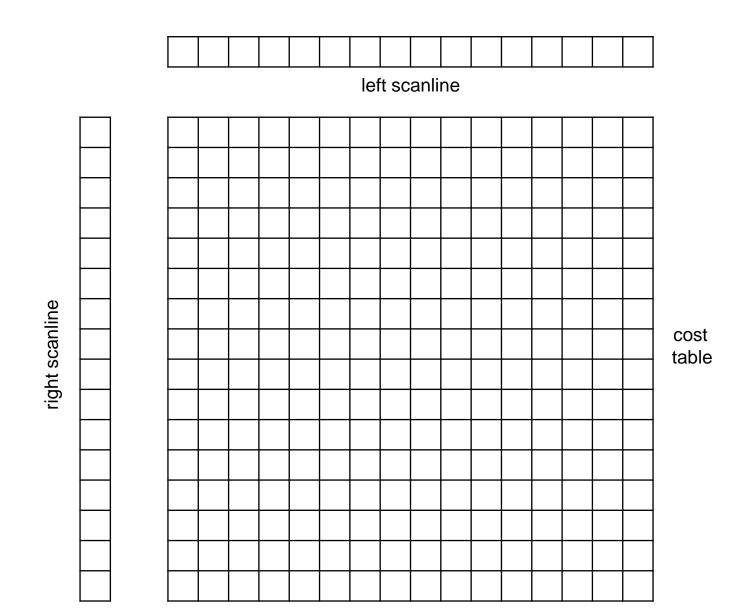
Dense matching process

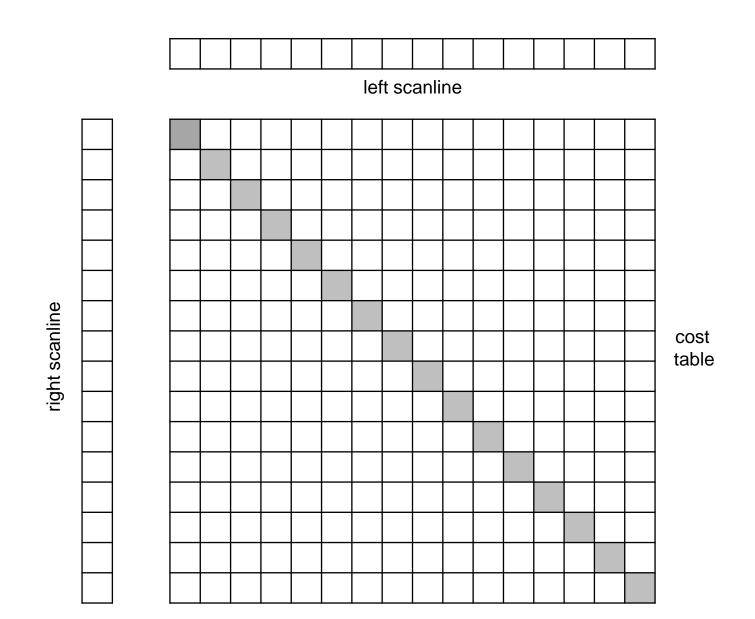


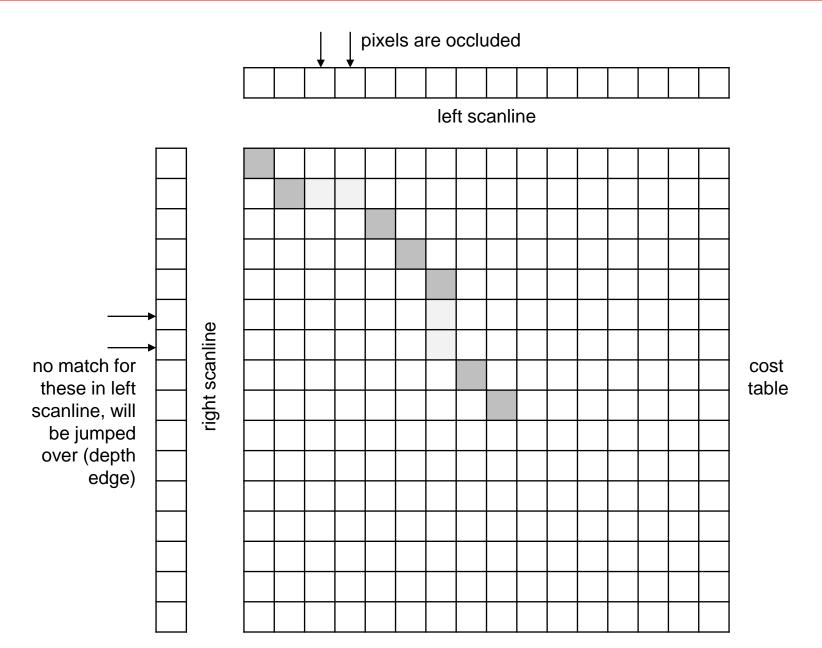
Disparity selection

- Single scanline based
 - Winner takes all (WTA)
 Select the disparity with the lowest cost (i.e. the highest similarity)
 - Scanline optimization (Dynamic programming)
 Select the disparities of the whole scanline such that the total (added up) costs for a scanline is minimal
- Global methods (Cost volume optimization)
 - Belief propagation
 Selects the disparities such that the total cost for the whole image is minimal
 - Semi-global Matching
 Approximates the optimization of the whole disparity image

- Frequently called "dynamic programming" because of the programming scheme for efficient cost calculation. This naming is historic and does not reflect the method well. In fact it is an application of the Viterbi-Algorithm.
- Cost calculation based on a 2D grid



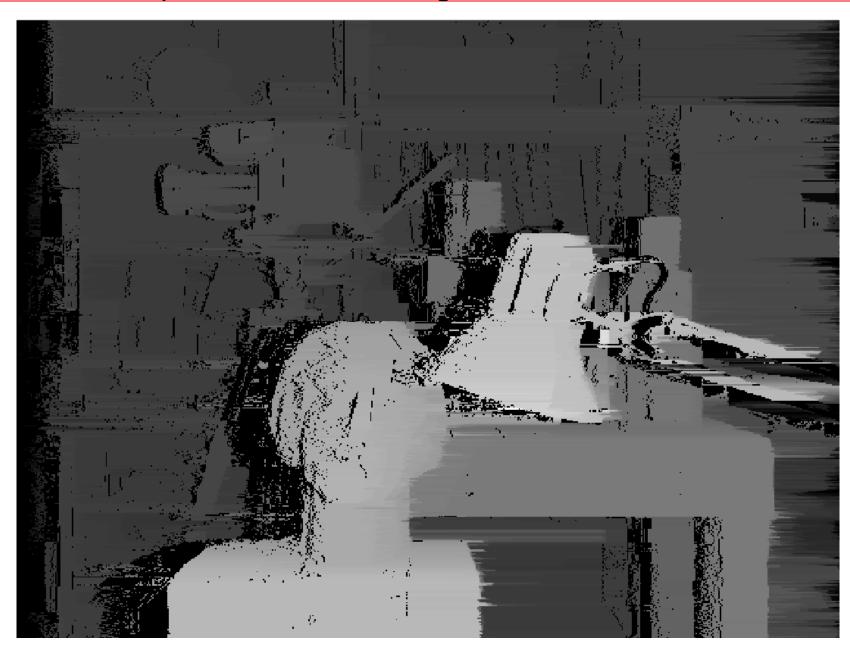




Scanline optimization complexity

- Exhaustive search: O(hⁿ)
 Example: scanline of length n=512 with h=100 disparities: 100⁵¹²
- Dynamic programming: O(nh²)
 Example: scanline of length n=512 with h=100 disparities: 512*100*100= 5,12 million operations

Scanline optimization streaking artifacts



Global methods

- Global methods
 - Global cost optimization in energy-minimization framework

$$E(D) = E_{data}(D) + \lambda E_{smooth}(D)$$

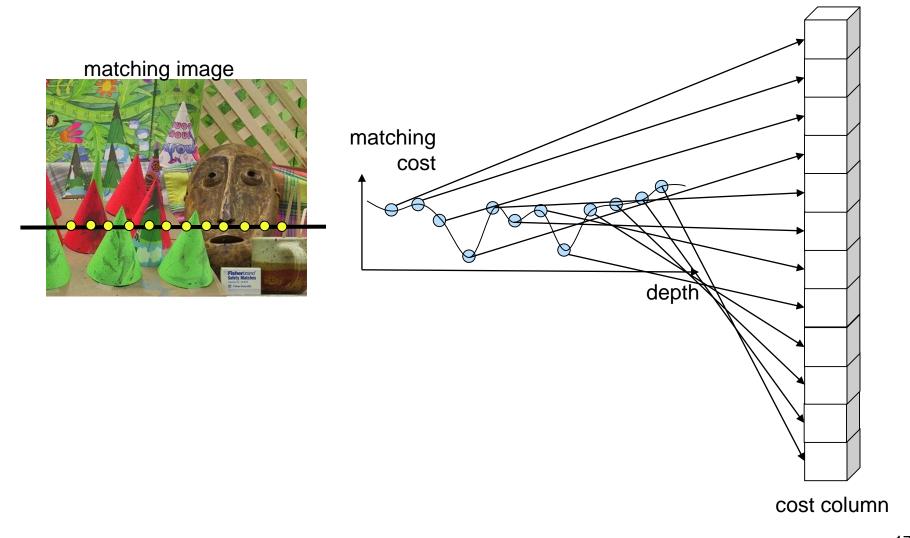
Data term:
 Agreement between cost function and input image pair

$$E_{data}(D) = \sum_{(p)} c(p,d)$$

Smoothness term:
 Encoding the smoothness assumptions

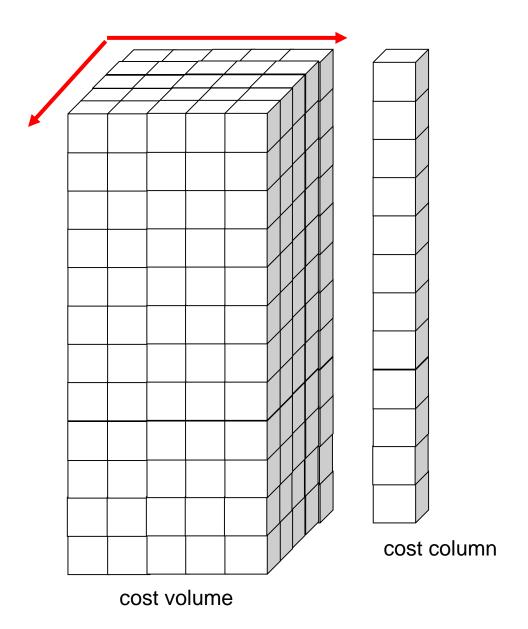
$$E_{smooth}(D) = \sum_{(p)} \rho(d(u,v) - d(u+1,v))$$

Cost volume



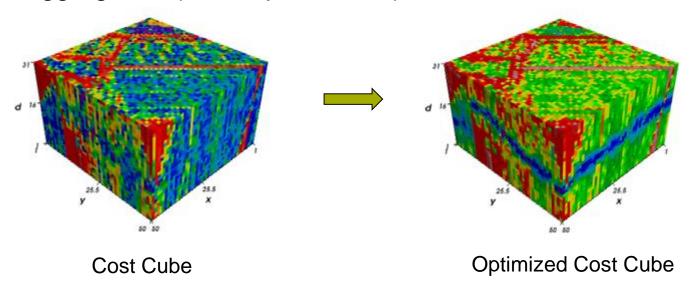
Cost volume

matching image



Semiglobal matching

Cost Aggregation (Cost Optimization)



Goal: global minimization of

$$E(D) = \sum_{P} (C(p,D_p) + \sum_{q \in N_p} P_1 \left[|D_p - D_q| = 1 \right] + \sum_{q \in N_p} P_2 \left[|D_p - D_q| > 1 \right]$$
 Data term Regularization term

 P_1 : Penalty factor for small jump

 P_2 : Penalty factor for large jump

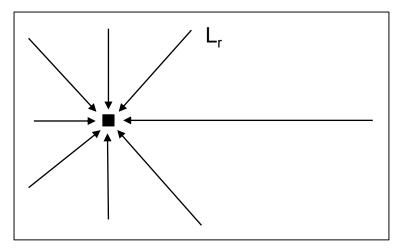
 $N_{\scriptscriptstyle p}$: Neighborhood of p

Semiglobal matching

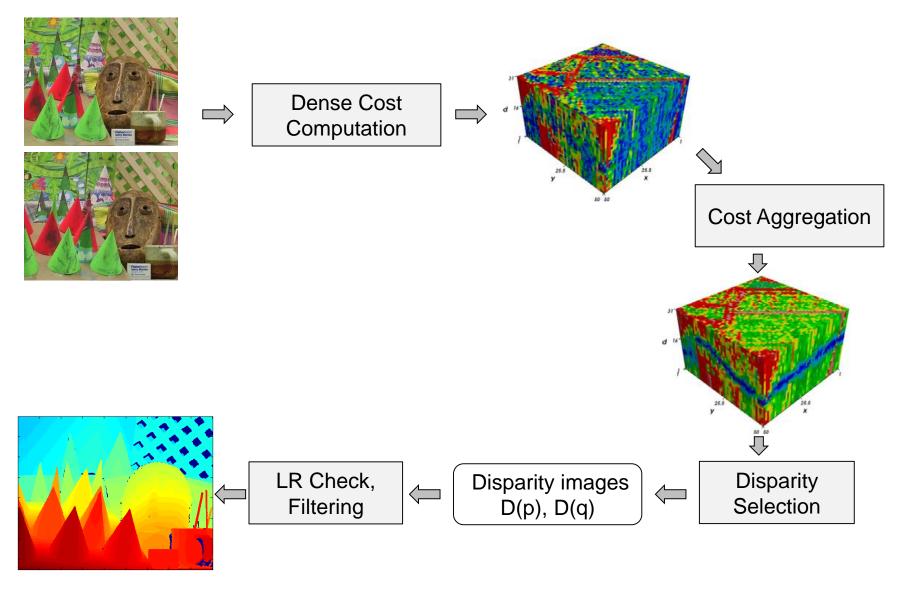
Path-wise approximation of aggregation

$$L_{r}(p,d) = C(p,d) + \min \begin{pmatrix} L_{r}(p-r,d), & p \\ P_{1} + L_{r}(p-r,d-1), & P_{1} \\ P_{1} + L_{r}(p-r,d+1), & P_{2} \\ P_{2} + \min_{i} L_{r}(p-r,i) & L_{r} \end{pmatrix}$$

- p Image coordinates
- P_1 Cost for small height jump
- P_2 Cost for large height jump
- r Path direction
- L_r Aggregated costs along r
- d Disparity
- Summation of L along 8 or 16 directions r $S(p,d) = \sum_{r} L_r(p,d)$



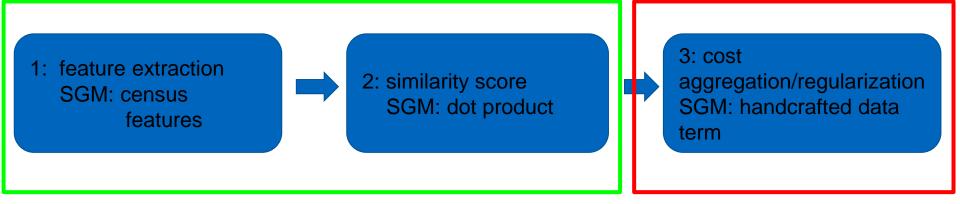
Semiglobal matching



[Heiko Hirschmüller (2008), Stereo Processing by Semi-Global Matching and Mutual Information, in IEEE PAMI, Volume 30(2), February 2008, pp. 328-341.]

Stereo matching using CNN's (Example MC-CNN)

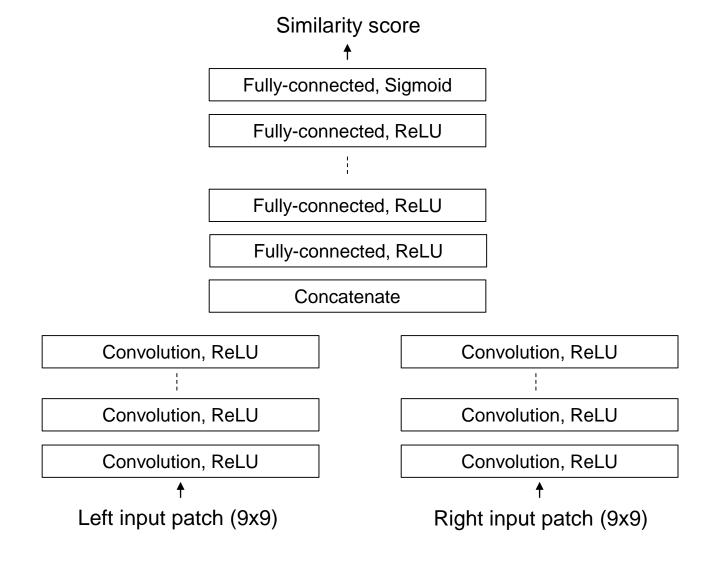
- Traditionally disparity estimation works along 3 steps
- CNN's can be used to replace these parts which replaced handcrafted models and thresholds with data-driven algorithms



Steps replaced by CNN's

still SGM implementation used

Using deep neural networks for similarity estimation



Performance of CNN based stereo

Middlebury Stereo Evaluation - Version 3

Mouseover the table cells to see the produced disparity map. Clicking a cell will blink the ground truth for comparison. To change the table type, click the links below. For more information, please see the <u>description of new features</u>.

Submit and evaluate your own results. See snapshots of previous results. See the evaluation v.2 (no longer active).

Set: <u>test dense</u> <u>test sparse</u> <u>training dense</u> <u>training sparse</u>

Metric: bad 0.5 bad 1.0 bad 2.0 bad 4.0 avgerr rms A50 A90 A95 A99 time time/MP time/GD

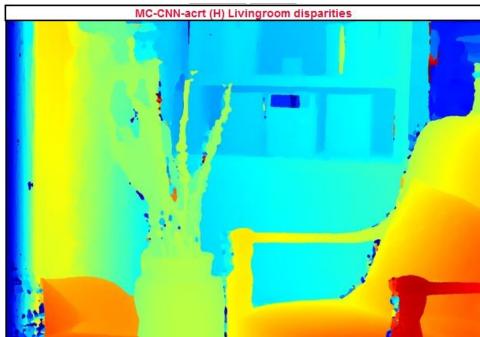
Mask: <u>nonocc</u> <u>all</u>

✓ plot selected □ show invalid Reset sort Reference list

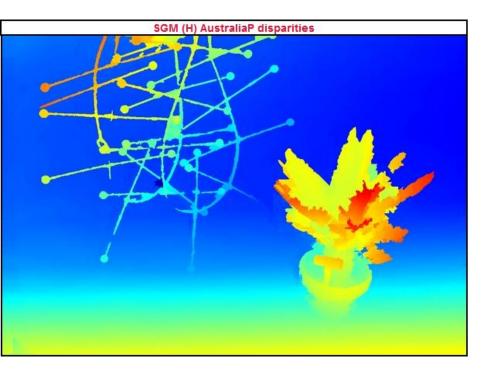
l .	bad 2.0 (%)		Weight															
Date	Name	Res	Avg	Austr	AustrP	Bicyc2	Class	ClassE	Compu	Crusa	CrusaP	Djemb	DjembL	Hoops	Livgrm	Nkuba	Plants	Stairs
																		MP: 5.2
1																		nd: 450
1				im0 im1	im0 im1													
1				GT	GT													
1				nonocc		nonocc	nonocc			nonocc		nonocc			nonocc	nonocc	nonocc	
①①	①①	①①	₽û	①①	①①	①①	①①	①①	①①	①①	①①	①①	①①	Ųΰ	Ųΰ	①①	Ω	①①
08/28/15	✓ MC-CNN-acrt <	Н	8.08 1	5.59 20	4.55 25	5.96 17	2.83 10	11.4 25	5.81 14	8.32 23	8.89 27	2.71 15	16.3 23	14.1 18	13.2 18	13.0 5	6.40 16	11.1 15
07/28/14	☑ SGM 🕏	Н	18.42	40.3 79	4.54 23	8.03 32	22.9 67	40.5 59	11.4 39	24.7 51	10.1 38	5.40 45	29.6 45	28.5 51	23.9 55	20.0 40	14.2 40	30.9 51

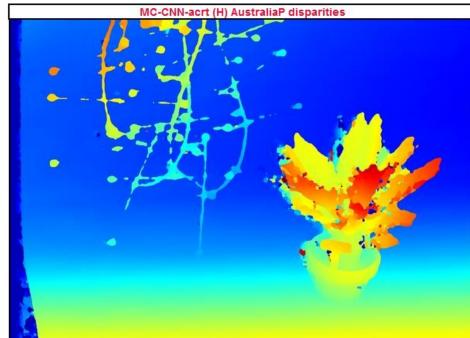
Example results



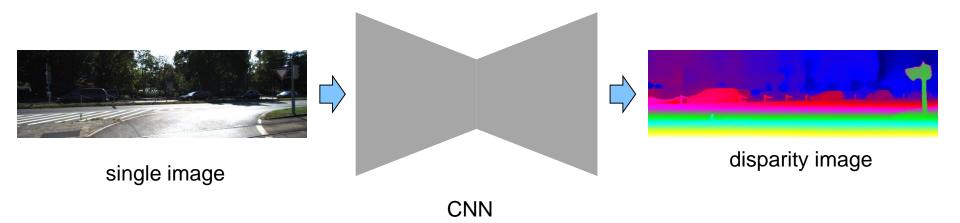


Example results

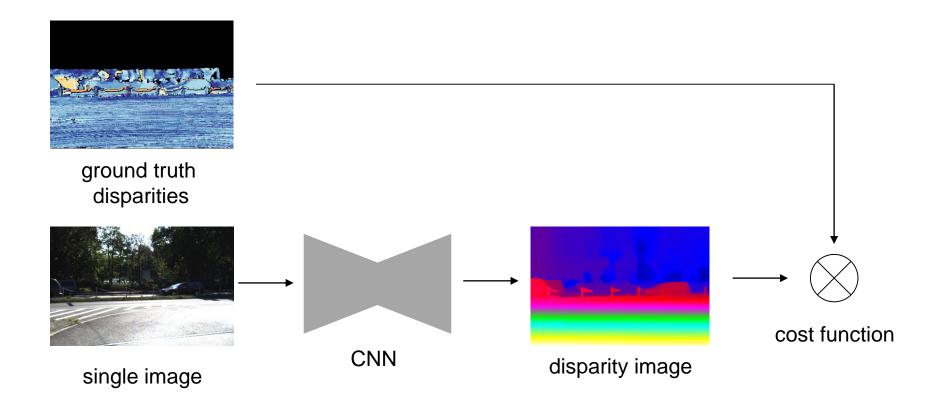




Monocular depth estimation



Monocular depth estimation - Training



How well does it work?

Planarity errors

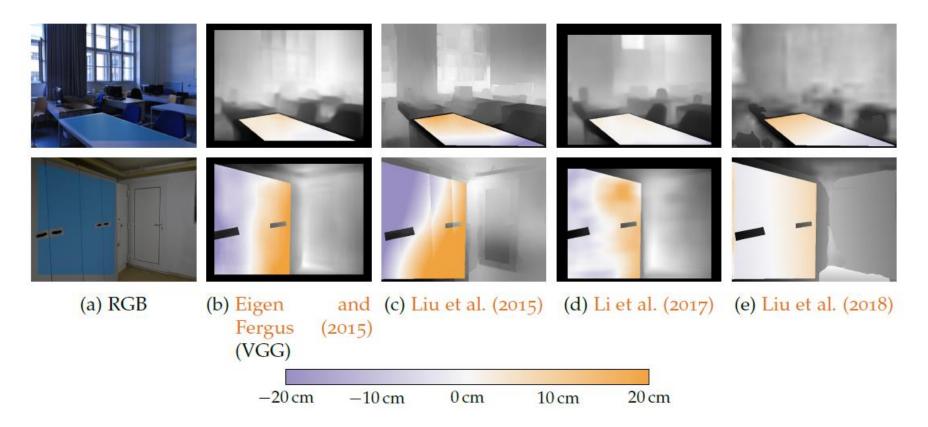


Figure 4.25: Visual results after applying *planarity errors* (PEs) on different planar regions (top: table, bottom: wall). RGB with corresponding plane masks () (a). Predictions using different methodologies (b-e). Colors in the predictions correspond to orthogonal differences of projected depths towards the reference plane

Limits of current method

- Network estimates depth for a picture on a flat wall
- NO absolute scale measurements as in real stereo setup!

