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Polynomial Systems in Computer Vision

Many Computer Vision problems can be solved by finding the roots
of a polynomial system:

I camera pose estimation from point correspondences;
I camera relative motion estimation from point

correspondences;
I image distortion calibration;
I point triangulation;
I ...



Solving Polynomial Systems

I no general method;

I several mathematical tools exist. For a given problem, a tool
can be more adapted than the others.
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Gröbner Bases

I introduced in 1965 by Bruno Buchberger (now at the
Johannes Kepler University in Linz) in his Ph.D.
thesis (named after his advisor Wolfgang Gröbner) to study
sets of polynomials



A Polynomial System

Let consider the following polynomial system:
L1 2x2 +y2−2z +3z2 +5 = 0
L2 x2 + z + z2 = 0
L3 x2y2 +y2z2−2 = 0

Hint: try to remove x from the first equation

Replace L1 by L1−2L2:
L′1 y2−4z + z2 +5 = 0
L2 x2 + z + z2 = 0
L3 x2y2 +y2z2−2 = 0



A Polynomial System

Let consider the following polynomial system:
L1 2x2 +y2−2z +3z2 +5 = 0
L2 x2 + z + z2 = 0
L3 x2y2 +y2z2−2 = 0

Hint: try to remove x from the first equation

Replace L1 by L1−2L2:
L′1 y2−4z + z2 +5 = 0
L2 x2 + z + z2 = 0
L3 x2y2 +y2z2−2 = 0



A Polynomial System

Let consider the following polynomial system:
L1 2x2 +y2−2z +3z2 +5 = 0
L2 x2 + z + z2 = 0
L3 x2y2 +y2z2−2 = 0

Hint: try to remove x from the first equation

Replace L1 by L1−2L2:
L′1 y2−4z + z2 +5 = 0
L2 x2 + z + z2 = 0
L3 x2y2 +y2z2−2 = 0



A Real Polynomial System (continued)


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A Real Polynomial System (continued)


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L5 5z−4z2 + z3−2 = 0
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A Real Polynomial System (continued)
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L2 x2 + z + z2 = 0
L3 x2y2 +y2z2−2 = 0
L4 y2z +2 = 0
L5 5z−4z2 + z3−2 = 0

Hint: L5 is a polynomial in z only

5z−4z2 + z3−2 = (z−1)2(z−2)

Each possible value for z gives a new polynomial system in x and y
only.
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Solving a Univariate Polynomial

I closed form up to degree 4;

I for higher degrees:
I the companion matrix method: The companion matrix of

p(z) = zn +an−1zn−1 + . . .+a1z +a0 is

C =


0 −a0
1 0 −a1

1 0 −a2
. . .

...
1 −an−1

 .

Its eigenvalues are the roots of p(z) (because p(z) is the
characteristic polynomial det(zI−C) of C).

I Sturm’s bracketing method (slightly less stable but much
faster).
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Two Gröbner bases


L′1 y2−4z + z2 +5 = 0
L2 x2 + z + z2 = 0
L3 x2y2 +y2z2−2 = 0
L4 y2z +2 = 0
L5 5z−4z2 + z3−2 = 0

{
y2−4z + z2 +5,x2 + z + z2,x2y2 +y2z2−2,y2z +2,5z−4z2 + z3−2

}
is a Gröbner basis.

{
y2−4z + z2 +5,x2 + z + z2,5z−4z2 + z3−2

}
is also a Gröbner basis.
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A Gröbner basis is a set of polynomials {g1, . . . ,gt}, such that the
system 

g1(x1, . . . ,xn) = 0
. . .

gt(x1, . . . ,xn) = 0

has the same solutions as the original one,

but with some specific properties that make the new system easier
to solve than the original one, OR AT LEAST USEFUL to solve
the original one.
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Tools
We can create new equations from:

I linear combinations of existing equations.

In particular, we
can use the Gauss-Jordan elimination algorithm to simplify the
system. For example, we can write the system:{

2x2 +xy +y2 +1 = 0
x2−xy +2y2−1 = 0

in matrix form: [
2 1 1 1
1 −1 2 −1

]
x2

xy
y2

1

= 0 .

After Gauss-Jordan elimination:[
1 0 1 0
0 1 −1 1

]
x2

xy
y2

1

= 0 .

I algebraic combinations of existing equations.



Tools
We can create new equations from:

I linear combinations of existing equations. In particular, we
can use the Gauss-Jordan elimination algorithm to simplify the
system.

For example, we can write the system:{
2x2 +xy +y2 +1 = 0
x2−xy +2y2−1 = 0

in matrix form: [
2 1 1 1
1 −1 2 −1

]
x2

xy
y2

1

= 0 .

After Gauss-Jordan elimination:[
1 0 1 0
0 1 −1 1

]
x2

xy
y2

1

= 0 .

I algebraic combinations of existing equations.



Tools
We can create new equations from:

I linear combinations of existing equations. In particular, we
can use the Gauss-Jordan elimination algorithm to simplify the
system. For example, we can write the system:{

2x2 +xy +y2 +1 = 0
x2−xy +2y2−1 = 0

in matrix form:

[
2 1 1 1
1 −1 2 −1

]
x2

xy
y2

1

= 0 .

After Gauss-Jordan elimination:[
1 0 1 0
0 1 −1 1

]
x2

xy
y2

1

= 0 .

I algebraic combinations of existing equations.



Tools
We can create new equations from:

I linear combinations of existing equations. In particular, we
can use the Gauss-Jordan elimination algorithm to simplify the
system. For example, we can write the system:{

2x2 +xy +y2 +1 = 0
x2−xy +2y2−1 = 0

in matrix form: [
2 1 1 1
1 −1 2 −1

]
x2

xy
y2

1

= 0 .

After Gauss-Jordan elimination:[
1 0 1 0
0 1 −1 1

]
x2

xy
y2

1

= 0 .

I algebraic combinations of existing equations.



Tools
We can create new equations from:

I linear combinations of existing equations. In particular, we
can use the Gauss-Jordan elimination algorithm to simplify the
system. For example, we can write the system:{

2x2 +xy +y2 +1 = 0
x2−xy +2y2−1 = 0

in matrix form: [
2 1 1 1
1 −1 2 −1

]
x2

xy
y2

1

= 0 .

After Gauss-Jordan elimination:[
1 0 1 0
0 1 −1 1

]
x2

xy
y2

1

= 0 .

I algebraic combinations of existing equations.



Tools

We can create new equations from:

I linear combinations of existing equations.
I algebraic combinations of existing equations.

I the remainder of polynomial divisions (used by Buchberger’s
algorithm).
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Notations and Definitions



Fields

A field is a set where one can define addition, subtraction,
multiplication, and division with the usual properties.

For example, the real numbers R, the rational numbers Q, the
complex numbers C are fields.

The integers Z are not a field (division fails).

The coefficients of polynomials and the variables take their values
from a field.
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Monomials

Definition. A monomial in x1, . . . ,xn is a product of the form:

xα1
1 ·x

α2
2 . . . ·xαn

n ,

where all the exponents α1, . . . ,αn are nonnegative integers,
sometimes noted xα with α= (α1, . . . ,αn).

Examples: x, x2, x2y, x2yz3



Polynomials

Definition. A polynomial f in x1, . . . ,xn with coefficients in a
field k is a finite linear combination with coefficients in k of
monomials. A polynomial is written in the form

f =
∑
α

aαxα, aα ∈ k

with

I aα the coefficient of the monomial xα.

I If aα 6= 0, then we call aαxα a term of f .
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Notations: k[x1, . . . ,xn]

Notation. The set of all polynomials in x1, . . . ,xn with coefficients
in k is denoted k[x1, . . . ,xn ].

k[x] is the set of polynomials in one variable: x2−x ∈ k[x],
x3 +4x ∈ k[x].

k[x,y] is the set of polynomials in two variables: x2−y ∈ k[x,y],
x3 +2xy +y2 ∈ k[x,y].
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Ideals
Definition. A subset I ∈ k[x1, . . . ,xn ] is an ideal if

I ∀ f ∈ I , g ∈ I f + g ∈ I ;
I ∀ f ∈ I , p ∈ k[x1, . . . ,xn ], p× f ∈ I .
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Notations: 〈f1, . . . , fs〉
Definition. Let f1, . . . , fs ∈ k[x1, . . . ,xn ]. 〈f1, . . . , fs〉 denotes the set:

〈f1, . . . , fs〉= {p1.f1 + . . .+ps.fs : pi ∈ k[x1, . . . ,xn ] for i = 1, . . . ,s} .

It is easy to show that 〈f1, . . . , fs〉 is an ideal.
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Ideal - example

For example, let consider the ideal I =
〈
x−y2,xy

〉
.

I Is x2−xy2 ∈ I ?

Yes, because x2−xy2 = x.(x−y2)+0.xy.
I Is x2 ∈ I ? Yes, because x2 = x.(x−y2)+y.xy.
I Is y ∈ I ? No, there is no p1,p2 ∈ k[x1, . . . ,xn ] such that

y = p1.(x−y2)+p2.xy.
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Motivation for the Notion of Ideal
If (a1, . . . ,an) ∈ kn is such that

∀1≤ i ≤ s fi(a1, . . . ,an) = 0 ,

then
∀p ∈ 〈f1, . . . , fs〉 p(a1, . . . ,an) = 0 .

In other words, the ideal generated by a polynomial system is made
of all the polynomials that can be added to the system without
changing the solutions.
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Definition - Leading Term LT(f )

Definition. Given a nonzero polynomial f ∈ k[x], let

f = a0xm +a1xm−1 + . . .+am ,

where ai ∈ k and a0 6= 0.

a0xm is called the leading term of f .

We will write LT(f ) = a0xm .



Definition - Leading Term LT(f )

Definition. Given a nonzero polynomial f ∈ k[x], let

f = a0xm +a1xm−1 + . . .+am ,

where ai ∈ k and a0 6= 0.

a0xm is called the leading term of f .

We will write LT(f ) = a0xm .



Dividing Multivariate Polynomials?

Is there a division for polynomials in several variables?

The answer is yes, but we need to decide which term of a
polynomial is the leading term.

For example, what is the leading term of x2 +xy +y2?
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Monomial Order

A monomial order is any relation on the set of monomials xα in
k[x1, . . . ,xn ] satisfying:

1. > is a total (linear) ordering relation:
there is only one possible to order in increasing order under >
a set of monomials;

2. > is compatible with multiplication:
if xα > xβ and xγ is any monomial, then
xαxγ = xα+γ > xβxγ = xβ+γ ;

3. > is a well-ordering:
every nonempty set of monomials has a smallest element
under >.
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Monomial Order on k[x ]

The only monomial order on k[x] is the degree order, given by:

. . . > xn+1 > xn > .. . > x2 > x > 1.
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Monomial Orders on k[x1, . . . ,xn] - the Lexicographic
Order >lex

Definition. The lexicographic order: analogous to the ordering of
words in a dictionary.

For example, under this order >lex :

x2>lex xy2>lex xy>lex x>lex y

Formal definition: xα>lex xβ if in the difference α−β (which
belongs to Zn), the leftmost nonzero entry is positive.

x2yz3>lex x2z4 or x2z4>lex x2yz3 ?

→ x2yz3>lex x2z4 because (2,1,3)− (2,0,4) = (0,1,−1)
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Lexicographic Order >grevlex
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I
∑n

i αi >
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i βi , or if
I
∑n
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∑n

i βi and in the difference α−β, the rightmost
nonzero entry is negative.

Under this order >grevlex :
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x2y2z2>grevlex xy4z or xy4z>grevlex x2y2z2 ?
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(1,4,1)− (2,2,2) = (−1,2,−1)
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Monomial Orders

x3y2z>lex x2y6y8

x2y6y8>grevlex x3y2z

x2y2z2>lex xy4z

xy4z>grevlex x2y2z2



Why Several Orders?

Computing Gröbner bases with >grevlex is usually more efficient.

Computing Gröbner bases with >lex yields a polynomial system
that can be easily solved.



Why Several Orders?

Computing Gröbner bases with >grevlex is usually more efficient.

Computing Gröbner bases with >lex yields a polynomial system
that can be easily solved.



Using the Monomial Orders

to decide which term of a polynomial is the leading term:

LT>(f ) denotes the leading term of f according to order > (or
simply LT (f ) when there is no ambiguity).

For example, consider f = 3x3y2 +x2yz3.

LT>lex (f ) = 3x3y2

LT>grevlex (f ) = x2yz3
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Division in k[x1, . . . ,xn]
Let F = (f1, . . . , fs) be an ordered s-tuple of polynomials in
k[x1, . . . ,xn ].

Then every f ∈ k[x1, . . . ,xn ] can be written as

f = a1f1 + . . .+asfs + r ,

where

I ai ,r ∈ k[x1, . . . ,xn ];
I ∀ i ai fi = 0 or LT>(f )≥ LT(ai fi);
I either r = 0, or r is a linear combination of monomials, none

of which is divisible by any of LT>(f1), . . . ,LT(fs).

r is called a remainder of f on division by F .

I Notation: r = f F ;
I there exists an algorithm to compute the ai ’s and r.
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Division in k[x1, . . . ,xn]

Let F = (f1, . . . , fs) be an ordered s-tuple of polynomials in
k[x1, . . . ,xn ].

f = a1f1 + . . .+asfs + r ,

Reordering F or changing the monomial order can produce
different ai and a different remainder r!



Division in k[x1, . . . ,xn]: Example

Let f = xy2 +x2y +y2 +x.

Let F = (x2,y).

Using >lex :
f = y.x2 +(y +xy).y +x .

Let now F = (y,x2).

f = (x2 +y +xy).y +0.x2 +x

(see normalf command in Maple or PolynomialReduce in
Mathematica)
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Using the Polynomial Division

Can we use the division to decide whether a given polynomial
f ∈ k[x1, . . . ,xn ] is a member of a given ideal I = 〈f1, . . . , fs〉, by
computing the remainder on division?

I One direction is easy:

If r = f F = 0, then f = a1f1 + . . .+anfn . By definition,
f ∈ 〈f1, . . . , fn〉.

I On the other hand:
there is no guarantee to find f F = 0 for every f in
I = 〈f1, . . . , fs〉, with F = (f1, . . . , fs).
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I = 〈f1, . . . , fs〉, with F = (f1, . . . , fs).



Using the Polynomial Division

Can we use the division to decide whether a given polynomial
f ∈ k[x1, . . . ,xn ] is a member of a given ideal I = 〈f1, . . . , fs〉, by
computing the remainder on division?

I One direction is easy:
If r = f F = 0, then f = a1f1 + . . .+anfn . By definition,
f ∈ 〈f1, . . . , fn〉.

I On the other hand:
there is no guarantee to find f F = 0 for every f in
I = 〈f1, . . . , fs〉, with F = (f1, . . . , fs).



Counter-example

there is no guarantee to find f F = 0 for every f in I = 〈f1, . . . , fs〉.

Example:

p = y is in I =
〈
x2 +1,xy

〉
because

p = y(x2 +1)+(−x)(xy) .

This is not a valid division because

LT>lex

(
y(x2 +1)

)
= x2y

〉
lex
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p = 0.(x2 +1)+0.(xy)+y .
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Gröbner Basis: Definition

Definition. Let I ⊂ k[x1, . . . ,xn ] be an ideal.

A Gröbner basis for I
is a set of polynomials G = {g1, . . . ,gt} ⊂ I such that

∀ f ∈ I\{0} ∃ g ∈G such that LT(f ) is divisible by LT(g) .

It can be shown that a Gröbner basis always exists for any ideal I
and it is indeed a basis for I i.e. I = 〈g1, . . . ,gt〉.
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Link with the Division in k[x1, . . . ,xn]

If F is a Gröbner basis for I , then for any g ∈ I , and for any
ordering of F , the remainder of the division of g by F is null.



Example

Let
I =

〈
x2−y2 +1, xy−1

〉
.

{x2−y2 +1, xy−1} is not a Gröbner basis for I under >lex .

For example,

f = y(x2−y2 +1)−x(xy−1) = x +y−y3

is in I . However LT(f ) = x is not divisible neither by
LT(x2−y2 +1) = x2 nor by LT(xy−1) = xy.

A Gröbner basis for I under the >lex order is:〈
y4−y2−1, x−y3 +y

〉
.

We can check that LT(f ) = x is divisible by LT(x−y3 +y) = x.
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Remark
For arbitrary bases, combinations of basis elements may have a
leading term that is not a multiple of any of the leading terms in
the basis.

This is because multiples of leading terms may cancel.

That is what happened in the previous example
I =

〈
x2−y2 +1, xy−1

〉
. We have:

LT(x2−y2 +1) = x2

LT(xy−1) = xy

but if we multiply x2−y2 +1 by y and xy−1 by −x and sum the
results, these leading terms disappear.

The resulting polynomial f = x +y−y3 is in I and its leading term
x is not divisible neither by LT(x2−y2 +1) = x2 nor by
LT(xy−1) = xy.
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Remark (2)

Let’s try the same operation on the Gröbner basis〈
y4−y2−1, x +y−y3〉:

x(y4−y2−1)+y2(x−y3 +y)
= −xy2 +xy4−x +xy2 +y3−y4

= −x +xy4 +y3−y4

the leading term is xy4, which is divisible by LT(x−y3 +y) = x.
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Cool
If

I we use the monomial order >lex to compute a Gröbner basis
and

I the solution set is finite,

then a univariate polynomial (in the last variable) is in the basis.

For example, the Gröbner basis for
〈
x2−y2 +1, xy−1

〉
is〈

y4−y2−1, x−y3 +y
〉
.

The system {
x2−y2 +1 = 0

xy−1 = 0

has the same solutions as the system:{
y4−y2 +−1 = 0

x−y3 +y = 0

but the latter is much simpler to solve.
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A More Ugly Example

A Gröbner basis for 
x2−2xz +5 = 0
xy2 +yz +1 = 0
3y2−8xz = 0

under >lex is

{−81+4320z−86400z2 +766272z3−2513488z4−295680z5−
242496z6 +61440z8,−2472389942760+1450790919y+
98722479369600z−1312504296363936z2 +5756399991700688z3+
711670127441280z4 +549519027506496z5−10326680985600z6−
139421921341440z7,6503592729600+1450790919x−
257416379643438z +3400639490020320z2−14857079919551480z3

−1835782187164800z4−1418473727285760z5 +26347944960000z6

+359882180198400z7}
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Algorithms to Compute a Gröbner basis

First algorithm to compute a Gröbner basis: the Buchberger
algorithm.

More recent algorithms are more efficient (F4 and F5 algorithms
by Faugère).

In [?]:

1. Start with d← 1;
2. Multiply each equation of the current system by every possible

monomial of degree d;
3. Simplify the system with Gauss-Jordan elimination;
4. If not a Gröbner basis, set d← d +1, and iterate from 1.



Computation Steps for [?]



Damnit

Unfortunately, computation of Gröbner bases under the
lexicographic ordering (>lex ) is often intractable for real problems.

Using the graded reverse lexicographical ordering (>grevlex ) usually
yields more tractable computations.

Unfortunately, the resulting polynomial system is not necessarily
easy to solve.

Fortunately, other properties of Gröbner bases can be used to find
the solutions.



>lex versus >grevlex : Example

Computing a Gröbner basis for

d2
1 +Ad1d2 +d2

2 −F2 = 0
d2

1 +Bd1d3 +d2
3 −F2 = 0

d2
2 +Cd2d3 +d2

3 −G2 = 0
d2

2 +Dd2d4 +d2
4 −F2 = 0

d2
3 +Ed3d4 +d2

4 −F2 = 0

under >grevlex : less than a second (but 130 polynomials in a 96Kb
text file).

under >lex : more than a week



Rings and Ideals

A ring is a set with addition and multiplication operations.

For example,

Z, k[x1, . . . ,xn ] are rings.

Let consider an ideal I in a ring R.

We can define an equivalence relation (denoted ∼) between
elements of R:

a ∼ b iff a− b ∈ I .

For every element a ∈ R, we can define an equivalence class, or
coset as:

[a] = {b ∈ R |a ∼ b} .

We have
a ∼ b ⇔ [a] = [b] ⇔ a− b ∈ I
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Rings and Ideals: Example
Z is a ring.

nZ, the set of multiples of n is an ideal in Z

(stable under
addition and multiplication by any z ∈Z).

With n = 7:
0∼ 7∼ 14∼ 21∼ ...

[0] = [7] = [14] = {0, 7, 14, ...}

1∼ 8∼ 15∼ 22∼ ...

[1] = [8] = [15] = {1, 8, 15, ...}

etc.

The remainder of z divided by 7 is a standard representative of its
class [z].

[z] = [remainder(z/7)] .
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Quotient Ring

If we define addition and multiplication between equivalence
classes:

[a]+ [b] = [a + b] and

[a]× [b] = [a× b] ,

the set of equivalence classes is a ring.

It is called a Quotient ring, and is denoted R/I .

Example:

Z/7Z = {[0], [1], [2], .., [6]}
= {[remainder(z/7)] | z ∈Z}
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Quotient Ring k[x1, . . . ,xn]/I
k[x1, . . . ,xn ] is a ring. If I is an ideal in k[x1, . . . ,xn ], k[x1, . . . ,xn ]/I
is a quotient ring.

By definition:

[f ] = [g] ⇔ f ∼ g ⇔ f − g ∈ I .

If G = (g1, . . . ,gt) is a Gröbner basis, and f ∈ k[x1, . . . ,xn ]:

[f ] = [f G ]

with f G the remainder of the division of f by G. (because
f = h1.g1 + . . .+ht .gt + f G ⇒ f − f G ∈ I ⇒ [f ] = [f G ] )
and

k[x1, . . . ,xn ]/I =
{[

f G] ∣∣∣∣ f ∈ k[x1, . . . ,xn ]
}
.
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Finiteness Theorem

Theorem. Let’s consider

I an ideal I in C[x1, . . . ,xn ], and
I the corresponding quotient ring A = C[x1, . . . ,xn ]/I

dim(A) is finite ⇔ V(I ) is finite (i.e. the number of solutions is
finite)

Counter-example: I =< x >∈ C[x,y], and
A = C[x,y]/I =

{
[1], [x], [y], [y2], [

∑
α aαyα]

}
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Action Matrix

Let’s consider

I an ideal I in C[x1, . . . ,xn ],

I the corresponding quotient ring A = C[x1, . . . ,xn ]/I ,
I a polynomial f ∈ C[x1, . . . ,xn ],
I the function mf defined as:

mf : A→A
mf (g) = [f ][g] = [f .g]

Then mf is linear: [f ][ag1 +g2] = [f ]([ag1]+ [g2]) = a[f ][g1]+ [f ][g2]

If the number of solutions is finite, dim(A) is finite, and mf can be
written as a matrix Mf , which is called an action matrix.
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wow

Theorem. For λ ∈ C, the two statements are equivalent:

I λ is an eigenvalue of the action matrix Mf ;
I ∃ (a1, . . . ,an) ∈V(I ) such that f (a1, . . . ,an) = λ.

If we take f = xi , then f (a1, . . . ,an) = ai .

In other words, the eigenvalues of Mxi are the possible values for
xi !
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Computing the Action Matrix

We need to identify a basis for the set of remainders.

The monomials in the basis of the set of remainders are the
monomials that are not multiples of the leading terms of the
polynomials in the Gröbner basis.



Computing the Action Matrix (continued)
The monomials in the basis B of the set of remainders are the
monomials that are not multiples of the leading terms of the
polynomials in the Gröbner basis.

Example: The Gröbner basis G under >grevlex for
x2−2xz +5 = 0
xy2 +yz +1 = 0
3y2−8xz = 0

is { 3y2−8xz, x2−2xz +5,
160z3−160xz +415yz +12x−30y−224z +15,
240yz2−9xy +1600xz +18yz +120z2−120x +240z,
16xz2 +3yz−40z +3, 40xyz−3xy +6yz +40z2 }

with leading terms {y2, x2, z3, yz2, xz2, xyz}.

The monomials in B are the monomials that are not divisible by
the leading terms: 1, x, y, z, xy, xz, yz, z2
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Computing the Action Matrix Mx

The basis B is
{
[1], [x], [y], [z], [xy], [xz], [yz], [z2]

}

The coefficients of Mx are the coordinates of these cosets after
multiplication by [x]:

x.1G = xG = x

x.xG = x2G = −5+2xz
x.yG = xyG = xy
x.zG = xzG = xz

x.(xy)G = x2yG =−5y + 3
20xy− 2

10yz−2z2

etc.

(I used the Mathematica PolynomialReduce function to compute
these remainders)
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Computing the Action Matrix Mx (continued)

[x.1] = [x]
[x.x] =−5[1]+2[xz]
[x.y] = [xy]
[x.z] = [xz]
[x.(xy)] =−5[y]+ 3

20 [xy]− 2
10 [yz]−2[z2]

etc.



Computing the Action Matrix Mx (continued)

[x.1] = [x]
[x.x] =−5[1]+2[xz]
[x.y] = [xy]
[x.z] = [xz]
[x.(xy)] =−5[y]+ 3

20 [xy]− 2
10 [yz]−2[z2]

etc.
and:

Mx =

1 x y z xy xz yz z2



0 −5 0 0 0 1
1 0 0 0 0 x
0 0 0 0 −5 y
0 0 0 0 0 : : : z
0 0 1 0 3

20 : : : xy
0 2 0 1 0 xz
0 0 0 0 − 2

10 yz
0 0 0 0 −2 z2



Computing the Action Matrix Mx (continued)
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etc.
and:
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Computing the Possible Values for x

Mx =



0 −5 0 0 0 −3
8 0 − 3

16
1 0 0 0 0 0 0 0
0 0 0 0 −5 0 0 0
0 0 0 0 0 0 0 5

2
0 0 1 0 3

20 0 3
40 0

0 2 0 1 0 0 0 0
0 0 0 0 − 2

10 −3
8 − 3

20 − 3
16

0 0 0 0 −2 0 −1 0



The real eigenvalues for Mx are −1.10137.. and 0.9660.., which
are the possible values for x.
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Computing the Complete Solution

The real eigenvalues for Mx are −1.10137.. and 0.9660.., which
are the possible values for x.

We still have to find the corresponding values for y and z.

Possible strategies:

1. do the same with My and Mz , and check for every possible
combination (x, ,y, z) if it is a valid solution.

2. for each possible value for x, plug it in the system and solve
the resulting system (which is now only in y and z).

The first option is more stable numerically.
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Possible strategies:
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In Practice [Kukelova08]

The offline computations are done in Z/pZ with p a large prime
number. It speeds up the computations, and avoids numerical
instability (can easily determine when a coefficient becomes null).

See Automatic solver software on
http://cmp.felk.cvut.cz/minimal/



Further Reading and References I

M. Byröd, K. Josephson, and K. Åström.
Fast and Stable Polynomial Equation Solving and its
Application to Computer Vision.
2009.
D.A. Cox, J.B. Little, and D. O’Shea.
Using Algebraic Geometry.
Springer, 2005.

D.A. Cox, J.B. Little, and D. O’Shea.
Ideals, Varieties, and Algorithms.
Springer, 2007.

Z. Kukelova, M. Bujnak, and T. Pajdla.
Automatic Generator of Minimal Problem Solvers.
In European Conference on Computer Vision, 2008.



Further Reading and References II
Z. Kukelova, M. Bujnak, and T. Pajdla.
Polynomial Eigenvalue Solutions to Minimal Problems in
Computer Vision.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2012.

H. Li and R. Hartley.
Five-Point Motion Estimation Made Easy.
In International Conference on Pattern Recognition, 2006.

D. Nister.
An Efficient Solution to the Five-Point Relative Pose Problem.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2004.

H. Stewénius, F. Schaffalitzky, and D. Nistér.
How Hard Is Three-View Triangulation Really?
In International Conference on Computer Vision, 2005.


