Mathematical Principles in Visual Computing: Sylvester Resultant
Prof. Friedrich Fraundorfer SS2024

Slides by Vincent Lepetit

April 23, 2024

Sylvester Matrix and Sylvester Resultant

Let's consider two polynomials of a single unknown x :

$$
\begin{aligned}
& f(x)=a_{m} x^{m}+a_{m-1} x^{m-1}+\ldots+a_{1} x+a_{0} \\
& g(x)=b_{n} x^{n}+b_{n-1} x^{n-1}+\ldots+b_{1} x+b_{0}
\end{aligned}
$$

Sylvester matrix of f and g :

$$
\operatorname{Syl}(f, g)=\left[\begin{array}{ccccccc}
a_{m} & & \ldots & & a_{0} & & \\
& \ddots & & & & \ddots & \\
& & a_{m} & & \ldots & & \\
b_{n} & & \ldots & b_{0} & & & \\
& \ddots & & & \ddots & & \\
& & \ddots & & & & \ddots
\end{array}\right]\{n \text { rows }
$$

f and g have a common root if and only if $\operatorname{det}(\operatorname{Syl}(f, g))=0$. $\operatorname{det}(\operatorname{Syl}(f, g))$ is called the Sylvester Resultant of f and g.

Using the Sylvester Resultant

to solve a polynomial system of two equations and TWO unknowns:

$$
\begin{aligned}
& p_{1}(x, y)=6 x^{2}+3 x y-x y^{2}+y+1 \\
& p_{2}(x, y)=x^{2} y+5 x+4 y-1
\end{aligned} \quad\left\{\begin{array}{l}
p_{1}(x, y)=0 \\
p_{2}(x, y)=0
\end{array}\right.
$$

Let's consider y as a constant, and write these two polynomials as polynomials in x :

$$
\begin{aligned}
p_{1, y}(x) & =6 x^{2}+\left(3 y-y^{2}\right) x+(y+1) \\
p_{2, y}(x) & =y x^{2}+5 x+(4 y-1) \\
\operatorname{Syl}\left(p_{1, y}, p_{2, y}\right) & =\left[\begin{array}{cccc}
6 & \left(3 y-y^{2}\right) & (y+1) & 0 \\
0 & 6 & \left(3 y-y^{2}\right) & (y+1) \\
y & 5 & (4 y-1) & 0 \\
0 & y & 5 & (4 y-1)
\end{array}\right]
\end{aligned}
$$

Using the Sylvester Resultant

$$
\begin{aligned}
& p_{1}(x, y)=6 x^{2}+3 x y-x y^{2}+y+1 \\
& p_{2}(x, y)=x^{2} y+5 x+4 y-1
\end{aligned} \quad\left\{\begin{array}{l}
p_{1}(x, y)=0 \\
p_{2}(x, y)=0
\end{array} ~ \begin{array}{l}
p_{1, y}(x)=6 x^{2}+\left(3 y-y^{2}\right) x-x y^{2}+(y+1) \\
p_{2, y}(x)=y x^{2}+5 x+(4 y-1)
\end{array}\right.
$$

$p_{1, y}$ and $p_{2, y}$ should have roots in common, and $\operatorname{det}\left(\operatorname{Syl}\left(p_{1, y}, p_{2, y}\right)\right)=0$:

$$
\operatorname{det}\left(\operatorname{Syl}\left(p_{1, y}, p_{2, y}\right)\right)=\left|\begin{array}{cccc}
6 & \left(3 y-y^{2}\right) & (y+1) & 0 \\
0 & 6 & \left(3 y-y^{2}\right) & (y+1) \\
y & 5 & (4 y-1) & 0 \\
0 & y & 5 & (4 y-1)
\end{array}\right|=0
$$

$\operatorname{det}\left(\operatorname{Syl}\left(p_{1, y}, p_{2, y}\right)\right)$ is a polynomial in y (only)!
$\operatorname{det}\left(\operatorname{Syl}\left(p_{1, y}, p_{2, y}\right)\right)=4 y^{6}-20 y^{5}+153 y^{4}-310 y^{3}+781 y^{2}-276 y+36$
\rightarrow First solve for y (we will see later how it can be done).

