Mathematical Principles in Visual Computing: Root finding

Prof. Friedrich Fraundorfer

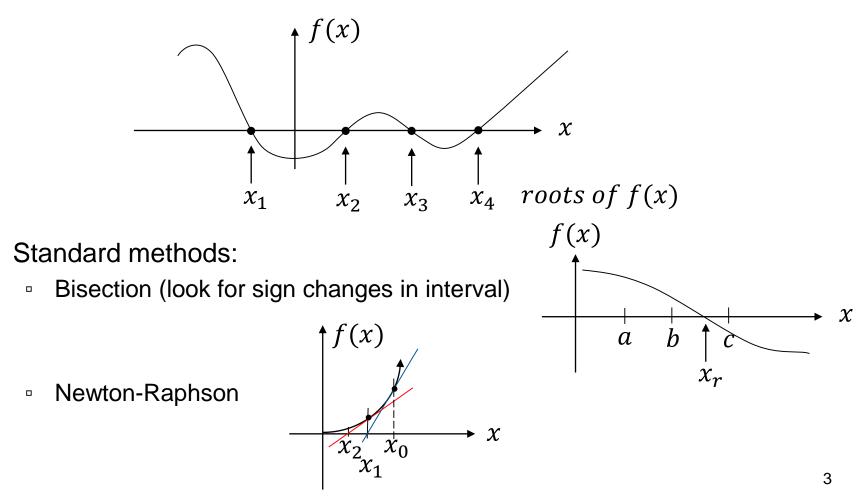
SS 2024

Outline

- Root finding
 - Companion Matrix
 - Sturm sequences

Root finding

- Consider the equation f(x) = 0
- Roots of equation f(x) are the values of x which satisfy the above expression. Also referred to as the zeros of an equation



Companion matrix

- Simple method, construct matrix of which the eigenvalues are the roots of the polynomial
- Eigenvalues of a matrix are the roots of the characteristic polynomial -> form a matrix for which the characteristic polynomial is the one to solve for.

$$p(z) = \det(zI - A)$$

$$C = \begin{bmatrix} 0 & 0 & & 0 & -c_0 \\ 1 & 0 & \cdots & 0 & -c_1 \\ 0 & 1 & & 0 & -c_2 \\ \vdots & \ddots & & \vdots \\ 0 & 0 & \cdots & 1 & -c_{n-1} \end{bmatrix}$$

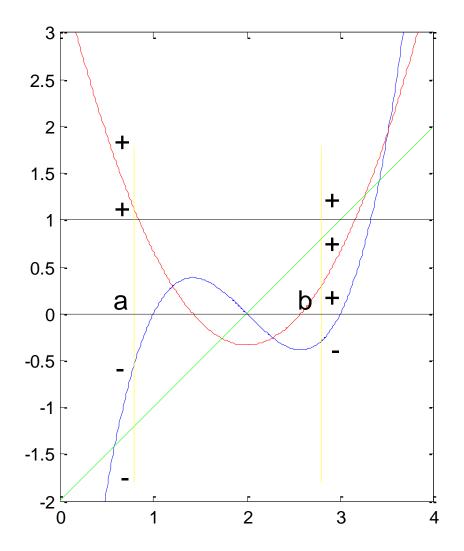
$$p(z) = c_0 + c_1 z + \dots + c_{n-1} z^{n-1} + z^n$$

- C ... nxn matrix where n is the degree of the polynomial
- Matlab: e = eig(C) ... are the roots
- Finds complex roots, can be slow

- Sturm's sequence of a univariate polynomial p is a sequence of polynomials associated with p and its derivative
- Sturm's theorem counts the number of distinct real roots and locates them in intervals.
- By subdividing the intervals containing some roots, it can isolate the roots into arbitrary small intervals, each containing exactly one root. This yields an arbitrary-precision numeric root finding algorithm for univariate polynomials.
- Advantages:
 - Typically faster than companion matrix
 - Finds only real roots (-> again faster)

- A Sturm chain or Sturm sequence is a finite sequence of polynomials p₀,p₁,...,p_m of decreasing degree
- Sturm sequence construction:
 - $p_0(z)=p(z)$... original
 - $p_1(z) = p'(z) \dots$ derivative
 - $p_2(z) = -remainder(p_0(z), p_1(z)) \dots$ remainder of polynomial division
 - $p_3(z) = -remainder((p_1(z), p_2(z)))$
 - ·
 - $p_n(z) = constant$

- σ(z) denotes the number of sign changes (ignoring zeroes) in the sequence
- Sturm's theorem then states that for two real numbers a < b (bracket, interval), the number of distinct roots of p in the half-open interval (a, b] is σ(a) σ(b).
- To find the number of roots between a and b, first evaluate p_0 , p_1 , p_2 ,.., p_n , at a and note the sequence of signs of the results, e g. + + + -. The same procedure for b gives another sign sequence, e.g. + + + - -., which contains just one sign change. Hence the number of roots of the original polynomial between a and b in the above example is 3 - 1 = 2.
- Algorithm:
 - Test intervals
 - If roots are in interval split it and test again
 - Repeat until interval is small enough



 $g_0(z) = f(z) = (z - 1)(z - 2)(z - 3)$ $g_1(z) = f'(z) = z^2 - 4z + \frac{11}{3}$ $g_2(z) = -rem(g_0(z), g_1(z)) = z - 2$ $g_3(z) = -rem(g_1(z), g_2(z)) = 1$

	g0(z)	g1(z)	g2(z)	g3(z)	s(z)
a=0.8	-	+	-	+	3
b=2.8	-	+	+	+	1

s(0.8) - s(2.8) = 3 - 1 = 2