Mathematical Principles in Visual Computing:
Rigid Transformations

Prof. Friedrich Fraundorfer

SS 2024
Learning goals

- Understand the problems of dealing with rotations
- Understand how to represent rotations
- Understand the terms SO(3) etc.
- Understand the use of the tangent space
- Understand Euler angles, Axis-Angle, and quaternions
- Understand how to interpolate, filter and optimize rotations
Outline

- Rigid transformations
- Problems with rotation matrices
- Properties of rotation matrices
- Matrix groups $\text{SO}(3)$, $\text{SE}(3)$
- Manifolds
- Tangent space
- Skew-symmetric matrices
- Exponential map
- Euler angles, angle-axis, quaternions
- Interpolation
- Filtering
- Optimization
Motivation: 3D Viewer
Rigid transformations

- Coordinates are related by:
 \[
 [X_c] = [R \ T] [X_w] = [0 \ 1] [X_w]
 \]

- Rigid transformation belong to the matrix group SE(3)
- What does this mean?
Properties of rotation matrices

Rotation matrix:

\[R = [r_1, r_2, r_3] \in \mathbb{R}^{3 \times 3} \]

\[R^T R = I, \det(R) = +1 \]

Coordinates are related by: \[X_c = RX_w \]

- Rotation matrices belong to the matrix group \(\text{SO}(3) \)
- What does this mean?
Problems with rotation matrices

- Optimization of rotations (bundle adjustment)
 - Newton’s method $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

- Linear interpolation

- Filtering and averaging
 - E.g. averaging rotation from IMU or camera pose tracker for AR/VR glasses
Matrix groups

- The set of all the nxn invertible matrices is a group w.r.t. the matrix multiplication:

\[GL(n) = (\{ M \in \mathbb{R}^{n \times n} | \det(M) \neq 0 \}, \times) \]

General linear group

- Reminder: A group is an algebraic structure consisting of a set of elements equipped with an operation that combines any two elements to form a third element.
- The operation satisfies four conditions called the group axioms, namely closure, associativity, identity and invertibility.
- Closure means for all \(a, b \) in \(G \), the result of the operation, \(a \cdot b \), is also in \(G \).
Matrix groups

- The set of all the nxn orthogonal matrices is a group w.r.t. the matrix multiplication:

\[O(n) = \{ A \in GL(n) | A^{-1} = A^T \}, \times \]

Orthogonal group

\[A \in O(n) \Rightarrow \det(A) = \pm 1 \]
Matrix groups

- The set of all the nxn orthogonal matrices with determinant equal to +1 is a group w.r.t. the matrix multiplication:

\[SO(n) = (\{A \in O(n) | \det(A) = +1 \}, \times) \]

Special orthogonal group

- SO(3) … group of orthogonal 3x3 matrices with det=+1 …. “rotation matrices”

- \(R_3 = R_1 \times R_2 \) … R3 is still an SO(3) element
- \(R_3 = R_1 + R_2 \) … R3 is NOT an SO(3) element. Not a rotation matrix anymore.
Matrix groups

- The set of all the rigid transformations in \mathbb{R}^n is a group (not commutative) with the composition operation

$$\left(\left\{ F: \mathbb{R}^n \to \mathbb{R}^n \mid F \text{ rigid} \right\}, \circ \right)$$

- The set is isomorphic to the special Euclidean group $\text{SE}(n)$

- The mathematical properties of a “rigid transformation” are specified by the special Euclidean group $\text{SE}(n)$

$$RT = \begin{bmatrix} R & T \\ 0 & 1 \end{bmatrix}$$
Special Euclidean group

- The special Euclidean group is constructed by the Cartesian product (a composition operation) from \(SO(n) \times \mathbb{R}^n \).

\[
SE(n) = (SO(n) \times \mathbb{R}^n, \times)
\]

\[(M, t) \times (S, q) = (MS, Mq + t)\]

- The Cartesian product defines where the values of \(SO(n) \) and \(\mathbb{R}^n \) (rotation and translation) go to form the transformation matrix

\[
RT = \begin{bmatrix} R & T \\ 0 & 1 \end{bmatrix}
\]

\[
SE(3) = \begin{bmatrix} SO(3) & \mathbb{R}^3 \\ 0 & 1 \end{bmatrix}
\]
Matrix groups: Summary

Vector space of all the nxn matrices

\[\mathbb{R}^{n \times n} \]

\[GL(n) = (\{ M \in \mathbb{R}^{n \times n} | \det(M) \neq 0 \}, \times) \]

General linear group

\[O(n) = (\{ A \in GL(n) | A^{-1} = A^T \}, \times) \]

Orthogonal group

\[SO(n) = (\{ A \in O(n) | \det(A) = +1 \}, \times) \]

Special orthogonal group

\[O(n)/SO(n) = (\{ A \in O(n) | \det(A) = -1 \}) \]

Set of orthogonal matrices which do not preserve orientation (not a group)

GL(n), O(n), SO(n) and SE(n) are all smooth manifolds (e.g. surfaces, curves, solids immersed in some big vector space)
Manifolds

- Non-mathematical definition: Manifolds are shapes like curves, surfaces, and volumes in Euclidean space (i.e. a vector space)
- A sphere is an example of a manifold of dimension 2.
- The matrix groups SO(3), SE(3) are manifolds.
Shapes of SO(2) and SO(3)

SO(2) … 1-manifold

SO(3) … 3-manifold (3-sphere)
A solid ball in \mathbb{R}^3
The tangent space of the manifold M in p (every point p on the manifold has a different tangent space) is isomorphic to a subspace of V.
Tangent space of a manifold

- TM(p) is a vector space (subspace of V) and has dimension k.
- 1-manifold (curves) -> 1 dim TM (lines)
- 2-manifold (surface) -> 2 dim TM (planes)
- 3-manifold (volumes, e.g. 3-sphere) -> 3 dim TM (full volumes)
Tangent space of $\text{SO}(2)$ and $\text{SO}(3)$

$\text{SO}(2)$ is a vector space with dimension 1
subspace of $\mathbb{R}^{2\times2}$

subspaces are defined by matrices

$\text{SO}(3)$ is a vector space with dimension 3
subspace of $\mathbb{R}^{3\times3}$
Skew-symmetric matrices

- M is skew-symmetric iff $M^T = -M$

$$M^T = -M$$

$$\begin{bmatrix}
0 & 3 & 6 \\
-3 & 0 & -1 \\
-6 & 1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 4 \\
-4 & 0
\end{bmatrix}$$

$$\text{so}(n) = (\{M \in \mathbb{R}^{n \times n} | M^T = -M\}, +, [])$$

Special orthogonal Lie algebra

- The term “algebra” means that so(n) is a vector space (more specific than group)
- We have addition in the vector space now (in SO(n) it was only multiplication)
Skew-symmetric matrices

- The special orthogonal Lie algebra is the tangent space of SO(n) at identity.
- The tangent space of SO(n) in any other point R is a rotated version of so(n)
- \(T_{SO(n)}(R) = R \times so(n) \)
- \(T_{SO(n)}(I) = so(n) \)

- The special orthogonal Lie algebra is the tangent space of SO(n) at identity.
- The tangent space of SO(n) in any other point R is a rotated version of so(n)
- \(T_{SO(n)}(R) = R \times so(n) \)
so(2) and so(3)

- so(3) is a vector space of dimension 3
- so(2) is a vector space of dimension 1

\[
\begin{bmatrix}
0 & 3 & 6 \\
-3 & 0 & -1 \\
-6 & 1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
0 & 4 \\
-4 & 0 \\
\end{bmatrix}
\]
The hat operator

- The hat operator is used to form skew-symmetric matrices
- for so(3):
 \[\hat{\mathbf{A}} : \mathbb{R}^3 \rightarrow \mathfrak{so}(3) \]
 \[(x, y, z) \rightarrow \begin{bmatrix}
 0 & -z & y \\
 z & 0 & -x \\
 -y & x & 0
\end{bmatrix} \]
- for so(2):
 \[\hat{x} : \mathbb{R} \rightarrow \mathfrak{so}(2) \]
 \[\hat{x} \rightarrow \begin{bmatrix}
 0 & -x \\
 x & 0
\end{bmatrix} \]

- Different notation

- \([t]_x = \begin{bmatrix}
 0 & -t_z & t_y \\
 t_z & 0 & -t_x \\
 -t_y & t_x & 0
\end{bmatrix} \]
The hat operator

- The hat operator is used to define the cross-product in matrix form

\[a \times b = \hat{a}b \quad \forall a, b \in \mathbb{R}^3 \]
Lie groups

- GL(n), O(n), SO(n) and SE(n) are all Lie groups (groups which are a smooth manifold where the operation is a differentiable function between manifolds)
- Also we have seen that the group of skew-symmetric matrices is called Lie algebra so(n) and is the tangent space of the special orthonormal group SO(n)
- But how to compute an element of the tangent space so(n) from SO(n) or vice versa?
- The exponential map!
Exponential map

- Given a Lie group G, with its related Lie algebra $g=TG(I)$, there always exists a smooth map from Lie algebra g to the Lie group G called exponential map

$$\exp: g \rightarrow G$$
Exponential map

\[\exp(\omega) \in \mathbb{R}^3 \]
\[\exp(\hat{\omega}) \in \text{SO}(n) \]

\[\omega \in \mathbb{R}^k \rightarrow \exp(\hat{\omega}) \]

- Angle-axis representation for rotations:
 - \(\omega \ldots \) is the angle-axis representation (\(\mathbb{R}^3 \))
 - \(\exp(\omega) \) is the 3x3 rotation matrix (element of SO(3))

\[\exp(\hat{\omega}) = \sum_{k=0}^{\infty} \frac{1}{k!} \hat{\omega}^k \in \text{SO}(n) \]
Euler angles

- Euler’s Theorem for rotations: Any element in SO(3) can be described as a sequence of three rotations around the canonical axes, where no successive rotations are about the same axis.

\[
R_x(\alpha) = \begin{bmatrix}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha \\
\end{bmatrix}
\]

\[
R_y(\beta) = \begin{bmatrix}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta \\
\end{bmatrix}
\]

\[
R_z(\gamma) = \begin{bmatrix}
\cos \gamma & -\sin \gamma & 0 \\
\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

For any \(R \in SO(3) \) *there* \(\exists \alpha, \beta, \gamma \) *such that* \(R = R_x(\alpha)R_y(\beta)R_z(\gamma) \)

- \(\alpha, \beta, \gamma \) *are called Euler angles* of *R* according to the XYZ representation (3 DOF/parameters)
Euler angles

- Given M (element of $SO(3)$) there are 12 possible ways to represent it:

\[
M \in SO(3) \text{ there } \exists \alpha, \beta, \gamma \mid M = R_x(\alpha)R_y(\beta)R_z(\gamma)
\]

- A common convention is ZYX corresponding to a rotation first around the x-axis (roll), then the y-axis (pitch) and finally around the z-axis (yaw)

[https://en.wikipedia.org/wiki/Aircraft_principal_axes, CC BY-SA 3.0]
Euler angles

- The parameterization has singularities, called gimbal lock.
- A gimbal lock happens when after a rotation around an axis, two axes align, resulting in a loss of one degree of freedom.

![Diagram of Euler angles and gimbal lock](image-url)
Euler’s rotation theorem also states that any rotation can be expressed as a single rotation about some axis.

- The axis can be represented as a three-dimensional unit vector, and the angle by a scalar.
- 3 DOF/parameters
- Angle-axis defines a unique mapping and does not have gimbal lock
Angle-Axis

- The operation to compute the rotation matrix SO(3) from the angle-axis parameters is by using the exponential map!

\[\omega \in \mathbb{R}^k \rightarrow \exp(\hat{\omega}) \]

- The exponential map can be computed in closed form using the Rodrigues formula

\[R = I + (\sin \Theta) K + (1 - \cos \Theta) K^2 \]

\[K = \begin{bmatrix}
0 & -\omega_3 & \omega_2 \\
\omega_3 & 0 & -\omega_1 \\
-\omega_2 & \omega_1 & 0
\end{bmatrix} \]

- There also exists the inverse
Quaternions

- Quaternions are extensions of complex numbers, with 3 imaginary values instead of 1:
 \[a + ib + jc + kd \]

- Like the imaginary component of complex numbers, squaring the components gives:
 \[i^2 = j^2 = k^2 = -1 \]

- One way to express a quaternion is as a pair consisting of the real value and the 3D vector consisting of the imaginary components:
 \[q = (a, w) \text{ with } w = (b, c, d) \]

- It is basically a 4-vector
If $q=a+ib+jc+kd$ is a unit quaternion ($\|q\|=1$), then q corresponds to a rotation:

$$R(q) = \begin{bmatrix} 1 - 2c^2 - 2d^2 & 2bc - 2ad & 2bd + 2ac \\ 2bc + 2ad & 1 - 2b^2 - 2d^2 & 2cd - 2ab \\ 2bd - 2ac & 2cd + 2ab & 1 - 2b^2 - 2c^2 \end{bmatrix}$$

Because q is a unit quaternion, we can write q as:

$$q = \left(\cos \left(\frac{a}{2} \right), \sin \left(\frac{a}{2} \right) w \right), \quad \|w\| = 1$$

It turns out the q corresponds to the rotation whose:
- Axis of rotation is w and
- Angle of the rotation is a
Interpolation in SO(3)

- Given two rotation matrices R_1, R_2 one would like to find a smooth path in $SO(3)$ connecting these two matrices

$$R(\lambda) \in SO(3), \lambda \in [0,1]$$

$R(\lambda)$ smooth

$R(0) = R_1$

$R(1) = R_2$
Interpolation in SO(3)

- Approach 1: Linearily interpolate R_1 and R_2 as matrices (naive approach)

$$R(\lambda) = \pi_{SO(3)}(\lambda R_1 + (1 - \lambda)R_2)$$

Projection onto sphere (not accurate)

$$\pi_{SO(3)}(M) = \arg \min_{R \in SO(3)} \|M - R\|_F^2$$

Not an element of SO(3), not a rotation matrix at all
Interpolation in SO(3)

- Approach 2: Linearily interpolate R_1 and R_2 using Euler angles

- Each axis is interpolated independently
- If R_1 and R_2 are too far apart -> not intuitive motion
Interpolation in SO(3)

- Approach 3: Linearily interpolate R_1 and R_2 using angle-axis

\[\omega(\lambda) = \lambda \omega_1 + (1 - \lambda) \omega_2 \]

- Interpolation happens in tangent space (vector space) and is then projected using the exponential map onto the manifold
Filtering in SO(3)

- Given n different noisy measurements for the rotation of an object

\[R_1, \ldots, R_n \]

- What is the filtered average of it?
Filtering in SO(3)

- Possible approaches:
 - Average the rotation matrices R_i
 \[\frac{1}{n} \sum_{i=1}^{n} R_i \]
 (not rotation)
 - Average the Euler angles of each R_i
 \[\left(\frac{1}{n} \sum_{i=1}^{n} \alpha_i, \frac{1}{n} \sum_{i=1}^{n} \beta_i, \frac{1}{n} \sum_{i=1}^{n} \gamma_i \right) \]
 - Average the angle-axis of each R_i
 \[\frac{1}{n} \sum_{i=1}^{n} \omega_i \]
 - Average the quaternions of each R_i
 \[\frac{1}{n} \sum_{i=1}^{n} q_i \]
 (is rotation)
 - All equally problematic and do not accurately respect the noise model
Optimization in SO(3)

- **Newton-Method**

\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \]

- **Naive approach:**
 - \(X_n \) are elements of rotation matrix. Then the update step (addition) would not result in a rotation matrix.

- **\(X_n \) are Euler angles:**
 - To evaluate \(f(X_n) \) the rotation matrix has to be created from the Euler angles. Could lead to gimbal lock.
 - Derivatives of Euler angle construction has to be computed.

- **\(X_n \) are elements of the tangent space so(3)**
 - Represents angle-axis notation
 - No gimbal lock
 - Minimal representation of 3 parameters
Learning goals - Recap

- Understand the problems of dealing with rotations
- Understand how to represent rotations
- Understand the terms SO(3) etc.
- Understand the use of the tangent space
- Understand Euler angles, Axis-Angle, and quaternions
- Understand how to interpolate, filter and optimize rotations