Mathematical Principles in Visual Computing:
Projective Geometry - Part 2

Prof. Friedrich Fraundorfer
SS 2024

Learning goals

- Understand the concept of vanishing points and vanishing lines
- Understand the calculation of vanishing points
- Understand the relation between vanishing points and camera orientation and calibration

Outline

- Vanishing points and lines
- Applications of vanishing points

Vanishing points

Vanishing points

- Ideal points in the projective 3-space are located at infinity, and have homogeneous coordinates of the form ($x, y, z, 0$).
- These points are also called points at infinity.
- The image of an ideal point under a projective mapping is called a vanishing point.
- Recall that two parallel lines in the projective 3- space meet at an ideal point.
- Thus the images of two or more parallel world lines converge at a vanishing point.

Vanishing points

The vanishing point v is the projection of a point at infinity.
Think of extending the line on the ground plane further and further into infinity.

Vanishing points

- Any two parallel lines have the same vanishing point \mathbf{v}
- The vanishing point is the image of the intersection point of the two parallel lines.
- The ray from \mathbf{C} through \mathbf{v} is parallel to the lines
- An image may have more than one vanishing point

Vanishing lines

- Multiple vanishing points
- Any set of parallel lines on the plane define a vanishing point
- Lines at different orientation result in a different vanishing point
- The union of all the vanishing points from lines on the same plane is the vanishing line

Vanishing lines

- Different planes define different vanishing lines.

Vanishing lines

- A set of parallel planes that are not parallel to the image plane intersect the image plane at a vanishing line.
- The horizon is a special vanishing line when the set of parallel planes are parallel to the ground reference.
- Anything in the scene that is above the camera will be projected above the horizon in the image.

Computing vanishing points

$$
\mathbf{P}(t)=\left[\begin{array}{c}
P_{X}+t D_{X} \\
P_{Y}+t D_{Y} \\
P_{Z}+t D_{Z} \\
1
\end{array}\right] \cong\left[\begin{array}{c}
P_{X} / t+D_{X} \\
P_{Y} / t+D_{Y} \\
P_{Z} / t+D_{Z} \\
1 / t
\end{array}\right] \quad t \rightarrow \infty \quad \mathbf{P}_{\infty} \cong\left[\begin{array}{c}
D_{X} \\
D_{Y} \\
D_{Z} \\
0
\end{array}\right]
$$

- Properties $\mathbf{v}=\boldsymbol{\Pi} \mathbf{P}_{\infty}$
- \mathbf{P}_{∞} is a point at infinity, \mathbf{v} is its projection
- They depend only on line direction
- Parallel lines $\mathbf{P}_{0}+\mathrm{tD}, \mathbf{P}_{1}+\mathrm{tD}$ intersect at \mathbf{P}_{∞}

Computing vanishing points (from lines)

- Intersect $p_{1} q_{1}$ with $p_{2} q_{2}$

$$
v=\left(p_{1} \times q_{1}\right) \times\left(p_{2} \times q_{2}\right)
$$

Computing vanishing points by projection

- Let $P=K[I \mid 0]$ be a camera matrix. The vanishing point of lines with direction d in 3 -space is the intersection v of the image plane with a ray through camera center with direction d. This vanishing point v is given by $\mathrm{v}=\mathrm{Kd}$.

$$
v=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{D} \\
0
\end{array}\right]=\left[\begin{array}{c}
D_{x} \\
D_{y} \\
D_{z}
\end{array}\right]
$$

- Example: Computing vanishing points of lines on a XZ plane
- (1) parallel to the Z axis, (2) at 45 deg to the Z axis
(3) parallel to the X axis

$$
D_{1}:\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] \rightarrow\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

$$
\begin{aligned}
& D_{2}:\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right] \rightarrow\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \\
& D_{3}:\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \rightarrow\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

$$
\left.\begin{array}{rl}
P= & {\left[\begin{array}{c|c|c|c}
* \\
* & * & * & * \\
* & * & * & * \\
* & *
\end{array}\right]} \\
p_{1} & p_{2}
\end{array} p_{3} \vec{p}_{4} \begin{array}{llll}
p_{1} & p_{2} & p_{3} & p_{4}
\end{array}\right]
$$

- $p_{1}=P\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]^{T}=\mathrm{v}_{\mathrm{x}}(\mathrm{X}$ vanishing point)
- similarly, $\mathrm{p}_{2}=\mathrm{v}_{\mathrm{y}}, \mathrm{p}_{3}=\mathrm{v}_{\mathrm{z}}$
- $p_{4}=P\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]^{T}=$ projection of world origin O

$$
P=\left[\begin{array}{llll}
\mathbf{v}_{X} & \mathbf{v}_{Y} & \mathbf{v}_{Z} & \mathbf{o}
\end{array}\right]
$$

Real vanishing points

[Image source: Richard Hartley and Andrew Zisserman]
Vanishing point of a line parallel to a plane lies on the vanishing line of the plane

Image rectification using vanishing points

before rectification

after rectification

Camera rotation from vanishing points

- Two images of a scene obtained by the same camera from different position and orientation.
- The images of the points at infinity, the vanishing points, are not affected by the camera translation, but are affected only by the camera rotation
- Vanishing points v_{i} and v_{i}^{\prime} have the following directions d_{i}, d_{i}^{\prime}

$$
\begin{gathered}
d_{i}=K^{-1} v_{i} /\left\|K^{-1} v_{i}\right\| \\
d_{i}^{\prime}=K^{-1} v_{i}^{\prime} /\left\|K^{-1} v_{i}^{\prime}\right\|
\end{gathered}
$$

- The directions are related by a rotation matrix:

$$
d_{i}^{\prime}=R d_{i}
$$

- If the directions are known, the rotation matrix can be computed from two directions

Camera rotation from vanishing points

- First camera is aligned with world coordinate system. $d_{i}=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$
- Second camera deviates, $\mathrm{d}_{\mathrm{i}}^{\prime}=\left[\mathrm{d}_{\mathrm{x}}, \mathrm{d}_{\mathrm{y}}, \mathrm{d}_{\mathrm{z}}\right]$ and can be computed from the image coordinates of v_{i}^{\prime}
- The rotation that aligns the second image with the first image can be computed from d_{i} and d_{i} and 1 more direction.

Measuring heights using vanishing points

Height column $=$ height of reference object ${ }^{\star} d_{2} / d_{1}$

Camera calibration from orthogonal vanishing points

Recap - Learning goals

- Understand the concept of vanishing points and vanishing lines
- Understand the calculation of vanishing points
- Understand the relation between vanishing points and camera orientation and calibration

