Mathematical Principles in Visual Computing

Prof. Friedrich Fraundorfer

SS 2024

About me

- Prof. Dr. Friedrich Fraundorfer
- Email: fraundorfer@icg.tugraz.at
- Institute of Computer Graphics and Vision
- Inffeldgasse 16/II
- +43 (316) 873-5020
- Send email to schedule an appointment

Additional lecturers

- Dr. Jörg Müller
- Email: joerg.mueller@icg.tugraz.at
- Institute of Computer Graphics and Vision
- Inffeldgasse 16/II

- Arno Coomans
- Huawei Zürich

Lecture schedule

- 06.03.2024 Fraundorfer
- 13.03.2024 Fraundorfer
- 20.03.2024 Fraundorfer
- 10.04.2024 Fraundorfer
- 17.04.2024 Fraundorfer
- 24.04.2024 Fraundorfer
- 08.05.2024 Müller
- 15.05.2024 Müller
- 22.05.2024 Müller
- 29.05.2024 Müller
- 05.06.2024 Coomans
- 12.06.2024 Coomans
- 19.06.2024 Coomans
- 26.06.2024 Exam

Tutor

- Jun Zhang
- Email: jun.zhang@tugraz.at
- Responsible for questions about classroom assignments
- Q\&A slots with tutor
- Q\&A in TC forum or e-mail

Course grading

- 3 class room assignments (50\% of grade)
- Math problems
- Small programming assignments
- Final written exam (50\% of grade)
- Written exam at last lecture slot (26 June 2024)
- Submitting the first assignment counts as attempt. A grade will be issued in this case.

Assignments

- Individual work, no group work
- Electronic submission using the TeachCenter (Hand-writing and scanning is ok)
- Schedule:
- Assignment 1
- Handout: 20.3.2024
- Deadline: 30.4.2024
- Assignment 2
- Handout: 24.4.2024
- Deadline: 28.5.2024
- Assignment 3
- Handout: 22.5.2024
- Deadline: 18.6.2024

Lecture material

- Slides are the main material
- Links to relevant publications and book sections will be given
- Lecture recordings from last years are available in the Teach Center

Research areas

3D scanning - REVO

- RGBD recordings with Orbbec Astra Pro

3D scanning - REVO

Multi-View Stereo Pipeline

Bridge inspection

Bridge inspection

固

Semantic 3D

Semantic 3D

Embedded AI - Dedicated processors allow integration of deep learning

Embedded AI - Object detection

Topics

- Projective geometry
- Parameterization of rigid transformations
- Polynomial systems in computer vision
- Root-solving
- Projective geometric algebra (Müller)
- Path tracing (Coomans)

Projective geometry

Projective geometry

Center of projected circle

2D circle
Circle after projective transformation

Projective geometry

$$
x^{\prime T} F x=0 \ldots \text { Epipolar constraint }
$$

Projective geometry

before rectification

after rectification

Parameterization of rigid transformations

$$
\begin{aligned}
& R_{x}(\alpha)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{array}\right] \\
& R_{y}(\beta)=\left[\begin{array}{ccc}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta
\end{array}\right] \\
& R_{z}(\gamma)=\left[\begin{array}{ccc}
\cos \gamma & -\sin \gamma & 0 \\
\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Problems with rotation matrices

- Optimization of rotations (bundle adjustment)
- Newton's method $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f r\left(x_{n}\right)}$
- Linear interpolation

- Filtering and averaging
- E.g. averaging rotation from IMU or camera pose tracker for AR/VR glasses

Polynomial equation systems in computer vision

- Assumption: Ground plane normal to gravity vector, walls are vertical
- IMU measurements can be used to align camera images/features to gravity vector
- Motion can be computed from 2pt correspondences on the ground

Polynomial equation systems in computer vision 2pt relative pose

4 unknowns left, 2 point correspondences give 4 equations

Polynomial systems in computer vision

- P3P, PnP problem:

$$
\begin{aligned}
& L_{1} \\
& L_{2} \\
& L_{3}
\end{aligned}\left\{\begin{array}{r}
2 x^{2}+y^{2}-2 z+3 z^{2}+5=0 \\
x^{2}+z+z^{2}=0 \\
x^{2} y^{2}+y^{2} z^{2}-2=0
\end{array}\right.
$$

- Solution: Reduction to a single polynomial (several schemes)
- Automatic procedure - Gröbner Basis

Polynomial equation systems

Root solving

- $3 p t+I M U, 8^{\text {th }}$ degree polynomial
- $6 p t$ generalized camera, $64^{\text {th }}$ degree polynomial
- Fast method: Sturm bracketing

Projective Geometric Algebra

