Mathematical Principles in Visual Computing:
Rigid Transformations

Prof. Friedrich Fraundorfer
SS 2023

Learning goals

- Understand the problems of dealing with rotations
- Understand how to represent rotations
- Understand the terms $\mathrm{SO}(3)$ etc.
- Understand the use of the tangent space
- Understand Euler angles, Axis-Angle, and quaternions
- Understand how to interpolate, filter and optimize rotations

Outline

- Rigid transformations
- Problems with rotation matrices
- Properties of rotation matrices
- Matrix groups SO(3), SE(3)
- Manifolds
- Tangent space
- Skew-symmetric matrices
- Exponential map
- Euler angles, angle-axis, quaternions
- Interpolation
- Filtering
- Optimization

Motivation: 3D Viewer

Rigid transformations

- Rigid transformation belong to the matrix group $\mathrm{SE}(3)$
- What does this mean?

Properties of rotation matrices

Rotation matrix:

$$
\begin{aligned}
& R=\left[r_{1}, r_{2}, r_{3}\right] \in \mathbb{R}^{3 \times 3} \\
& R^{T} R=I, \operatorname{det}(R)=+1
\end{aligned}
$$

Coordinates are related by: $\quad X_{c}=R X_{w}$

- Rotation matrices belong to the matrix group $\mathrm{SO}(3)$
- What does this mean?

Problems with rotation matrices

- Optimization of rotations (bundle adjustment)
- Newton's method $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f r\left(x_{n}\right)}$
- Linear interpolation

- Filtering and averaging
- E.g. averaging rotation from IMU or camera pose tracker for AR/VR glasses

Matrix groups

- The set of all the nxn invertible matrices is a group w.r.t. the matrix multiplication:

$$
G L(n)=\left(\left\{M \in \mathbb{R}^{n \times n} \mid \operatorname{det}(M) \neq 0\right\}, \times\right)
$$

General linear group

- Reminder: A group is an algebraic structure consisting of a set of elements equipped with an operation that combines any two elements to form a third element.
- The operation satisfies four conditions called the group axioms, namely closure, associativity, identity and invertibility.
- Closure means for all a, b in G, the result of the operation, $a \cdot b$, is also in G.

Matrix groups

- The set of all the nxn orthogonal matrices is a group w.r.t. the matrix multiplication:
$O(n)=\left(\left\{A \in G L(n) \mid A^{-1}=A^{T}\right\}, \times\right) \quad$ Orthogonal group
$A \in O(n) \Rightarrow \operatorname{det}(A)= \pm 1$

Matrix groups

- The set of all the nxn orthogonal matrices with determinant equal to +1 is a group w.r.t. the matrix multiplication:

$$
S O(n)=(\{A \in O(n) \mid \operatorname{det}(A)=+1\}, \times)
$$

Special orthogonal group

- $\mathrm{SO}(3)$... group of orthogonal 3×3 matrices with det=+1 "rotation matrices"
- $R_{3}=R_{1}{ }^{*} R_{2} \ldots R 3$ is still an $\mathrm{SO}(3)$ element
- $R_{3}=R_{1}+R_{2} \ldots \mathrm{R} 3$ is NOT an $\mathrm{SO}(3)$ element. Not a rotation matrix anymore.

Matrix groups

- The set of all the rigid transformations in R^{n} is a group (not commutative) with the composition operation

$$
\left(\left\{F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \mid F \text { rigid }\right\}, \circ\right)
$$

- The set is isomorphic to the special Euclidean group SE(n)
- The mathematical properties of a "rigid transformation" are specified by the special Euclidean group SE(n)

$$
R T=\left[\begin{array}{cc}
R & T \\
0 & 1
\end{array}\right]
$$

Special Euclidean group

- The special Euclidean group is constructed by the Cartesian product (a composition operation) from $\mathrm{SO}(\mathrm{n}) \times \mathrm{R}^{\mathrm{n}}$.

```
SE(n)=(SO(n)\times\mp@subsup{\mathbb{R}}{}{n},\times)
(M,t)\times(S,q)=(MS,Mq+t)
```

- The Cartesian product defines were the values of $\mathrm{SO}(\mathrm{n})$ and R^{n} (rotation and translation) go to form the transformation matrix

$$
\begin{gathered}
R T=\left[\begin{array}{cc}
R & T \\
0 & 1
\end{array}\right] \\
S E(3)=\left[\begin{array}{cc}
S O(3) & \mathbb{R}^{3} \\
0 & 1
\end{array}\right]
\end{gathered}
$$

Matrix groups: Summary

Vector space of all the nxn matrices

$$
\begin{aligned}
& G L(n)=\left(\left\{M \in \mathbb{R}^{n \times n} \mid \operatorname{det}(M) \neq 0\right\}, \times\right) \\
& O(n)=\left(\left\{A \in G L(n) \mid A^{-1}=A^{T}\right\}, \times\right) \\
& S O(n)=(\{A \in O(n) \mid \operatorname{det}(A)=+1\}, \times) \\
& O(n) / S O(n)=(\{A \in O(n) \mid \operatorname{det}(A)=-1\})
\end{aligned}
$$

General linear group
Orthogonal group
Special orthogonal group
Set of orthogonal matrices which do not preserve orientation (not a group)
$\mathrm{GL}(\mathrm{n}), \mathrm{O}(\mathrm{n}), \mathrm{SO}(\mathrm{n})$ and $\mathrm{SE}(\mathrm{n})$ are all smooth manifolds (e.g. surfaces, curves, solids immersed in some big vector space)

Manifolds

- Non-mathematical definition: Manifolds are shapes like curves, surfaces, and volumes in Euclidean space (i.e. a vector space)
- A sphere is an example of a manifold of dimension 2.
- The matrix groups $\operatorname{SO}(3), \mathrm{SE}(3)$ are manifolds.

Shapes of $\mathrm{SO}(2)$ and $\mathrm{SO}(3)$

SO(2) ... 1-manifold

SO(3) ... 3-manifold (3-sphere) A solid ball in R^{3}

Tangent space of a manifold

$$
\mathrm{V}=\text { vector space }
$$

M ... k-manifold

The tangent space of the manifold M in p (every point p on the manifold has a different tangent space) is isomorphic to a subspace of V .

Tangent space of a manifold

$\mathrm{V}=$ vector space with dimension n

M ... k-manifold

- $\quad \mathrm{TM}(\mathrm{p})$ is a vector space (subspace of V) and has dimension k .
- 1-manifold (curves) -> 1 dim TM (lines)
- 2-manifold (surface) -> 2 dim TM (planes)
- 3-manifold (volumes, e.g. 3-sphere) -> 3 dim TM (full volumes)

Tangent space of $\mathrm{SO}(2)$ and $\mathrm{SO}(3)$

$\mathrm{TSO}(2)$ is a vector space with dimension 1
subspace of $\mathbb{R}^{2 \times 2}$
subspaces are defined by matrices

$\mathrm{TSO}(3)$ is a vector space with dimension 3 subspace of $\mathbb{R}^{3 \times 3}$

Skew-symmetric matrices

- $\quad \mathrm{M}$ is skew-symmetric iff $\mathrm{M}^{\top}=-\mathrm{M}$

$$
\begin{gathered}
M^{T}=-M \quad\left[\begin{array}{ccc}
0 & 3 & 6 \\
-3 & 0 & -1 \\
-6 & 1 & 0
\end{array}\right] \quad\left[\begin{array}{cc}
0 & 4 \\
-4 & 0
\end{array}\right] \\
\operatorname{so}(n)=\left(\left\{M \in \mathbb{R}^{n \times n} \mid M^{T}=-M\right\},+,[]\right)
\end{gathered}
$$

Special orthogonal Lie algebra

- The term "algebra" means that $\mathrm{so}(\mathrm{n})$ is a vector space (more specific than group)
- We have addition in the vector space now (in $\mathrm{SO}(\mathrm{n})$ it was only multiplication)

Skew-symmetric matrices

- The special orthogonal Lie algebra is the tangent space of $\mathrm{SO}(\mathrm{n})$ at identity.
- The tangent space of $\mathrm{SO}(\mathrm{n})$ in any other point R is a rotated version of so(n)
- $\mathrm{T}_{\mathrm{so}(\mathrm{n})}(\mathrm{R})$ is not a skew-symmetric matrix anymore, but a rotated one

so(2) and so(3)

$$
\left[\begin{array}{ccc}
0 & 3 & 6 \\
-3 & 0 & -1 \\
-6 & 1 & 0
\end{array}\right] \quad\left[\begin{array}{cc}
0 & 4 \\
-4 & 0
\end{array}\right]
$$

- $\mathrm{so}(3)$ is a vector space of dimension 3
- so(2) is a vector space of dimension 1

The hat operator

- The hat operator is used to form skew-symmetric matrices
- for so(3):
$\hat{A}: \mathbb{R}^{3} \rightarrow s o(3)$

$$
\widehat{(x, y, z}) \rightarrow\left[\begin{array}{ccc}
0 & -z & y \\
z & 0 & -x \\
-y & x & 0
\end{array}\right]
$$

- for so(2):

$$
\therefore: \mathbb{R} \rightarrow s o(2)
$$

$$
\hat{x} \rightarrow\left[\begin{array}{cc}
0 & -x \\
x & 0
\end{array}\right]
$$

- Different notation
- $[t]_{x}=\left[\begin{array}{ccc}0 & -t_{z} & t_{y} \\ t_{z} & 0 & -t_{x} \\ -t_{y} & t_{x} & 0\end{array}\right]$

The hat operator

- The hat operator is used to define the cross-product in matrix form

$$
a \times b=\hat{a} b \quad \vee a, b \in \mathbb{R}^{3}
$$

Lie groups

- GL(n), O(n), SO(n) and SE(n) are all Lie groups (groups which are a smooth manifold where the operation is a differentiable function between manifolds)
- Also we have seen that the group of skew-symmetric matrices is called Lie algebra so(n) and is the tangent space of the special orthonormal group SO(n)
- But how to compute an element of the tangent space so(n) from $\mathrm{SO}(\mathrm{n})$ or vice versa?
- The exponential map!

Exponential map

- Given a Lie group G, with its related Lie algebra $g=T G(1)$, there always exists a smooth map from Lie algebra g to the Lie group G called exponential map

$$
\exp : g \rightarrow G
$$

Exponential map

$\omega \in \mathbb{R}^{k}$

$$
\widehat{\omega} \in \operatorname{so}(n)
$$

$$
\exp (\widehat{\omega})=\sum_{k=0}^{\infty} \frac{1}{k!} \widehat{\omega}^{k} \in S O(n)
$$

$\omega \in \mathbb{R}^{k} \rightarrow \exp (\widehat{\omega})$

- Angle-axis representation for rotations:
$\omega \ldots$ is the angle-axis representation $\left(\mathbb{R}^{3}\right)$
$\exp (\omega)$ is the 3×3 rotation matrix (element of $\mathrm{SO}(3)$)

Euler angles

- Euler's Theorem for rotations: Any element in $\mathrm{SO}(3)$ can be described as a sequence of three rotations around the canonical axes, where no successive rotations are about the same axis.

$$
\begin{aligned}
& R_{x}(\alpha)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{array}\right] \\
& R_{y}(\beta)=\left[\begin{array}{ccc}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta
\end{array}\right] \\
& R_{z}(\gamma)=\left[\begin{array}{ccc}
\cos \gamma & -\sin \gamma & 0 \\
\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

For any $R \in S O$ (3) there $\exists \alpha, \beta, \gamma \mid R=R_{x}(\alpha) R_{y}(\beta) R_{z}(\gamma)$

- α, β, γ are called Euler angles of R according to the XYZ representation (3 DOF/parameters)

Euler angles

- Given M (element of $\mathrm{SO}(3)$) there are 12 possible ways to represent it

```
M GSO(3) there }\exists\alpha,\beta,\gamma|M=\mp@subsup{R}{x}{}(\alpha)\mp@subsup{R}{y}{}(\beta)\mp@subsup{R}{z}{}(\gamma
M GSO(3) there \exists\alpha,\beta,\gamma|M= R
M S SO(3) there }\exists\alpha,\beta,\gamma|M=\mp@subsup{R}{x}{}(\alpha)\mp@subsup{R}{z}{}(\gamma)\mp@subsup{R}{x}{}(\beta
M S SO(3) there }\exists\alpha,\beta,\gamma|M=\mp@subsup{R}{z}{}(\alpha)\mp@subsup{R}{x}{}(\gamma)\mp@subsup{R}{z}{}(\beta
```

- A common convention is $Z Y X$ corresponding to a rotation first around the x-axis (roll), then the y-axis (pitch) and finally around the z-axis (yaw)

Euler angles

- The parameterization has singularities, called gimbal lock
- A gimbal lock happens when after a rotation around an axis, two axes align, resulting in a loss of one degree of freedom

cannot move (gimbal lock)

Angle-Axis

- Euler's rotation theorem also states that any rotation can be expressed as a single rotation about some axis.

- The axis can be represented as a three-dimensional unit vector, and the angle by a scalar.
- 3 DOF/parameters
- Angle-axis defines a unique mapping and does not have gimbal lock

Angle-Axis

- The operation to compute the rotation matrix $\mathrm{SO}(3)$ from the angle-axis parameters is by using the exponential map!

$$
\omega \in \mathbb{R}^{k} \rightarrow \exp (\widehat{\omega})
$$

- The exponential map can be computed in closed form using the Rodrigues formula

$$
\begin{aligned}
R & =I+(\sin \Theta) K+(1-\cos \Theta) K^{2} \\
K & =\left[\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right]
\end{aligned}
$$

- There also exists the inverse

Quaternions

- Quaternions are extensions of complex numbers, with 3 imaginary values instead of 1 :
a+ib+jc+kd
- Like the imaginary component of complex numbers, squaring the components gives:

$$
i^{2}=j^{2}=k^{2}=-1
$$

- One way to express a quaternion is as a pair consisting of the real value and the 3D vector consisting of the imaginary components:

$$
\mathrm{q}=(\mathrm{a}, \mathrm{w}) \text { with } \mathrm{w}=(\mathrm{b}, \mathrm{c}, \mathrm{~d})
$$

- It is basically a 4-vector

Quaternions

- If $\mathrm{q}=\mathrm{a}+\mathrm{ib}+\mathrm{j} \mathrm{c}+\mathrm{kd}$ is a unit quaternion $(\|q\|=1)$, then q corresponds to a rotation:

$$
R(q)=\left[\begin{array}{ccc}
1-2 c^{2}-2 d^{2} & 2 b c-2 a d & 2 b d+2 a c \\
2 b c+2 a d & 1-2 b^{2}-2 d^{2} & 2 c d-2 a b \\
2 b d-2 a c & 2 c d+2 a b & 1-2 b^{2}-2 c^{2}
\end{array}\right]
$$

- Because q is a unit quaternion, we can write q as:

$$
q=\left(\cos \left(\frac{a}{2}\right), \sin \left(\frac{a}{2}\right) w\right), \quad\|w\|=1
$$

- It turns out the q corresponds to the rotation whose:
- Axis of rotation is wand
- Angle of the rotation is a
- Given two rotation matrices $\mathrm{R}_{1}, \mathrm{R}_{2}$ one would like to find a smooth path in $\mathrm{SO}(3)$ connecting these two matrices

$$
\begin{aligned}
& R(\lambda) \in S O(3), \lambda \in[0,1] \\
& R(\lambda) \text { smooth } \\
& R(0)=R_{1} \\
& R(1)=R_{2}
\end{aligned}
$$

- Approach 1: Linearily interpolate R_{1} and R_{2} as matrices (naive approach)

Projection onto sphere (not accurate)

$$
\pi_{S O(3)}(M)=\arg \min _{R \in S O(3)}\|M-R\|_{F}^{2}
$$

Not an element of SO(3), not a rotation matrix at all

- Approach 2: Linearily interpolate R_{1} and R_{2} using Euler angles

- Each axis is interpolated independently
- If R_{1} and R_{2} are too far apart -> not intuitive motion
- Approach 3: Linearily interpolate R_{1} and R_{2} using angle-axis

- Interpolation happens in tangent space (vector space) and is then projected using the exponental map onto the manifold

Filtering in $\mathrm{SO}(3)$

- Given n different noisy measurements for the rotation of an object

$$
R_{1}, \ldots, R_{n}
$$

- What is the filtered average of it?

Filtering in $\mathrm{SO}(3)$

- Possible approaches:
- Average the rotation matrices R_{i}

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} R_{i} \quad \text { (not rotation) } \\
& \left(\frac{1}{n} \sum_{i=1}^{n} \alpha_{i}, \frac{1}{n} \sum_{i=1}^{n} \beta_{i}, \frac{1}{n} \sum_{i=1}^{n} \gamma_{i}\right) \\
& \frac{1}{n} \sum_{i=1}^{n} \omega_{i} \\
& \frac{1}{n} \sum_{i=1}^{n} q_{i}
\end{aligned}
$$

- Average the Euler angles of each R_{i}
- Average the angle-axis of each R_{i}

(is rotation)
- All equally problematic and do not accurately respect the noise model

Optimization in SO(3)

- Newton-Method

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

- Naive approach:
- X_{n} are elements of rotation matrix. Then the update step (addition) would not result in a rotation matrix.
- X_{n} are Euler angles:
- To evaluate $f\left(X_{n}\right)$ the rotation matrix has to be created from the Euler angles. Could lead to gimbal lock.
- Derivatives of Euler angle construction has to be computed.
- X_{n} are elements of the tangent space so(3)
- Represents angle-axis notation
- No gimbal lock
- Minimal representation of 3 parameters

Learning goals - Recap

- Understand the problems of dealing with rotations
- Understand how to represent rotations
- Understand the terms $\mathrm{SO}(3)$ etc.
- Understand the use of the tangent space
- Understand Euler angles, Axis-Angle, and quaternions
- Understand how to interpolate, filter and optimize rotations

