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Learning goals

= Understand the problems of dealing with rotations

= Understand how to represent rotations

= Understand the terms SO(3) etc.

» Understand the use of the tangent space

» Understand Euler angles, Axis-Angle, and quaternions

» Understand how to interpolate, filter and optimize rotations



Outline

» Rigid transformations

= Problems with rotation matrices
= Properties of rotation matrices
= Matrix groups SO(3), SE(3)

= Manifolds

= Tangent space

= Skew-symmetric matrices

= EXxponential map

» Euler angles, angle-axis, quaternions
» [nterpolation

= Filtering

=  QOptimization



Motivation: 3D Viewer




Rigid transformations

X

X.=RX, +T
= Coordinates are related by: [)icl _ [IS 71"] [X1w]

» Rigid transformation belong to the matrix group SE(3)
= What does this mean?




Properties of rotation matrices

Rotation matrix: R

v
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Coordinates are related by: X, = RX,,

Rotation matrices belong to the matrix group SO(3)
What does this mean?



Problems with rotation matrices

= QOptimization of rotations (bundle adjustment)

_ f(xn)
fr(xn)

= Newton’s method x,,.1 = x,
= Linear interpolation

~ & 2 5

= Filtering and averaging
= E.g. averaging rotation from IMU or camera pose tracker for AR/VR glasses




Matrix groups

» The set of all the nxn invertible matrices is a group w.r.t. the matrix
multiplication:

GL(n) = ({M € R™*"|det(M) # 0},%)

General linear group

= Reminder: A group is an algebraic structure consisting of a set of
elements equipped with an operation that combines any two elements to
form a third element.

= The operation satisfies four conditions called the group axioms, namely
closure, associativity, identity and invertibility.

= Closure means for all a, b in G, the result of the operation, a * b, is also
in G.



Matrix groups

» The set of all the nxn orthogonal matrices is a group w.r.t. the matrix
multiplication:

O(n) = ({A € GL(M)|A™t = AT}, %) Orthogonal group

A€ On)=det(4) = +1



Matrix groups

The set of all the nxn orthogonal matrices with determinant equal to +1
IS a group w.r.t. the matrix multiplication:

S0(n) = ({A € 0n)|det(4) = +1 },%x)
Special orthogonal group

SO(3) ... group of orthogonal 3x3 matrices with det=+1 .... “rotation
matrices”

R; = R*R, ... R3 is still an SO(3) element

R; = R;+R, ... R3is NOT an SO(3) element. Not a rotation matrix
anymore.
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Matrix groups

» The set of all the rigid transformations in R" is a group (not
commutative) with the composition operation

({F:R* > R"| F rigid },o)
» The setis isomorphic to the special Euclidean group SE(n)

» The mathematical properties of a “rigid transformation” are specified by
the special Euclidean group SE(n)

rr=[% 1]

0 1
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Special Euclidean group

= The special Euclidean group is constructed by the Cartesian product (a
composition operation) from SO(n)xR".

SE(n) = (S0(n) x R™,X)

(M,t) X (S5,q) = (MS,Mq +t)

» The Cartesian product defines were the values of SO(n) and R"
(rotation and translation) go to form the transformation matrix

RT=[§ I

o[ 2]
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Matrix groups: Summary

]Rnxn
GL(n)
Vector space of all the nxn matrices
O(n)
O
GL(n) = ({M € R™"|det(M) # 0},%) General linear group
O0(n) = ({4 € GL()|A™L = AT},%) Orthogonal group

SO(n) = ({4 € 0(n)| det(4) = +1 },x) Special orthogonal group

_ _ Set of orthogonal matrices which
0(n)/S0(n) = (1A € O(n)| det(4) = —1}) do not preserve orientation (not a group)

GL(n), O(n), SO(n) and SE(n) are all smooth manifolds

(e.g. surfaces, curves, solids immersed in some big vector space)
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Manifolds

= Non-mathematical definition:
Manifolds are shapes like curves, surfaces,
and volumes in Euclidean space (i.e. a
1 vector space)

= A sphere is an example of a manifold of
dimension 2.

= The matrix groups SO(3), SE(3) are
manifolds.
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Shapes of SO(2) and SO(3)

SO(2) ... 1-manifold

SO(3) ... 3-manifold (3-sphere)
A solid ball in R3
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Tangent space of a manifold

T™(p) V = vector space

M ... k-manifold

The tangent space of the manifold M in p (every point p on the manifold
has a different tangent space) is isomorphic to a subspace of V.
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Tangent space of a manifold

V = vector space with dimension n
TM(p)

M
M ... k-manifold

= TM(p) is a vector space (subspace of V) and has dimension k.

= 1-manifold (curves) -> 1 dim TM (lines)
= 2-manifold (surface) -> 2 dim TM (planes)
= 3-manifold (volumes, e.g. 3-sphere) -> 3 dim TM (full volumes)
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Tangent space of SO(2) and SO(3)

RZXZ

SO(2)

1-manifold

TSO(2) is a vector space

with dimension 1
subspace of R%*?

subspaces are defined by matrices

SO(3)

3-manifold

TSO(3) Is a vector space
with dimension 3
subspace of R3*3
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Skew-symmetric matrices

= M is skew-symmetric iff MT=-M

so(n) = ({M € R¥™"MT = —M}, +,[])

Special orthogonal Lie algebra

» The term “algebra” means that so(n) is a vector space (more specific
than group)

= \We have addition in the vector space now (in SO(n) it was only
multiplication)
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Skew-symmetric matrices

TsomyI) = so(n)

SO(n) SO(n)

Tsom)(R) = R X so(n)

» The special orthogonal Lie algebra is the tangent space of SO(n) at
identity.

= The tangent space of SO(n) in any other point R is a rotated version of
so(n)

" Tsom(R) is not a skew-symmetric matrix anymore, but a rotated one
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so(2) and so(3)

0 3 6 0 4 = S0(3) is a vector space of dimension 3
[ 0 —1] —4 0 = s0(2) is a vector space of dimension 1
1

SO(2) |

SO(3)

T .
. Tso3) 1S @ volume
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The hat operator

The hat operator is used to form skew-symmetric matrices
for so(3):

1R3> 5s0(3)

for so(2):

Different notation

[t]x

R —>s0(2)

[ 0

Ly

—t

y

—t,
0
Ly

_tx

O -

0
(x,y,z)—>| z
-y
25 [0 —X
x 0

—Z
0
X

y
—X
0
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The hat operator

= The hat operator is used to define the cross-product in matrix form

aXb=ab Va,b € R3
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Lie groups

= GL(n), O(n), SO(n) and SE(n) are all Lie groups (groups which are a
smooth manifold where the operation is a differentiable function
between manifolds)

= Also we have seen that the group of skew-symmetric matrices is called
Lie algebra so(n) and is the tangent space of the special orthonormal
group SO(n)

= But how to compute an element of the tangent space so(n) from SO(n)
or vice versa?

= The exponential map!
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Exponential map

= Given a Lie group G, with its related Lie algebra g=TG(l), there always
exists a smooth map from Lie algebra g to the Lie group G called
exponential map

exp:g—G

SO(n)
so(n)

exp(A4)
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Exponential map

k
" w € RK
W € so(n)
SO(n) so(n) %
exp(D) = z %ak € S0(n)
exp(4) :so(n) - S0(n) k=0

w € R¥ - exp(®)

» Angle-axis representation for rotations:
w... is the angle-axis representation (R3)
exp(w) Is the 3x3 rotation matrix (element of SO(3))
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Euler angles

» Euler's Theorem for rotations: Any element in SO(3) can be described
as a sequence of three rotations around the canonical axes, where no
successive rotations are about the same axis.

1 0 0
R,(a¢) =10 cosa -sina
0 sina cosa

cosf 0 sinf] _
R,()=| 0 1 0 1>
—sinf 0 cosf —
cosy —siny 0]
R,(y) =|siny cosy 0
0 0 11

For any R € SO(3) there 3a, B,y | R = Ry (a)R,(B) R,(¥)

» o, 3,yare called Euler angles of R according to the XYZ representation (3
DOF/parameters)

27



Euler angles

= Given M (element of SO(3)) there are 12 possible ways to represent it

M € SO(3) there 3a,B,y | M = Ry(a)Ry(B) R, (V)
M € SO(3) there 3a, B,y | M = Ry(a)R, (V)R (B)
M € SO(3) there 3a, B,y | M = Ry(a)R,(¥)Rx(B)

M € 50(3) there 3a, B,y | M = R,(a)Rx(V)R,(B)

= A common convention is ZYX corresponding to a rotation first around
the x-axis (roll), then the y-axis (pitch) and finally around the z-axis

(yaw)

Roll Axis

aw Axis 28
[https://en.wikipedia.org/wiki/Aircraft_principal_axes, CC BY-SA 3.0]



Euler angles

» The parameterization has singularities, called gimbal lock

= A gimbal lock happens when after a rotation around an axis, two axes
align, resulting in a loss of one degree of freedom

A (\)‘L 7
b g

cannot move (gimbal lock)
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Angle-AXiIs

= Euler’s rotation theorem also states that any rotation can be expressed
as a single rotation about some axis.

= The axis can be represented as a three-dimensional unit vector, and the
angle by a scalar.

» 3 DOF/parameters
= Angle-axis defines a uniqgue mapping and does not have gimbal lock

30



Angle-AXiIs

The operation to compute the rotation matrix SO(3) from the angle-axis
parameters is by using the exponential map!

w € R - exp(®)

The exponential map can be computed in closed form using the
Rodrigues formula

R =1+ (sin®)K + (1 — cos®)K?

0 —W3 Wy
K = W3 0 —Wq
—W,  Wq 0

= There also exists the inverse
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Quaternions

Quaternions are extensions of complex numbers, with 3 imaginary
values instead of 1.

a+ib+jc+kd

» Like the imaginary component of complex numbers, squaring the
components gives:

j2=j2=k2=-1

= One way to express a quaternion is as a pair consisting of the real value
and the 3D vector consisting of the imaginary components:

g=(a,w) with w=(b,c,d)
= |tis basically a 4-vector
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Quaternions

» |f g=atib+jctkd is a unit quaternion (||q||=1), then g corresponds to a
rotation:

1 —2c% — 2d? 2bc — 2ad 2bd + 2ac
R(@) =| 2bc+2ad 1-2b%2-2d%* 2cd-2ab
2bd — 2ac 2cd + 2ab 1 —2b?% — 2c?

= Because q Is a unit guaternion, we can write g as:

= (s (@m(@w). =

= |t turns out the q corresponds to the rotation whose:
Axis of rotation is w and
Angle of the rotation is a
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Interpolation in SO(3)

= Given two rotation matrices R;,R, one would like to find a smooth path
iIn SO(3) connecting these two matrices

R(1) € SO(3),A € ]0,1]

R(A) smooth
SO(3)

R(0) = R,

R(1) = R, R

ceos
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Interpolation in SO(3)

Approach 1: Linearily interpolate R, and R, as matrices (naive
approach)

R(A) = msp3)(AR; + (1 — 1)Ry)

N

Projection onto sphere Not an element of SO(3),
(not accurate) . :
not a rotation matrix at all

Tso3)(M) = arg Refgl(i)f(lg)”M — R
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Interpolation in SO(3)

Approach 2: Linearily interpolate R, and R, using Euler angles

2T

2T

Each axis is interpolated independently
If R, and R, are too far apart -> not intuitive motion
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Interpolation in SO(3)

= Approach 3: Linearily interpolate R, and R, using angle-axis

wd) = Aw; + (1 —-Dw,

* Interpolation happens in tangent space (vector space) and is then
projected using the exponental map onto the manifold
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Filtering in SO(3)

» Given n different noisy measurements for the rotation of an object

Ry, ..,R,

= What is the filtered average of it?
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Filtering in SO(3)

= Possible approaches:

n
1
= Average the rotation matrices R, ;Z R; (not rotation)
i=1
n n n T
1 1 1
= Average the Euler angles of each R, EE ai;gz ﬁugi Yi
i=1 1=1 =1
1 n
= Average the angle-axis of each R, EZ aF; o
1 izl
= Average the quaternions of each R, EZ qi

i=1 —

(is rotation)

= All equally problematic and do not accurately respect the noise model
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Optimization in SO(3)

Newton-Method

f(xn)

le+1 — le _fl(x )
n

Naive approach:

= X, are elements of rotation matrix. Then the update step (addition) would not
result in a rotation matrix.

X,, are Euler angles:

= To evaluate f(X,) the rotation matrix has to be created from the Euler angles.
Could lead to gimbal lock.

= Derivatives of Euler angle construction has to be computed.
X,, are elements of the tangent space so(3)

= Represents angle-axis notation

= No gimbal lock

= Minimal representation of 3 parameters
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Learning goals - Recap

= Understand the problems of dealing with rotations

= Understand how to represent rotations

= Understand the terms SO(3) etc.

» Understand the use of the tangent space

» Understand Euler angles, Axis-Angle, and quaternions

» Understand how to interpolate, filter and optimize rotations
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