
Mathematical Principles in Visual

Computing:

Rigid Transformations

Prof. Friedrich Fraundorfer

SS 2023

Learning goals

▪ Understand the problems of dealing with rotations

▪ Understand how to represent rotations

▪ Understand the terms SO(3) etc.

▪ Understand the use of the tangent space

▪ Understand Euler angles, Axis-Angle, and quaternions

▪ Understand how to interpolate, filter and optimize rotations

2

Outline

▪ Rigid transformations

▪ Problems with rotation matrices

▪ Properties of rotation matrices

▪ Matrix groups SO(3), SE(3)

▪ Manifolds

▪ Tangent space

▪ Skew-symmetric matrices

▪ Exponential map

▪ Euler angles, angle-axis, quaternions

▪ Interpolation

▪ Filtering

▪ Optimization

3

Motivation: 3D Viewer

Rigid transformations

▪ Coordinates are related by:

▪ Rigid transformation belong to the matrix group SE(3)

▪ What does this mean?

𝑋𝑐 = 𝑅𝑋𝑤 + 𝑇
𝑋𝑐
1

=
𝑅 𝑇
0 1

𝑋𝑤
1

5

𝑋𝑤

𝑋𝐶

𝑋

𝑌

𝑥 𝑦

𝑧
𝑝

𝑂

𝑂
𝑇𝑊

𝑅

𝐶

𝑍

𝑥 ∈ ℝ𝑛

T ∈ ℝ𝑛

𝑅 ∈ ℝ𝑛×𝑛

Properties of rotation matrices

Rotation matrix:

Coordinates are related by:

▪ Rotation matrices belong to the matrix group SO(3)

▪ What does this mean?

6

𝑅 = 𝑟1, 𝑟2, 𝑟3 ∈ ℝ3×3

𝑋

𝑌
𝑂

𝑍

𝑥

𝑦

𝑧

𝑟1

𝑟2

𝑟3

𝑋𝑐 = 𝑅𝑋𝑤

𝑅𝑇𝑅 = 𝐼, det 𝑅 = +1

Problems with rotation matrices

▪ Optimization of rotations (bundle adjustment)

▫ Newton’s method 𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)

▪ Linear interpolation

▪ Filtering and averaging

▫ E.g. averaging rotation from IMU or camera pose tracker for AR/VR glasses

7

Matrix groups

▪ The set of all the nxn invertible matrices is a group w.r.t. the matrix

multiplication:

▪ Reminder: A group is an algebraic structure consisting of a set of

elements equipped with an operation that combines any two elements to

form a third element.

▪ The operation satisfies four conditions called the group axioms, namely

closure, associativity, identity and invertibility.

▪ Closure means for all a, b in G, the result of the operation, a • b, is also

in G.

General linear group

8

𝐺𝐿(𝑛) = 𝑀 ∈ ℝ𝑛×𝑛|det(𝑀) ≠ 0 ,×

Matrix groups

▪ The set of all the nxn orthogonal matrices is a group w.r.t. the matrix

multiplication:

Orthogonal group

9

𝑂(𝑛) = 𝐴 ∈ 𝐺𝐿(𝑛)|𝐴−1 = 𝐴𝑇 ,×

𝐴 ∈ 𝑂 𝑛 ֜det 𝐴 = ±1

Matrix groups

▪ The set of all the nxn orthogonal matrices with determinant equal to +1

is a group w.r.t. the matrix multiplication:

▪ SO(3) … group of orthogonal 3x3 matrices with det=+1 …. “rotation

matrices”

▪ R3 = R1*R2 … R3 is still an SO(3) element

▪ R3 = R1+R2 … R3 is NOT an SO(3) element. Not a rotation matrix

anymore.

Special orthogonal group

10

𝑆𝑂(𝑛) = 𝐴 ∈ 𝑂(𝑛)| det 𝐴 = +1 ,×

Matrix groups

▪ The set of all the rigid transformations in Rn is a group (not

commutative) with the composition operation

▪ The set is isomorphic to the special Euclidean group SE(n)

▪ The mathematical properties of a “rigid transformation” are specified by

the special Euclidean group SE(n)

𝑅𝑇 =
𝑅 𝑇
0 1

11

𝐹:ℝ𝑛՜ℝ𝑛| F rigid ,∘

Special Euclidean group

▪ The special Euclidean group is constructed by the Cartesian product (a

composition operation) from SO(n)xRn.

▪ The Cartesian product defines were the values of SO(n) and Rn

(rotation and translation) go to form the transformation matrix

𝑅𝑇 =
𝑅 𝑇
0 1

𝑆𝐸(3) = 𝑆𝑂(3) ℝ3

0 1

12

𝑆𝐸(𝑛) = 𝑆𝑂(𝑛) × ℝ𝑛,×

𝑀, 𝑡 × (𝑆, 𝑞) = (𝑀𝑆,𝑀𝑞 + 𝑡)

Matrix groups: Summary

Special orthogonal group

Orthogonal group

General linear group

Set of orthogonal matrices which

do not preserve orientation (not a group)

Vector space of all the nxn matrices

GL(n), O(n), SO(n) and SE(n) are all smooth manifolds

(e.g. surfaces, curves, solids immersed in some big vector space)
13

𝑆𝑂(𝑛) = 𝐴 ∈ 𝑂(𝑛)| det 𝐴 = +1 ,×

𝑂(𝑛) = 𝐴 ∈ 𝐺𝐿(𝑛)|𝐴−1 = 𝐴𝑇 ,×

𝐺𝐿(𝑛) = 𝑀 ∈ ℝ𝑛×𝑛|det(𝑀) ≠ 0 ,×

𝑂(𝑛)/𝑆𝑂(𝑛) = 𝐴 ∈ 𝑂(𝑛)| det 𝐴 = −1

GL(n)

O(n)

SO(n)

O(n)/SO(n)

ℝ𝑛×𝑛

Manifolds

▪ Non-mathematical definition:

Manifolds are shapes like curves, surfaces,

and volumes in Euclidean space (i.e. a

vector space)

▪ A sphere is an example of a manifold of

dimension 2.

▪ The matrix groups SO(3), SE(3) are

manifolds.

14

M

Shapes of SO(2) and SO(3)

SO(3) … 3-manifold (3-sphere)

A solid ball in R3

SO(2) … 1-manifold

15

Tangent space of a manifold

16

V = vector space

The tangent space of the manifold M in p (every point p on the manifold

has a different tangent space) is isomorphic to a subspace of V.

M … k-manifold

p

TM(p)

M

Tangent space of a manifold

▪ TM(p) is a vector space (subspace of V) and has dimension k.

▪ 1-manifold (curves) -> 1 dim TM (lines)

▪ 2-manifold (surface) -> 2 dim TM (planes)

▪ 3-manifold (volumes, e.g. 3-sphere) -> 3 dim TM (full volumes)

M … k-manifold

V = vector space with dimension n

17

p

TM(p)

M

Tangent space of SO(2) and SO(3)

18

1-manifold 3-manifold

SO(2) SO(3)

ℝ3×3

TSO(2) is a vector space

with dimension 1

subspace of

TSO(3) is a vector space

with dimension 3

subspace of

ℝ2×2

ℝ3×3
ℝ2×2

subspaces are defined by matrices

Skew-symmetric matrices

19

▪ M is skew-symmetric iff MT=-M

▪ The term “algebra” means that so(n) is a vector space (more specific

than group)

▪ We have addition in the vector space now (in SO(n) it was only

multiplication)

Special orthogonal Lie algebra

𝑠𝑜(𝑛) = 𝑀 ∈ ℝ𝑛×𝑛|𝑀𝑇 = −𝑀 ,+, []

𝑀𝑇 = −𝑀
0 3 6
−3 0 −1
−6 1 0

0 4
−4 0

Skew-symmetric matrices

▪ The special orthogonal Lie algebra is the tangent space of SO(n) at

identity.

▪ The tangent space of SO(n) in any other point R is a rotated version of

so(n)

▪ TSO(n)(R) is not a skew-symmetric matrix anymore, but a rotated one

20

I

SO(n)

so(n)

𝑇𝑆𝑂 𝑛 𝑅 = 𝑅 × 𝑠𝑜(𝑛)

𝑇𝑆𝑂 𝑛 𝐼 = 𝑠𝑜(𝑛)

R

SO(n)

so(n)

so(2) and so(3)

▪ so(3) is a vector space of dimension 3

▪ so(2) is a vector space of dimension 1

21

0 3 6
−3 0 −1
−6 1 0

0 4
−4 0

I

SO(3)

Tso(3) is a volume
Tso(2)

ISO(2)

The hat operator

▪ The hat operator is used to form skew-symmetric matrices

▪ for so(3):

▪ for so(2):

▪ Different notation

▪ 𝑡 𝑥 =

0 −𝑡𝑧 𝑡𝑦
𝑡𝑧 0 −𝑡𝑥
−𝑡𝑦 𝑡𝑥 0

22

Ƹ. : ℝ3՜𝑠𝑜(3)

Ƹ. : ℝ ՜𝑠𝑜(2)

෣(𝑥, 𝑦, 𝑧)՜
0 −𝑧 𝑦
𝑧 0 −𝑥
−𝑦 𝑥 0

ො𝑥՜
0 −𝑥
𝑥 0

The hat operator

▪ The hat operator is used to define the cross-product in matrix form

23

𝑎 × 𝑏 = ො𝑎𝑏 ⋁𝑎, 𝑏 ∈ ℝ3

Lie groups

▪ GL(n), O(n), SO(n) and SE(n) are all Lie groups (groups which are a

smooth manifold where the operation is a differentiable function

between manifolds)

▪ Also we have seen that the group of skew-symmetric matrices is called

Lie algebra so(n) and is the tangent space of the special orthonormal

group SO(n)

▪ But how to compute an element of the tangent space so(n) from SO(n)

or vice versa?

▪ The exponential map!

24

Exponential map

▪ Given a Lie group G, with its related Lie algebra g=TG(I), there always

exists a smooth map from Lie algebra g to the Lie group G called

exponential map

25

I

SO(n)

so(n)

𝑒𝑥𝑝: 𝑔՜𝐺

exp(𝐴)

𝐴

Exponential map

▪ Angle-axis representation for rotations:

𝜔… is the angle-axis representation (ℝ3)

exp(𝜔) is the 3x3 rotation matrix (element of SO(3))

26

𝜔 ∈ ℝ𝑘

ෝ𝜔 ∈ 𝑠𝑜(𝑛)

exp(ෝ𝜔) = ෍

𝑘=0

∞
1

𝑘!
ෝ𝜔𝑘 ∈ 𝑆𝑂(𝑛)

𝜔 ∈ ℝ𝑘՜exp(ෝ𝜔)

I

SO(n) so(n)

exp 𝐴 : 𝑠𝑜(𝑛)՜𝑆𝑂(𝑛)

ℝ𝑘ෝ.

Euler angles

▪ Euler’s Theorem for rotations: Any element in SO(3) can be described

as a sequence of three rotations around the canonical axes, where no

successive rotations are about the same axis.

▪ are called Euler angles of R according to the XYZ representation (3

DOF/parameters) 27

𝑅𝑥 𝛼 =
1 0 0
0 cos 𝛼 −sin𝛼
0 sin𝛼 cos 𝛼

𝑅𝑧 𝛾 =
cos 𝛾 −sin 𝛾 0
sin 𝛾 cos 𝛾 0
0 0 1

𝑅𝑦 𝛽 =
cos𝛽 0 sin𝛽
0 1 0

−sin 𝛽 0 cos 𝛽

𝐹𝑜𝑟 𝑎𝑛𝑦 𝑅 ∈ 𝑆𝑂 3 𝑡ℎ𝑒𝑟𝑒 ∃𝛼, 𝛽, 𝛾 | 𝑅 = 𝑅𝑥(𝛼)𝑅𝑦(𝛽) 𝑅𝑧(𝛾)

Euler angles

▪ Given M (element of SO(3)) there are 12 possible ways to represent it

▪ A common convention is ZYX corresponding to a rotation first around

the x-axis (roll), then the y-axis (pitch) and finally around the z-axis

(yaw)

28

𝑀 ∈ 𝑆𝑂 3 𝑡ℎ𝑒𝑟𝑒 ∃𝛼, 𝛽, 𝛾 | 𝑀 = 𝑅𝑥(𝛼)𝑅𝑦(𝛽) 𝑅𝑧(𝛾)

𝑀 ∈ 𝑆𝑂 3 𝑡ℎ𝑒𝑟𝑒 ∃𝛼, 𝛽, 𝛾 | 𝑀 = 𝑅𝑥(𝛼)𝑅𝑧(𝛾)𝑅𝑦(𝛽)

𝑀 ∈ 𝑆𝑂 3 𝑡ℎ𝑒𝑟𝑒 ∃𝛼, 𝛽, 𝛾 | 𝑀 = 𝑅𝑥(𝛼)𝑅𝑧(𝛾)𝑅𝑥(𝛽)

𝑀 ∈ 𝑆𝑂 3 𝑡ℎ𝑒𝑟𝑒 ∃𝛼, 𝛽, 𝛾 | 𝑀 = 𝑅𝑧(𝛼)𝑅𝑥(𝛾)𝑅𝑧(𝛽)

…

[https://en.wikipedia.org/wiki/Aircraft_principal_axes, CC BY-SA 3.0]

Euler angles

▪ The parameterization has singularities, called gimbal lock

▪ A gimbal lock happens when after a rotation around an axis, two axes

align, resulting in a loss of one degree of freedom

29

cannot move (gimbal lock)

Angle-Axis

▪ Euler’s rotation theorem also states that any rotation can be expressed

as a single rotation about some axis.

▪ The axis can be represented as a three-dimensional unit vector, and the

angle by a scalar.

▪ 3 DOF/parameters

▪ Angle-axis defines a unique mapping and does not have gimbal lock

30

𝜔Θ

Angle-Axis

▪ The operation to compute the rotation matrix SO(3) from the angle-axis

parameters is by using the exponential map!

▪ The exponential map can be computed in closed form using the

Rodrigues formula

▪ There also exists the inverse

31

𝜔 ∈ ℝ𝑘՜exp(ෝ𝜔)

𝑅 = 𝐼 + 𝑠𝑖𝑛Θ 𝐾 + (1 − 𝑐𝑜𝑠Θ)𝐾2

𝐾 =

0 −𝜔3 𝜔2

𝜔3 0 −𝜔1

−𝜔2 𝜔1 0

Quaternions

▪ Quaternions are extensions of complex numbers, with 3 imaginary

values instead of 1:

a+ib+jc+kd

▪ Like the imaginary component of complex numbers, squaring the

components gives:

i2=j2=k2=-1

▪ One way to express a quaternion is as a pair consisting of the real value

and the 3D vector consisting of the imaginary components:

q=(a,w) with w=(b,c,d)

▪ It is basically a 4-vector

32

Quaternions

▪ If q=a+ib+jc+kd is a unit quaternion (||q||=1), then q corresponds to a

rotation:

▪ Because q is a unit quaternion, we can write q as:

▪ It turns out the q corresponds to the rotation whose:

▫ Axis of rotation is w and

▫ Angle of the rotation is a

33

𝑅 𝑞 =
1 − 2𝑐2 − 2𝑑2 2𝑏𝑐 − 2𝑎𝑑 2𝑏𝑑 + 2𝑎𝑐
2𝑏𝑐 + 2𝑎𝑑 1 − 2𝑏2 − 2𝑑2 2𝑐𝑑 − 2𝑎𝑏
2𝑏𝑑 − 2𝑎𝑐 2𝑐𝑑 + 2𝑎𝑏 1 − 2𝑏2 − 2𝑐2

𝑞 = cos
𝑎

2
, sin

𝑎

2
𝑤 , 𝑤 = 1

Interpolation in SO(3)

▪ Given two rotation matrices R1,R2 one would like to find a smooth path

in SO(3) connecting these two matrices

34

𝑅1 𝑅2

SO(3)

𝑅(𝜆)

𝑅1

𝑅2

𝑅 𝜆 ∈ 𝑆𝑂 3 , 𝜆 ∈ 0,1

𝑅 𝜆 smooth

𝑅 0 = 𝑅1

𝑅 1 = 𝑅2

Interpolation in SO(3)

▪ Approach 1: Linearily interpolate R1 and R2 as matrices (naive

approach)

Not an element of SO(3),

not a rotation matrix at all

Projection onto sphere

(not accurate)

35

𝑅 𝜆 = 𝜋𝑆𝑂(3)(𝜆𝑅1 + (1 − 𝜆)𝑅2)

𝑅1

𝑅2

𝜋𝑆𝑂 3 𝑀 = 𝑎𝑟𝑔 min
𝑅∈𝑆𝑂(3)

𝑀 − 𝑅 𝐹
2

Interpolation in SO(3)

▪ Approach 2: Linearily interpolate R1 and R2 using Euler angles

▪ Each axis is interpolated independently

▪ If R1 and R2 are too far apart -> not intuitive motion

36

0

2𝜋

2𝜋

2𝜋

Interpolation in SO(3)

▪ Approach 3: Linearily interpolate R1 and R2 using angle-axis

▪ Interpolation happens in tangent space (vector space) and is then

projected using the exponental map onto the manifold

37

𝜔 𝜆 = 𝜆𝜔1 + (1 − 𝜆)𝜔2

I

SO(3)

so(3)

𝐴

Filtering in SO(3)

▪ Given n different noisy measurements for the rotation of an object

▪ What is the filtered average of it?

38

𝑅1, … , 𝑅𝑛

Filtering in SO(3)

▪ Possible approaches:

▪ Average the rotation matrices Ri

▪ Average the Euler angles of each Ri

▪ Average the angle-axis of each Ri

▪ Average the quaternions of each Ri

▪ All equally problematic and do not accurately respect the noise model

(not rotation)

(is rotation)

39

1

𝑛
෍

𝑖=1

𝑛

𝑅𝑖

1

𝑛
෍

𝑖=1

𝑛

𝜔𝑖

1

𝑛
෍

𝑖=1

𝑛

𝑞𝑖

1

𝑛
෍

𝑖=1

𝑛

𝛼𝑖 ,
1

𝑛
෍

𝑖=1

𝑛

𝛽𝑖 ,
1

𝑛
෍

𝑖=1

𝑛

𝛾𝑖

Optimization in SO(3)

▪ Newton-Method

▪ Naive approach:

▫ Xn are elements of rotation matrix. Then the update step (addition) would not

result in a rotation matrix.

▪ Xn are Euler angles:

▫ To evaluate f(Xn) the rotation matrix has to be created from the Euler angles.

Could lead to gimbal lock.

▫ Derivatives of Euler angle construction has to be computed.

▪ Xn are elements of the tangent space so(3)

▫ Represents angle-axis notation

▫ No gimbal lock

▫ Minimal representation of 3 parameters

40

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)

Learning goals - Recap

▪ Understand the problems of dealing with rotations

▪ Understand how to represent rotations

▪ Understand the terms SO(3) etc.

▪ Understand the use of the tangent space

▪ Understand Euler angles, Axis-Angle, and quaternions

▪ Understand how to interpolate, filter and optimize rotations

41

