Mathematical Principles in Visual Computing

Projective Geometry – Geometric Relations

Prof. Friedrich Fraundorfer

SS 2023
Outline

- Epipolar constraint derivation
- Stereo normal case
- Triangulation
- Camera pose estimation
Learning goals

- Understand and derive the epipolar constraint
- Understand the geometric concept of the epipolar plane
- Understand triangulation
- Understand camera pose estimation
The epipolar constraint is a mathematical relationship between the point correspondences of two images.
Epipolar constraint – derivation by coplanarity condition

- Vector p and t define a plane
- Vector p' and t define also a plane
- Both planes must have the same normal
- What we seek is a relation between p and p'
Epipolar constraint – derivation by coplanarity condition

\[P = [I|0] \quad \text{and} \quad P' = [R|t] \]
Epipolar constraint – derivation by coplanarity condition
Epipolar constraint – derivation by coplanarity condition
Epipolar constraint – derivation by coplanarity condition

\[p'' = Rp + t \]

\(X \) world point

\([R|t] \)
Epipolar constraint – derivation by coplanarity condition

\[t \times p' = t \times p'' \]

\[t \times p' = t \times (Rp + t) \]

with \(p'' = Rp + t \)

\[t \times p' = t \times Rp + t \times t \]

\[p'^T (t \times p') = 0 \]

\[p'^T (t \times Rp) = 0 \]

\[p'^T [t]_x Rp = 0 \]

\[E \]

\[p'^T Ep = 0 \]

E is called the Essential matrix
Fundamental matrix

- p, p' from the Essential matrix derivation are in normalized coordinates
- x, x' are image coordinates, $x = Kp$, $x' = Kp'$
- By replacing p, p' with x, x' one gets the Fundamental matrix

\[p = K^{-1}x \]
\[p' = K^{-1}x' \]

\[p'^T E p = 0 \]
\[x'^T K^{-T} E K^{-1} x = 0 \]
\[x'^T F x = 0 \]
\[F = K^{-T} E K^{-1} \]
Epipolar lines

- The corresponding line l' to image coordinate x
- l' is the line connecting the epipole e' and the image coordinate x'
- Hypothesis: $l' = Fx$
- Point x' must lie on l', thus $x'^Tl' = 0$
- Now $x'^TFx = 0$

![Diagram](image)
Stereo case

\[R = I_{3 \times 3} \quad T = [T_x \quad 0 \quad 0]^T \]
Stereo case

\[R = I_{3 \times 3} \]
\[T = [T_x \ 0 \ 0]^T \]

\[E = [T]_x R = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -T_x \\ 0 & T_x & 0 \end{bmatrix} \]

\[\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -T_x \\ 0 & T_x & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0 \]

\[\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} \begin{bmatrix} 0 & -T_x \\ -T_x & 0 \end{bmatrix} = 0 \]

\[-y'T_x + T_xy = 0\]
Triangulation

- Compute coordinates of world point X given the measurements x, x' and the camera projection matrices P and P'
Triangulation

- Condition: Measurement vector \(x \) needs to have the same direction as projection of \(X \) (cross-product equals 0)
 - \(x \times (PX) = 0 \) and \(x' \times (P'X) = 0 \)
 - Can be rewritten into equation system \(AX = 0 \) to solve for \(X \)
Triangulation

\[x \times (PX) = 0 \text{ and } x' \times (P'X) = 0 \]
\[x(P_3^T X) - (P_1^T X) = 0 \]
\[y(P_3^T X) - (P_2^T X) = 0 \]
\[x(P_2^T X) - y(P_1^T X) = 0 \]

\[
\begin{bmatrix}
 xP_3^T - P_1^T \\
 yP_3^T - P_2^T \\
 x'P_3'^T - P_1'^T \\
 y'P_3'^T - P_2'^T
\end{bmatrix}X = 0
\]

\[
P = \begin{bmatrix}
P_1^T \\
P_2^T \\
P_3^T
\end{bmatrix}
\]
Camera pose estimation

- perspective-n-point problem
- Goal is to estimate camera matrix P such that $m_1 = PM_1$
- $m_1, M_1, m_2, M_2, m_3, M_3$ are known
- Algebraic linear solution requires 6 3D-2D point correspondences, minimal nonlinear solution requires only 3
Camera pose estimation

- Derivation similar to Triangulation, but now entries of P are the unknowns instead of X
- Condition: Measurement vector x needs to have the same direction as projection of X (cross-product equals 0)
Camera pose estimation

- Derivation similar to Triangulation, but now entries of P are the unknowns instead of X
- Condition: Measurement vector x needs to have the same direction as projection of X (cross-product equals 0)

\[x \times (PX) = 0 \text{ for all pairs } x \leftrightarrow X \]
\[y(P_3^TX) - w(P_2^TX) = 0 \]
\[x(P_3^TX) - w(P_1^TX) = 0 \]
\[x(P_2^TX) - y(P_1^TX) = 0 \]

\[
\begin{bmatrix}
0 & -wX^T & yX^T \\
-wX^T & 0 & xX^T \\
-yX^T & xX^T & 0
\end{bmatrix}
\begin{bmatrix}
P_1 \\
P_2 \\
P_3
\end{bmatrix}
= 0
\]
Recap - Learning goals

- Understand and derive the epipolar constraint
- Understand the geometric concept of the epipolar plane
- Understand triangulation
- Understand camera pose estimation