Mathematical Principles in Visual Computing
Projective Geometry - Geometric Relations

Prof. Friedrich Fraundorfer
SS 2023

Outline

- Epipolar constraint derivation
- Stereo normal case
- Triangulation
- Camera pose estimation

Learning goals

- Understand and derive the epipolar constraint
- Understand the geometric concept of the epipolar plane
- Understand triangulation
- Understand camera pose estimation

Epipolar constraint

- The epipolar constraint is a mathematical relationship between the point correspondences of two images

Epipolar constraint - derivation by coplanarity condition

- Vector p and t define a plane
- Vector p' and t define also a plane
- Both planes must have the same normal
- What we seek is a relation between p and p '

Epipolar constraint - derivation by coplanarity condition

Epipolar constraint - derivation by coplanarity condition

X world point

$$
\begin{aligned}
& t \times p^{\prime}=t \times p^{\prime \prime} \\
& t \times p^{\prime}=t \times(R p+t) \\
& \text { with } p^{\prime \prime}=R p+t \\
& t \times p^{\prime}=t \times R p+t \times t \\
& p^{\prime^{T}}\left(t \times p^{\prime}\right)=0 \\
& {p^{\prime T}}^{\prime}(t \times R p)=0
\end{aligned}
$$

$$
\begin{gathered}
p^{\prime T} \underbrace{[t]_{x} R p=0}_{E} \\
p^{\prime T} E p=0 \\
\hline
\end{gathered}
$$

E is called the Essential matrix

Fundamental matrix

- p, p ' from the Essential matrix derivation are in normalized coordinates
- x, x^{\prime} are image coordinates, $x=K p, x^{\prime}=K p \prime$
- By replacing p, p^{\prime} with x, x^{\prime} one gets the Fundamental matrix

$$
\begin{aligned}
& p=K^{-1} x \\
& p^{\prime}=K^{-1} x^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& {p^{\prime T} E p=0}_{x^{\prime T} K^{-T} E K^{-1} x=0}^{x^{\prime T} F x=0} \\
& \mathrm{~F}=K^{-T} E K^{-1}
\end{aligned}
$$

Epipolar lines

- The corresponding line l' to image coordinate x
- I' is the line connecting the epipole e' and the image coordinate x '
- Hypothesis: $l^{\prime}=F x$
- Point x^{\prime} must lie on I^{\prime}, thus $x^{\prime T} l^{\prime}=0$
- Now $x^{\prime T} F x=0$

Stereo case

$$
R=I_{3 x 3} \quad T=\left[\begin{array}{lll}
T_{x} & 0 & 0
\end{array}\right]^{T}
$$

Stereo case

$$
\begin{aligned}
& R=I_{3 x 3} \quad T=\left[\begin{array}{lll}
T_{x} & 0 & 0
\end{array}\right]^{T} \\
& E=[T]_{x} R=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -T_{x} \\
0 & T_{x} & 0
\end{array}\right] \\
& {\left[\begin{array}{lll}
x^{\prime} & y^{\prime} & 1
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -T_{x} \\
0 & T_{x} & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=0} \\
& {\left[\begin{array}{lll}
x^{\prime} & y^{\prime} & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
-T_{x} \\
T_{x} y
\end{array}\right]=0} \\
& -y^{\prime} T_{x}+T_{x} y=0
\end{aligned}
$$

Triangulation

- Compute coordinates of world point X given the measurements x, x ' and the camera projection matrices P and P^{\prime}

Triangulation

- Condition: Measurement vector x needs to have the same direction as projection of X (cross-product equals 0)
- $x \times(P X)=0$ and $x^{\prime} \times\left(P^{\prime} X\right)=0$
- Can be rewritten into equation system $A X=0$ to solve for X

Triangulation

$$
\begin{aligned}
& x \times(P X)=0 \text { and } x^{\prime} \times\left(P^{\prime} X\right)=0 \\
& x\left(P_{3}^{T} X\right)-\left(P_{1}^{T} X\right)=0 \\
& y\left(P_{3}^{T} X\right)-\left(P_{2}^{T} X\right)=0 \\
& x\left(P_{2}^{T} X\right)-y\left(P_{1}^{T} X\right)=0
\end{aligned}
$$

$$
P=\left[\begin{array}{l}
P_{1}^{T} \\
P_{2}^{T} \\
P_{3}^{T}
\end{array}\right]
$$

$$
\left[\begin{array}{c}
x P_{3}^{T}-P_{1}^{T} \\
y P_{3}^{T}-P_{2}^{T} \\
x^{\prime} P_{3}^{\prime T}-P_{1}^{\prime T} \\
y^{\prime} P_{3}^{\prime T}-P_{2}^{\prime T}
\end{array}\right] X=0
$$

Camera pose estimation

- perspective-n-point problem
- Goal is to estimate camera matrix P such that $\mathrm{m}_{1}=P \mathrm{M}_{1}$
- $\mathrm{m}_{1}, \mathrm{M}_{1}, \mathrm{~m}_{2}, \mathrm{M}_{2}, \mathrm{~m}_{3}, \mathrm{M}_{3}$ are known
- Algebraic linear solution requires 6 3D-2D point correspondences, minimal nonlinear solution requires only 3

Camera pose estimation

- Derivation similar to Triangulation, but now entries of P are the unknowns instead of X
- Condition: Measurement vector x needs to have the same direction as projection of X (cross-product equals 0)

Camera pose estimation

- Derivation similar to Triangulation, bot now entries of P are the unknowns instead of X
- Condition: Measurement vector x needs to have the same direction as projection of X (cross-product equals 0)

$$
\begin{aligned}
& x \times(P X)=0 \text { for all pairs } x \leftrightarrow X \\
& y\left(P_{3}^{T} X\right)-w\left(P_{2}^{T} X\right)=0 \\
& x\left(P_{3}^{T} X\right)-w\left(P_{1}^{T} X\right)=0 \\
& x\left(P_{2}^{T} X\right)-y\left(P_{1}^{T} X\right)=0 \\
& {\left[\begin{array}{ccc}
0 & -w X^{T} & y X^{T} \\
-w X^{T} & 0 & x X^{T} \\
-y X^{T} & x X^{T} & 0
\end{array}\right]\left[\begin{array}{l}
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right]=0}
\end{aligned}
$$

Recap - Learning goals

- Understand and derive the epipolar constraint
- Understand the geometric concept of the epipolar plane
- Understand triangulation
- Understand camera pose estimation

