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Polynomial Systems in Computer Vision

Many Computer Vision problems can be solved by finding the roots
of a polynomial system:

I camera pose estimation from point correspondences;
I camera relative motion estimation from point

correspondences;
I image distortion calibration;
I point triangulation;
I ...



Solving Polynomial Systems

I no general method;
I several mathematical tools exist. For a given problem, a tool

can be more adapted than the others.



Gröbner Bases

I introduced in 1965 by Bruno Buchberger (now at the
Johannes Kepler University in Linz) in his Ph.D.
thesis (named after his advisor Wolfgang Gröbner) to study
sets of polynomials



A Polynomial System

Let consider the following polynomial system:
L1 2x2 +y2−2z+3z2 +5 = 0
L2 x2 +z+z2 = 0
L3 x2y2 +y2z2−2 = 0

Hint: try to remove x from the first equation
Replace L1 by L1−2L2:

L′1 y2−4z+z2 +5 = 0
L2 x2 +z+z2 = 0
L3 x2y2 +y2z2−2 = 0



A Real Polynomial System (continued)


L′1 y2−4z+z2 +5 = 0
L2 x2 +z+z2 = 0
L3 x2y2 +y2z2−2 = 0

Hint: try to remove x from the second equation:
Adding y2L2−L3: 

L′1 y2−4z+z2 +5 = 0
L2 x2 +z+z2 = 0
L3 x2y2 +y2z2−2 = 0
L4 y2z+2 = 0



A Real Polynomial System (continued)


L′1 y2−4z+z2 +5 = 0
L2 x2 +z+z2 = 0
L3 x2y2 +y2z2−2 = 0
L4 y2z+2 = 0

Hint: try to remove y from the first equation
Add zL′1−L4: 

L′1 y2−4z+z2 +5 = 0
L2 x2 +z+z2 = 0
L3 x2y2 +y2z2−2 = 0
L4 y2z+2 = 0
L5 5z−4z2 +z3−2 = 0



A Real Polynomial System (continued)


L′1 y2−4z+z2 +5 = 0
L2 x2 +z+z2 = 0
L3 x2y2 +y2z2−2 = 0
L4 y2z+2 = 0
L5 5z−4z2 +z3−2 = 0

Hint: L5 is a polynomial in z only
5z−4z2 +z3−2 = (z−1)2(z−2)

Each possible value for z gives a new polynomial system in x and y
only.



Solving a Univariate Polynomial

I closed form up to degree 4;
I for higher degrees:

I the companion matrix method: The companion matrix of
p(z) = zn +an−1z

n−1 + . . .+a1z+a0 is

C =


0 −a0
1 0 −a1

1 0 −a2
. . . ...

1 −an−1

 .

Its eigenvalues are the roots of p(z) (because p(z) is the
characteristic polynomial det(zI−C) of C).

I Sturm’s bracketing method (slightly less stable but much
faster).



Two Gröbner bases


L′1 y2−4z+z2 +5 = 0
L2 x2 +z+z2 = 0
L3 x2y2 +y2z2−2 = 0
L4 y2z+2 = 0
L5 5z−4z2 +z3−2 = 0

{
y2−4z+z2 +5,x2 +z+z2,x2y2 +y2z2−2,y2z+2,5z−4z2 +z3−2

}
is a Gröbner basis.

{
y2−4z+z2 +5,x2 +z+z2,5z−4z2 +z3−2

}
is also a Gröbner basis.



A Gröbner basis is a set of polynomials {g1, . . . ,gt}, such that the
system 

g1(x1, . . . ,xn) = 0
. . .

gt(x1, . . . ,xn) = 0

has the same solutions as the original one,
but with some specific properties that make the new system easier
to solve than the original one, OR AT LEAST USEFUL to solve
the original one.



Tools
We can create new equations from:
I linear combinations of existing equations. Gauss-Jordan

elimination algorithm to simplify the system.{
2x2 +xy+y2 +1 = 0
x2−xy+2y2−1 = 0

in matrix form:

[
2 1 1 1
1 −1 2 −1

]
x2

xy
y2

1

= 0 .

[
1 0 1 0
0 1 −1 1

]
x2

xy
y2

1

= 0 .

I algebraic combinations of existing equations.



Tools

We can create new equations from:

I linear combinations of existing equations.
I algebraic combinations of existing equations.
I the remainder of polynomial divisions (used by Buchberger’s

algorithm).



Monomials

Definition. A monomial in x1, . . . ,xn is a product of the form:

xα1
1 ·x

α2
2 . . . ·xαn

n ,

where all the exponents α1, . . . ,αn are nonnegative integers,
sometimes noted xα with α= (α1, . . . ,αn).
Examples: x, x2, x2y, x2yz3



Polynomials

Definition. A polynomial f in x1, . . . ,xn with coefficients in a
field k is a finite linear combination with coefficients in k of
monomials. A polynomial is written in the form

f =
∑
α

aαxα, aα ∈ k

with

I aα the coefficient of the monomial xα.
I If aα 6= 0, then we call aαxα a term of f .



Notations: k[x1, . . . ,xn]

Notation. The set of all polynomials in x1, . . . ,xn with coefficients
in k is denoted k[x1, . . . ,xn].
k[x] is the set of polynomials in one variable: x2−x ∈ k[x],
x3 +4x ∈ k[x].
k[x,y] is the set of polynomials in two variables: x2−y ∈ k[x,y],
x3 +2xy+y2 ∈ k[x,y].



Definition - Leading Term LT(f)

Definition. Given a nonzero polynomial f ∈ k[x], let

f = a0x
m+a1x

m−1 + . . .+am ,

where ai ∈ k and a0 6= 0.
a0x

m is called the leading term of f .
We will write LT(f) = a0x

m.



Dividing Multivariate Polynomials?

Is there a division for polynomials in several variables?
The answer is yes, but we need to decide which term of a
polynomial is the leading term.
For example, what is the leading term of x2 +xy+y2?
To decide, we will define a monomial order.



Monomial Order

A monomial order is any relation on the set of monomials xα in
k[x1, . . . ,xn] satisfying:

1. > is a total (linear) ordering relation:
there is only one possible to order in increasing order under >
a set of monomials;

2. > is compatible with multiplication:
if xα > xβ and xγ is any monomial, then
xαxγ = xα+γ > xβxγ = xβ+γ ;

3. > is a well-ordering:
every nonempty set of monomials has a smallest element
under >.



Monomial Order on k[x]

The only monomial order on k[x] is the degree order, given by:

. . . > xn+1 > xn > .. . > x2 > x > 1.



Monomial Orders on k[x1, . . . ,xn]

For polynomials in several variables, there are many choices of
monomial orders.
Let’s first define an order on the variables: x1 > x2 > .. . > xn (this
is not a monomial order), and x > y > z.



Monomial Orders on k[x1, . . . ,xn] - the Lexicographic
Order >lex

Definition. The lexicographic order: analogous to the ordering of
words in a dictionary.
For example, under this order >lex :

x2>lex xy
2>lex xy>lex x>lex y

Formal definition: xα>lex xβ if in the difference α−β (which
belongs to Zn), the leftmost nonzero entry is positive.
x2yz3>lex x

2z4 or x2z4>lex x
2yz3 ?

→ x2yz3>lex x
2z4 because (2,1,3)− (2,0,4) = (0,1,−1)



Monomial Orders on k[x1, . . . ,xn] - the Graded Reverse
Lexicographic Order >grevlex

Let xα and xβ be monomials in k[x1, . . . ,xn]. xα>grevlex xβ if:

I
∑n
i αi >

∑n
i βi, or if

I
∑n
i αi =

∑n
i βi and in the difference α−β, the rightmost

nonzero entry is negative.

Under this order >grevlex :

xy2>grevlex x
2>grevlex xy>grevlex x>grevlex y

x2y2z2>grevlex xy
4z or xy4z>grevlex x

2y2z2 ?
→ xy4z>grevlex x

2y2z2 because 1+4+1 = 2+2+2 and
(1,4,1)− (2,2,2) = (−1,2,−1)



Monomial Orders

x3y2z>lex x
2y6z8

x2y6z8>grevlex x
3y2z

x2y2z2>lex xy
4z

xy4z>grevlex x
2y2z2



Division in k[x1, . . . ,xn]

Let F = (f1, . . . ,fs) be an ordered s-tuple of polynomials in
k[x1, . . . ,xn].
Then every f ∈ k[x1, . . . ,xn] can be written as

f = a1f1 + . . .+asfs+ r ,

r is called a remainder of f on division by F .

I Notation: r = f
F ;

I there exists an algorithm to compute the ai’s and r.



Division in k[x1, . . . ,xn]: Matlab example

syms x y
F = [ x ^2 , y ]
f = x∗y^2+x^2∗y+y^2+x

[ r , q ] = po lynomia lReduce ( f , F)

r = x

q = [ y , y + x∗y ]

f = yf1 +(y+xy)f2 + r



Why Several Orders?

Computing Gröbner bases with >grevlex is usually more efficient.
Computing Gröbner bases with >lex yields a polynomial system
that can be easily solved.



Important property
If
I we use the monomial order >lex to compute a Gröbner basis

and
I the solution set is finite,

then a univariate polynomial (in the last variable) is in the basis.
For example, the Gröbner basis for

〈
x2−y2 +1, xy−1

〉
is〈

y4−y2−1, x−y3 +y
〉
.

The system {
x2−y2 +1 = 0
xy−1 = 0

has the same solutions as the system:{
y4−y2−1 = 0
x−y3 +y = 0

but the latter is much simpler to solve.



A More Ugly Example

A Gröbner basis for 
x2−2xz+5 = 0
xy2 +yz+1 = 0
3y2−8xz = 0

under >lex is

{−81+4320z−86400z2 +766272z3−2513488z4−295680z5−
242496z6 +61440z8,−2472389942760+1450790919y+
98722479369600z−1312504296363936z2 +5756399991700688z3+
711670127441280z4 +549519027506496z5−10326680985600z6−
139421921341440z7,6503592729600+1450790919x−
257416379643438z+3400639490020320z2−14857079919551480z3

−1835782187164800z4−1418473727285760z5 +26347944960000z6

+359882180198400z7}



Algorithms to Compute a Gröbner basis: Buchberger
Algorithm

I S-polynomial

S(f1,f2) = xb

LT (f1)f1−
xb

LT (f2)f2

xb is the least common multiple (LCM) of the leading monomials
LM(f1) and LM(f2). LT (f1) and LT (f2) are the leading terms
of polynomials f1,f2



Algorithms to Compute a Gröbner basis: Buchberger
Algorithm

I S-polynomial example >lex

f1 = y−x2

f2 = z−x3

S(f1,f2) = xb

LT (f1)f1−
xb

LT (f2)f2 (1)

= x3

−x2 (y−x2)− x3

−x3 (z−x3) (2)

= −xy+x3 +z−x3 (3)
= −xy+z (4)

LT (f1) =−x2 LT (f2) =−x3

LM(f1) = x2 LM(f2) = x3

LCM(LM(f1),LM(f2)) = x3



Algorithms to Compute a Gröbner basis: Buchberger
Algorithm

Input: F = (f1, ...,fs)
Output: Gröbner basis G= (g1, ...,gt)
G:=F
REPEAT

G’:=G
FOREACH f1,f2 ∈G′ with f1 6= f2, DO

s := S(f1,f2)G
′

IF s 6= 0, THEN G :=G∪s
UNTIL G = G’



Discussion

Unfortunately, computation of Gröbner bases under the
lexicographic ordering (>lex ) is often intractable for real problems.
Using the graded reverse lexicographical ordering (>grevlex )
usually yields more tractable computations.
Unfortunately, the resulting polynomial system is not necessarily
easy to solve.
Fortunately, other properties of Gröbner bases can be used to find
the solutions.



>lex versus >grevlex : Example

Computing a Gröbner basis for

d2
1 +Ad1d2 +d2

2−F 2 = 0
d2

1 +Bd1d3 +d2
3−F 2 = 0

d2
2 +Cd2d3 +d2

3−G2 = 0
d2

2 +Dd2d4 +d2
4−F 2 = 0

d2
3 +Ed3d4 +d2

4−F 2 = 0

under >grevlex : less than a second (but 130 polynomials in a
96Kb text file).
under >lex : more than a week



Properties of >grevlex Gröbner basis
Example:

{ 3y2−8xz,
x2−2xz+5,
160z3−160xz+415yz+12x−30y−224z+15,
240yz2−9xy+1600xz+18yz+120z2−120x+240z,
16xz2 +3yz−40z+3,
40xyz−3xy+6yz+40z2}

Each term has a leading term which does not appear in any other
equation
All other monomials are not divisible by the leading terms and are
called basis monomials. The number of basis monomials is equal
to the number of solutions.
Basis monomials are : { 1, x, y, z, xy, xz, yz, z2}
Leading terms are: {y2, x2, z3, yz2, xz2, xyz}
Number of solutions: 8



Using Gröbner basis to solve polynomial equation systems

The Action matrix method:

I Calculation of a Gröbner basis using >grevlex ordering
I Calculation of the so called Action matrix
I Calcuation of the eigenvalues of the Action matrix to find

solutions of one variable
I Backsubstitution into equations to find solutions to other

variables



Action matrix example
The Gröbner basis G under >grevlex for

x2−2xz+5 = 0
xy2 +yz+1 = 0
3y2−8xz = 0

is { 3y2−8xz, x2−2xz+5,
160z3−160xz+415yz+12x−30y−224z+15,
240yz2−9xy+1600xz+18yz+120z2−120x+240z,
16xz2 +3yz−40z+3, 40xyz−3xy+6yz+40z2 }

with leading terms {y2, x2, z3, yz2, xz2, xyz}. Leading terms do
only appear in one equation each.
The monomials in B are the monomials that are not divisible by
the leading terms: 1, x, y, z, xy, xz, yz, z2



Action matrix example
To compute the Action matrix we need to decide on one variable
for which we calculate the Action matrix. If we select the variable
x we call the Action matrix Mx.
All monomials of the basis B need to be multiplied with the
variable x and we need to find an expression for these terms in
terms of basis monomials only.
The basis monomials are

{
[1], [x], [y], [z], [xy], [xz], [yz], [z2]

}
x.1 = x=
x.x= x2 =
x.y = xy =
x.z = xz =
x.xy = x2y =
x.xz = x2z =
x.yz = xyz =
x.z2 = xz2 =



Action matrix example

To find an expression for these terms in terms of basis monomials
only we can divide the term by the Gröbner basis. The remainder of
this division is an expression in the term of basis monomials then.

x2G =−5+2xz



Action matrix example

The division can be done in Matlab using the function
polynomialReduce

x2G =−5+2xz

syms x y z
G = [3∗ y^2−8∗x∗z , x^2−2∗x∗ z+5, 160∗ z^3−160∗x∗ z+415∗y∗ z+12∗x−30∗y−224∗z +15,

240∗ y∗ z^2−9∗x∗y+1600∗x∗ z+18∗y∗ z+120∗z^2−120∗x+240∗z ,
16∗ x∗ z^2+3∗y∗z −40∗z+3, 40∗ x∗y∗z−3∗x∗y+6∗y∗ z+40∗z ^2 ]

[ r , q ] = po lynomia lReduce ( x ^2 ,G ) ;
r

r =
2∗ x∗ z − 5



Action matrix example

xG = x

x2G =−5+2xz
xyG = xy
xzG = xz

x2y
G =−5y+ 3

20xy−
2
10yz−z

2

x2z
G =−3

8yz−
3
8

xyzG =−z2− 3
20yz+ 3

40xy

xz2G = 5
2z−

3
16yz−

3
16

The basis monomials are
{
[1], [x], [y], [z], [xy], [xz], [yz], [z2]

}



Action matrix example

Mx =

x x2 xy xz x2y x2z xyz xz2



0 −5 0 0 0 −3
8 0 − 3

16 1
1 0 0 0 0 0 0 0 x
0 0 0 0 −5 0 0 0 y
0 0 0 0 0 0 0 −5

2 z
0 0 1 0 3

20 0 3
40 0 xy

0 2 0 1 0 0 0 0 xz
0 0 0 0 − 2

10 −3
8 − 3

20 − 3
16 yz

0 0 0 0 −2 0 −1 0 z2

The real eigenvalues for Mx are −1.10137.. and 0.9660.., which
are the possible values for x.



Action matrix example

The real eigenvalues for Mx are −1.10137.. and 0.9660.., which
are the possible values for x.
We still have to find the corresponding values for y and z.
Possible strategies:

1. do the same with My and Mz, and check for every possible
combination (x,y,z) if it is a valid solution.

2. for each possible value for x, plug it in the system and solve
the resulting system (which is now only in y and z).

The first option is more stable numerically.
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