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Polynomial Systems in Computer Vision

Many Computer Vision problems can be solved by finding the roots
of a polynomial system:

I camera pose estimation from point correspondences;
I camera relative motion estimation from point

correspondences;
I image distortion calibration;
I point triangulation;
I ...



Solving Polynomial Systems

I no general method;

I several mathematical tools exist. For a given problem, a tool
can be more adapted than the others.
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Gröbner Bases

I introduced in 1965 by Bruno Buchberger (now at the
Johannes Kepler University in Linz) in his Ph.D.
thesis (named after his advisor Wolfgang Gröbner) to study
sets of polynomials



A Polynomial System

Let consider the following polynomial system:
L1 2x2 +y2−2z+3z2 +5 = 0
L2 x2 +z+z2 = 0
L3 x2y2 +y2z2−2 = 0

Hint: try to remove x from the first equation

Replace L1 by L1−2L2:
L′1 y2−4z+z2 +5 = 0
L2 x2 +z+z2 = 0
L3 x2y2 +y2z2−2 = 0
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A Real Polynomial System (continued)


L′1 y2−4z+z2 +5 = 0
L2 x2 +z+z2 = 0
L3 x2y2 +y2z2−2 = 0

Hint: try to remove x from the second equation:

Adding y2L2−L3: 
L′1 y2−4z+z2 +5 = 0
L2 x2 +z+z2 = 0
L3 x2y2 +y2z2−2 = 0
L4 y2z+2 = 0
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A Real Polynomial System (continued)


L′1 y2−4z+z2 +5 = 0
L2 x2 +z+z2 = 0
L3 x2y2 +y2z2−2 = 0
L4 y2z+2 = 0
L5 5z−4z2 +z3−2 = 0

Hint: L5 is a polynomial in z only

5z−4z2 +z3−2 = (z−1)2(z−2)

Each possible value for z gives a new polynomial system in x and y
only.
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Solving a Univariate Polynomial

I closed form up to degree 4;

I for higher degrees:
I the companion matrix method: The companion matrix of

p(z) = zn +an−1z
n−1 + . . .+a1z+a0 is

C =


0 −a0
1 0 −a1

1 0 −a2
. . .

...
1 −an−1

 .

Its eigenvalues are the roots of p(z) (because p(z) is the
characteristic polynomial det(zI−C) of C).

I Sturm’s bracketing method (slightly less stable but much
faster).
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Two Gröbner bases


L′1 y2−4z+z2 +5 = 0
L2 x2 +z+z2 = 0
L3 x2y2 +y2z2−2 = 0
L4 y2z+2 = 0
L5 5z−4z2 +z3−2 = 0

{
y2−4z+z2 +5,x2 +z+z2,x2y2 +y2z2−2,y2z+2,5z−4z2 +z3−2

}
is a Gröbner basis.

{
y2−4z+z2 +5,x2 +z+z2,5z−4z2 +z3−2

}
is also a Gröbner basis.
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A Gröbner basis is a set of polynomials {g1, . . . ,gt}, such that the
system 

g1(x1, . . . ,xn) = 0
. . .

gt(x1, . . . ,xn) = 0

has the same solutions as the original one,

but with some specific properties that make the new system easier
to solve than the original one, OR AT LEAST USEFUL to solve
the original one.
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Tools
We can create new equations from:
I linear combinations of existing equations.

In particular, we
can use the Gauss-Jordan elimination algorithm to simplify the
system. For example, we can write the system:{

2x2 +xy+y2 +1 = 0
x2−xy+2y2−1 = 0

in matrix form: [
2 1 1 1
1 −1 2 −1

]
x2

xy
y2

1

= 0 .

After Gauss-Jordan elimination:[
1 0 1 0
0 1 −1 1

]
x2

xy
y2

1

= 0 .

I algebraic combinations of existing equations.
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I algebraic combinations of existing equations.

I the remainder of polynomial divisions (used by Buchberger’s
algorithm).
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I the remainder of polynomial divisions (used by Buchberger’s

algorithm).



Monomials

Definition. A monomial in x1, . . . ,xn is a product of the form:

xα1
1 ·x

α2
2 . . . ·xαn

n ,

where all the exponents α1, . . . ,αn are nonnegative integers,
sometimes noted xα with α= (α1, . . . ,αn).

Examples: x, x2, x2y, x2yz3



Polynomials

Definition. A polynomial f in x1, . . . ,xn with coefficients in a
field k is a finite linear combination with coefficients in k of
monomials. A polynomial is written in the form

f =
∑
α

aαxα, aα ∈ k

with

I aα the coefficient of the monomial xα.

I If aα 6= 0, then we call aαxα a term of f .
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Notations: k[x1, . . . ,xn]

Notation. The set of all polynomials in x1, . . . ,xn with coefficients
in k is denoted k[x1, . . . ,xn].

k[x] is the set of polynomials in one variable: x2−x ∈ k[x],
x3 +4x ∈ k[x].

k[x,y] is the set of polynomials in two variables: x2−y ∈ k[x,y],
x3 +2xy+y2 ∈ k[x,y].
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Definition - Leading Term LT(f)

Definition. Given a nonzero polynomial f ∈ k[x], let

f = a0x
m+a1x

m−1 + . . .+am ,

where ai ∈ k and a0 6= 0.

a0x
m is called the leading term of f .

We will write LT(f) = a0x
m.
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Dividing Multivariate Polynomials?

Is there a division for polynomials in several variables?

The answer is yes, but we need to decide which term of a
polynomial is the leading term.

For example, what is the leading term of x2 +xy+y2?

To decide, we will define a monomial order.
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Monomial Order

A monomial order is any relation on the set of monomials xα in
k[x1, . . . ,xn] satisfying:

1. > is a total (linear) ordering relation:
there is only one possible to order in increasing order under >
a set of monomials;

2. > is compatible with multiplication:
if xα > xβ and xγ is any monomial, then
xαxγ = xα+γ > xβxγ = xβ+γ ;

3. > is a well-ordering:
every nonempty set of monomials has a smallest element
under >.
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Monomial Order on k[x]

The only monomial order on k[x] is the degree order, given by:

. . . > xn+1 > xn > .. . > x2 > x > 1.



Monomial Orders on k[x1, . . . ,xn]

For polynomials in several variables, there are many choices of
monomial orders.

Let’s first define an order on the variables: x1 > x2 > .. . > xn (this
is not a monomial order), and x > y > z.
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Monomial Orders on k[x1, . . . ,xn] - the Lexicographic
Order >lex

Definition. The lexicographic order: analogous to the ordering of
words in a dictionary.

For example, under this order >lex :

x2>lex xy
2>lex xy>lex x>lex y

Formal definition: xα>lex xβ if in the difference α−β (which
belongs to Zn), the leftmost nonzero entry is positive.

x2yz3>lex x
2z4 or x2z4>lex x

2yz3 ?

→ x2yz3>lex x
2z4 because (2,1,3)− (2,0,4) = (0,1,−1)
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Monomial Orders on k[x1, . . . ,xn] - the Graded Reverse
Lexicographic Order >grevlex

Let xα and xβ be monomials in k[x1, . . . ,xn]. xα>grevlex xβ if:

I
∑n
i αi >

∑n
i βi, or if

I
∑n
i αi =

∑n
i βi and in the difference α−β, the rightmost

nonzero entry is negative.

Under this order >grevlex :

xy2>grevlex x
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2y2z2 ?

→ xy4z>grevlex x
2y2z2 because 1+4+1 = 2+2+2 and

(1,4,1)− (2,2,2) = (−1,2,−1)
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2y2z2 ?

→ xy4z>grevlex x
2y2z2 because 1+4+1 = 2+2+2 and

(1,4,1)− (2,2,2) = (−1,2,−1)
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Monomial Orders

x3y2z>lex x
2y6z8

x2y6z8>grevlex x
3y2z

x2y2z2>lex xy
4z

xy4z>grevlex x
2y2z2



Why Several Orders?

Computing Gröbner bases with >grevlex is usually more efficient.

Computing Gröbner bases with >lex yields a polynomial system
that can be easily solved.
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Cool
If

I we use the monomial order >lex to compute a Gröbner basis
and

I the solution set is finite,

then a univariate polynomial (in the last variable) is in the basis.

For example, the Gröbner basis for
〈
x2−y2 +1, xy−1

〉
is〈

y4−y2−1, x−y3 +y
〉
.

The system {
x2−y2 +1 = 0
xy−1 = 0

has the same solutions as the system:{
y4−y2 +−1 = 0
x−y3 +y = 0

but the latter is much simpler to solve.
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A More Ugly Example

A Gröbner basis for 
x2−2xz+5 = 0
xy2 +yz+1 = 0
3y2−8xz = 0

under >lex is

{−81+4320z−86400z2 +766272z3−2513488z4−295680z5−
242496z6 +61440z8,−2472389942760+1450790919y+
98722479369600z−1312504296363936z2 +5756399991700688z3+
711670127441280z4 +549519027506496z5−10326680985600z6−
139421921341440z7,6503592729600+1450790919x−
257416379643438z+3400639490020320z2−14857079919551480z3

−1835782187164800z4−1418473727285760z5 +26347944960000z6

+359882180198400z7}
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Algorithms to Compute a Gröbner basis

First algorithm to compute a Gröbner basis: the Buchberger
algorithm.

More recent algorithms are more efficient (F4 and F5 algorithms
by Faugère).

In (Kukelova, 2008):

1. Start with d← 1;
2. Multiply each equation of the current system by every possible

monomial of degree d;
3. Simplify the system with Gauss-Jordan elimination;
4. If not a Gröbner basis, set d← d+1, and iterate from 1.



Computation Steps for (Stewenius, 2005)



Albeit

Unfortunately, computation of Gröbner bases under the
lexicographic ordering (>lex ) is often intractable for real problems.

Using the graded reverse lexicographical ordering (>grevlex )
usually yields more tractable computations.

Unfortunately, the resulting polynomial system is not necessarily
easy to solve.

Fortunately, other properties of Gröbner bases can be used to find
the solutions.



>lex versus >grevlex : Example

Computing a Gröbner basis for

d2
1 +Ad1d2 +d2

2−F 2 = 0
d2

1 +Bd1d3 +d2
3−F 2 = 0

d2
2 +Cd2d3 +d2

3−G2 = 0
d2

2 +Dd2d4 +d2
4−F 2 = 0

d2
3 +Ed3d4 +d2

4−F 2 = 0

under >grevlex : less than a second (but 130 polynomials in a
96Kb text file).

under >lex : more than a week
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