Camera Drones
Lecture 3 – 3D data generation

Ass.Prof. Friedrich Fraundorfer

WS 2018
Outline

- SfM introduction
- SfM concept
- Feature matching
- Camera pose estimation
- Bundle adjustment
- Dense matching
- Data products (Orthophoto, DSM)
Structure-from-Motion (SfM) concept
Structure-from-Motion (SfM) concept

Initialize Motion
(P_1, P_2 compatible with F)

Initialize Structure
(minimize reprojection error)

Extend motion
(compute pose through matches seen in 2 or more previous views)

Extend structure
(Initialize new structure, refine existing structure)
Structure-from-Motion (SfM) core pipeline

Images → Pose Prior → Feature Extraction → Coarse Matching → Image Overlap → Local Descriptors

Images → Pose Prior → Coarse Matching → Detailed Matching → Matches

Images → Pose Prior → Geometric Verification → Epipolar Graph

Images → Pose Prior → Geometric Estimation → Camera Poses 3D Points
Structure-from-Motion (SfM) overall pipeline

1. Image Acquisition
2. Camera Calibration
3. Structure-from-Motion (SfM)
4. Georegistration by GPS
5. Bundle Adjustment with GCP's + GPS
6. Densification and Fusion
7. Surface Reconstruction and Meshing
Feature extraction

- SIFT features (best working features for matching right now)
- Each descriptor is a vector of length 128 (gradient histogram)
Coarse matching

- Cluster similar images by similarity using visual words
- Will be used for speeding up exhaustive (nxn) matching
Detailed matching

- Typically using NN-search with a Kd-tree
Epipolar graph

- Defines the sequential order for geometry processing
- Is a plot of the number of geometrically verified feature matches

Image similarity

Epipolar graph
Geometry estimation

- Following the sequence ordering from the epipolar graph geometry is estimated for all images
- Geometry estimation is an alternating scheme:
 - Estimate camera pose of new images (position, rotation)
 - Triangulate new 3D data points seen in new image
 - Refinement by non-linear optimization (Bundle adjustment)
Geometry estimation steps

- Compute camera poses of the first two images from feature matches

\[P = K[I|0] \]

\[P' = K'[R'|t'] \]
Geometry estimation steps

- Computation of first 3D points by triangulation

\[P = K[I|0] \]

\[P' = K'[R'|t'] \]
Geometry estimation steps

- Triangulate all feature matches of the first images

\[P = K[I | 0] \]

\[P' = K'[R' | t'] \]
Geometry estimation steps

- First refinement of camera poses and 3D points by non-linear estimation of the re-projection error through bundle adjustment.

\[P = K[I|0] \]

\[P' = K'[R'|t'] \]
Geometry estimation steps

- Start processing the next image

\[P = K[I|0] \]

\[P'' = ? \]

\[P' = K'[R'|t'] \]
Geometry estimation steps

- First, create feature matches to all the previous, neighboring images

\[P = K[I|0] \]

\[P' = K'[R'|t'] \]

\[P'' = ? \]
Geometry estimation steps

- Feature matches give correspondences to already computed 3D points
- From corresponding 2D and 3D points the pose of the new camera can be computed using the PnP-Algorithm

\[P = K[I|0] \]
\[P'' = ? \]
\[P' = K'[R'|t'] \]
Geometry estimation steps

- Repeat the process starting again from triangulation of new features
Bundle adjustment

- Levenberg-Marquardt optimization of re-projection error
- Parameters are camera poses and all 3D points (millions of parameters to optimize!)

\[
\min_{P_j, X_i} \left(\sum_i \sum_j \|x_{i,j} - P_j X_i\| \right)
\]
3 paradigms

- sequential
- hierarchical
- global
Dense matching

- SfM only gives sparse 3D data
- Only SURF feature points are triangulated – for most pixel no 3D data is computed
- Dense image matching computes a 3D point for every pixel in the image (1MP image leads to 1 million 3D points)
- Dense matching algorithms need camera poses as prerequisite
Geometric relation

- Stereo normal case
- Depth Z [m] can be computed from disparity d [pixel]

\[
d = f \frac{B}{Z}
\]
Rectification

- Image transformation to simplify the correspondence search
 - Makes all epipolar lines parallel
 - Image x-axis parallel to epipolar line
 - Corresponds to parallel camera configuration

Before rectification

„Stereo normal case“
Dense matching process

- Estimate disparity (height) for all pixels in image left.
 - Evaluate correspondence measure for every possible pixel location on the line (e.g. NCC, SAD)

- Disparity d: Offset between pixel p in the left image and its correspondent pixel q in the right image.
Dense matching process

reference image

matching image

epipolar line

matching cost

dePTH
Dense matching process
Dense matching process

matching image

cost volume

cost column
Semiglobal matching

- Dense Cost Computation
- Cost Aggregation
- LR Check, Filtering
- Disparity images $D(p), D(q)$
- Disparity Selection
Plane sweep method

- Costs are created by “sweeping” a plane across the scene
- Method suitable for more than 2 images
Digital Surface Model (DSM)

- 1 height value per ground location

original image

digital surface model
(color represents height)
Orthographic image projection
Orthophoto generation

- Camera center
- Perspective image plane
- Orthoimage plane
- DSM
Orthophoto example

- A true orthophoto has all perspective effects removed (is not the case if an orthophoto is created by a simple digital elevation model)