Camera Drones
Lecture 3 – 3D data generation

Ass.Prof. Friedrich Fraundorfer

WS 2019
Outline

- Structure-from-Motion
 - SfM introduction
 - SfM concept
 - Feature matching
 - Camera pose estimation
 - Bundle adjustment
- Dense matching
- Data products (Orthophoto, DSM)
DSM
Orthophoto
Structure-from-Motion (SfM) concept
Structure-from-Motion (SfM) concept

Initialize Motion
(P_1, P_2 compatible with F)

Extend motion
(compute pose through matches seen in 2 or more previous views)

Initialize Structure
(minimize reprojection error)

Extend structure
(Initialize new structure, refine existing structure)
Structure-from-Motion (SfM) core pipeline

- Images
 - Pose Prior
 - Feature Extraction
 - Pose Prior
 - Local Descriptors
 - Coarse Matching
 - Image Overlap
 - Detailed Matching
 - Matches
 - Geometric Verification
 - Epipolar Graph
 - Geometric Estimation
 - Camera Poses 3D Points
Structure-from-Motion (SfM) overall pipeline

- Image Acquisition
- Camera Calibration
- Structure-from-Motion (SfM)
- Georegistration by GPS
- Bundle Adjustment with GCP's + GPS
- Densification and Fusion
- Surface Reconstruction and Meshing
Feature extraction

- SIFT features (best working features for matching right now)
- Each descriptor is a vector of length 128 (gradient histogram)
Coarse matching

- Cluster similar images by similarity using visual words
- Will be used for speeding up exhaustive (nxn) matching
Detailed matching

- Typically using NN-search with a Kd-tree
Epipolar graph

- Defines the sequential order for geometry processing
- Is a plot of the number of geometrically verified feature matches

Image similarity ➔ Epipolar graph
Geometry estimation

- Following the sequence ordering from the epipolar graph geometry is estimated for all images
- Geometry estimation is an alternating scheme:
 - Estimate camera pose of new images (position, rotation)
 - Triangulate new 3D data points seen in new image
 - Refinement by non-linear optimization (Bundle adjustment)
Geometry estimation steps

- Compute camera poses of the first two images from feature matches

\[P = K[I|0] \]

\[P' = K'[R'|t'] \]
Geometry estimation steps

- Computation of first 3D points by triangulation

\[P = K[I|0] \]
\[P' = K'[R'|t'] \]
Geometry estimation steps

- Triangulate all feature matches of the first images

\[P = K[I|0] \]

\[P' = K'[R'|t'] \]
Geometry estimation steps

- First refinement of camera poses and 3D points by non-linear estimation of the re-projection error through bundle adjustment

\[P = K[I|0] \quad P' = K'[R'|t'] \]
Geometry estimation steps

- Start processing the next image

\[P = K[I|0] \]
\[P'' = ? \]
\[P' = K'[R'|t'] \]
Geometry estimation steps

- First, create feature matches to all the previous, neighboring images
Geometry estimation steps

- Feature matches give correspondences to already computed 3D points
- From corresponding 2D and 3D points the pose of the new camera can be computed using the PnP-Algorithm

\[P = K[I|0] \]

\[P' = K'[R'|t'] \]

\[P'' = ? \]
Geometry estimation steps

- Repeat the process starting again from triangulation of new features

\[P = K[I|0] \]

\[P'' = K''[R''|t''] \]

\[P' = K'[R'|t'] \]
Bundle adjustment

- Levenberg-Marquardt optimization of re-projection error
- Parameters are camera poses and all 3D points (millions of parameters to optimize!)

\[
\min_{P_j, X_i} \left(\sum_i \sum_j \| x_{i,j} - P_j X_i \| \right)
\]
3 paradigms

sequential

hierarchical

global
Dense matching

- SfM only gives sparse 3D data
- Only SIFT feature points are triangulated – for most pixel no 3D data is computed
- Dense image matching computes a 3D point for every pixel in the image (1MP image leads to 1 million 3D points)
- Dense matching algorithms need camera poses as prerequisite
Geometric relation

- Stereo normal case
- Depth Z [m] can be computed from disparity d [pixel]

$$d = f \frac{B}{Z}$$
Rectification

- Image transformation to simplify the correspondence search
 - Makes all epipolar lines parallel
 - Image x-axis parallel to epipolar line
 - Corresponds to parallel camera configuration

Before rectification

„Stereo normal case“
Dense matching process

- Estimate disparity (depth) for all pixels in image left.
 - Evaluate correspondence measure for every possible pixel location on the line (e.g. NCC, SAD)

- Disparity d: Offset between pixel p in the left image and its correspondent pixel q in the right image.
Census Transform

- A popular block matching cost
- Good robustness to image changes (e.g. brightness)
- Matching cost is computed by comparing bit strings using the Hamming distance (efficient)
- Bit strings encode if a pixel within a window is greater or less than the central pixel (0 .. if center pixel is smaller, 1 .. if center pixel is larger)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>63</td>
<td>72</td>
</tr>
<tr>
<td>67</td>
<td>55</td>
<td>64</td>
</tr>
<tr>
<td>58</td>
<td>51</td>
<td>49</td>
</tr>
</tbody>
</table>

→ 00000011
Dense matching process

reference image

matching image

epipolar line

matching cost

depth
Disparity selection

- Single scanline based
 - Winner takes all (WTA)
 Select the disparity with the lowest cost (i.e. the highest similarity)
 - Scanline optimization (Dynamic programming)
 Select the disparities of the whole scanline such that the total (added up) costs for a scanline is minimal

- Global methods (Cost volume optimization)
 - Belief propagation
 Selects the disparities such that the total cost for the whole image is minimal
 - Semi-global Matching
 Approximates the optimization of the whole disparity image
Dense matching process
Dense matching process

matching image

cost volume

cost column
Semiglobal matching

Dense Cost Computation

Cost Aggregation

LR Check, Filtering

Disparity images D(p), D(q)

Disparity Selection
Plane sweep method

- Costs are created by “sweeping” a plane across the scene
- Method suitable for more than 2 images
Digital Surface Model (DSM)

- 1 height value per ground location

original image

digital surface model
(color represents height)
Orthographic image projection

- Camera center
- Perspective distortion
- Perspective image plane
- Orthoimage plane
- Terrain surface
Orthophoto generation

Camera center

Perspective image plane

Orthoimage plane

DSM
Orthophoto example

- A true orthophoto has all perspective effects removed