Camera Drones Lecture 1 – Camera drones overview

Ass.Prof. Friedrich Fraundorfer

WS 2019

About me

- Ass. Prof. Dr. Friedrich Fraundorfer
- Email: fraundorfer@icg.tugraz.at
- Institut f
 ür Maschinelles Sehen und Darstellen
- Inffeldgasse 16/II
- +43 (316) 873 5020
- Sprechstunde nach Vereinbarung

Course schedule

- See dates for lecture slots in TUG-Online
- Project work
 - Drone navigation practical
 - Presentation
 - Documentation
- Course grade will be based on the grades for the project work, project presentation, documentation and a questionnaire.
- Start of project work leads to grading of the course
- The project work is the partial course assignment that can be repeated or supplemented

Course schedule

- Lecture topics:
 - Quadrotor Basics
 - Control and Sensors
 - 3D Data generation (SFM, dense matching)
 - Visual Odometry
 - Flight planning for 3D reconstruction
 - Drone regulations in Austria
- droneSpace introduction (16.10.)
- Hands-on-ROS tutorial
- Quiz (15.01.2019)
- Final presentations (22.1.2019/29.1.2019)

Camera drones overview

Camera drones overview

Consumer drones

[Image credit: DJI]

Professional drones

Research drones

Consumer drones – The First

[Image credit: Parrot]

Consumer drones

[Image credit: DJI]

[Image credit: Yuneec]

Consumer drones

Sykdio R1

[Image credit:Skydio

- Asctec Falcon
- Aerial photography and inspection

[Image credit: Asctec]

- Leica/Aibotix drone
- Inspection and measurement tasks

- Riegl Ricopter
- Photogrammetry and Laser scanning
- 25kg!

- Flyability drone
- Indoor inspection

- Honeywell RQ-16 T-Hawk
- Reconnaissance, long endurance drone

- Schiebel Camcopter
- Industrial inspection, long endurance drone

- Sensefly Ebee
- Fixed wing, long endurance
- Photogrammetry

[Image credit: Sensefly]

- Swarmsys Nano-Drone
- Reconnaissance

[Image credit: Swarmsys

Research drone

- Pixhawk drone
- Modular research platform with onboard computer and cameras

Research drone

- Asctec Firefly
- Modular research platform with onboard computer and cameras

Research drone

- DJI Matrice 100
- Modular research platform with onboard computer and cameras
- Onboard stereo depth sensors

Practical part of the course

Course drone

 A drone based on the Bebop 2 drame (32x38cm) with Pixhawk flight controller

Course drone

• Equipped with Odroid UX4 board and depth camera.

Course drone components

24

Lab infrastructure (droneSpace)

Camera drone applications and research

- Action filming
- Archeology (<u>3D Pitoti</u>, <u>3D Model</u>)
- Inspection (Bridges, Power pylons)
- Search and Rescue (DJI Challenge)
- Agriculture
- Safe navigation (<u>Video</u>)
- Autonomous exploration (<u>Video</u>)
- Human-Robot Interaction (Video)
- Delivery (<u>Video</u>)
- Industrial application (<u>Video</u>)

Student projects 2016

- "Don't Throw Things At Drones!"
- Optitrack & RGBD-Sensor Based Indoor Mapping"
- "Hand-Gesture Based Drone Control"
- "Visual Marker Following Drone"
- "Hula Hoop Following Drone"
- ORB2 SLAM Based Indoor Reconstruction"
- "Snapdragon Flight Based Object Recognition And Waypoint Following"

Drone challenge 2017

Students are using the autonomous MAV flight system of the droneSpace to develop and test their lecture assignments, competing in a rescue challenge. The overall goal is to find the victim (human puppet).

Drone challenge 2018

 The challenge involves mapping and exploration of an unknown indoor environment with the help of small sized aerial vehicles. With a multisensor setup onboard the MAVs, victims and/or points of interest should be found as part of a search and rescue missions.

Drone challenge 2019 – Collision free navigation

Drone challenge 2019 - Collision free navigation

Main tasks:

- 1. Reconstruction of the environment
 - Create Octomap from sensor input such that it provides a 3D map for path planning.
- 2. Path planning for safe navigation
 - Implement a path planning algorithm to navigate the drone collision-free to a goal position (e.g. RRT algorithm)
- 3. Trajectory generation and flight
 - Perform flight and videotape it