Camera Drones Lecture – Camera drones overview

Prof. Friedrich Fraundorfer

WS 2023

Lecture contact

- Prof. Dr. Friedrich Fraundorfer
- Email: fraundorfer@icg.tugraz.at
- Institut f
 ür Maschinelles Sehen und Darstellen
- Inffeldgasse 16/II
- **+**43 (316) 873 **5020**
- Sprechstunde nach Vereinbarung

Practical contact

- Prof. Dr. Jesus Pestana Puerta
- Email: jesus.pestana@pro2future.at
- Institut f
 ür Maschinelles Sehen und Darstellen
- Inffeldgasse 16/II

TC Forum

Course schedule

- See dates for lecture slots in TUG-Online
- Project work
 - Drone navigation practical
 - Presentation
 - Documentation
- Practical is group work (groups of two)
- Course grade will be based on the grades for the project work including documentation, project presentation and a questionnaire (60/10/30).
- Start of project work leads to grading of the course
- The course requires a significant amount of self-learning.

Course schedule

		Lecture: Introduction lecture
11.10.2023	HS 19	Introduction to practical
		Lecture: Flight mechanics
18.10.2023	HS i9	Dronespace introduction
20.10.2023	droneSpace	droneSpace introduction (individual groups)
25.10.2023	HS i9	Lecture: ROS Part 1
08.11.2023	HS i9	Lecture: ROS Part 2
		Lecture: Sensors
15.11.2023	HS i9	Practical Handout
		Lecture: Sensors
22.11.2023	HS i9	Lecture: Sensor fusion
29.11.2023	HS i9	Lecture: 3D data generation
06.12.2023	HS i9	Lecture: Flight planning
13.12.2023	HS i9	Lecture: UAV Regulations
20.12.2023	Christmas break	
10.01.2024	HS i9	Quiz
17.01.2024	HS i9	Presentations
24.01.2024	HS i9	Presentations
26.01.2024	droneSpace	Flight presentations

Practical part of the course

Course drone

Ryze Tech Tello EDU (10x10 cm, 80g)

Course drone

Specifications:

- 5MP front camera
- 1080x720px video resolution
- 13min flight time
- Python interface for programming
- Vision Positioning System
 - Downward-looking camera
 - Infrared distance sensors

Lab infrastructure (droneSpace)

Tracking cameras

Practical – Collision free navigation

Practical 2022 - Collision free navigation

4 contiguous assignments:

- 1. Mapping of the environment
 - Create Octomap from sensor input such that it provides a 3D map for path planning.
- 2. Path planning for safe navigation
 - Implement a path planning algorithm to navigate the drone collision-free to a goal position (e.g. RRT algorithm)
- 3. Smooth trajectory generation
 - Generate a smooth trajectory for a planned path
- 4. Flight experiment
 - Pre-calculation of trajectories for flight experiment and flight tests

Task 1: Mapping of the environment

Octomap creation from ROS-Bag

Task 2: Path planning

Task 2: Path planning

Task 3: Smooth trajectory generation

MAV trajectory generation

- Smooth trajectory from path
- Impose position derivatives (speed, acceleration, jerk, snap)

Task 4: Flight experiment

Camera drones overview

Camera drones overview

Consumer drones

[Image credit: DJI]

Professional drones

[Image credit: Leica]

Research drones

Consumer drones – The First

Consumer drones

[Image credit: DJI]

[Image credit:GoPro]

[Image credit: Yuneec]

[Image credit: Parrot]

Consumer drones – The most advanced

Skydio 2

[Image credit:Skydio 22

- DJI Matrice 300 RTK
- Aerial photography and inspection

[Image credit: DJI]

- Leica/Aibotix drone
- Inspection and measurement tasks

[Image credit: Leica]

- Riegl Ricopter
- Photogrammetry and Laser scanning
- 25kg!

[Image credit: Riegl]

- Flyability drone
- Indoor inspection

- Honeywell RQ-16 T-Hawk
- Reconnaissance, long endurance drone

[Image credit: Wikipedia]

- Schiebel Camcopter
- Industrial inspection, long endurance drone

- Sensefly Ebee
- Fixed wing, long endurance
- Photogrammetry

[Image credit: Sensefly]

- Flir Nano-Drone
- Reconnaissance

Research drone

- Pixhawk drone
- Modular research platform with onboard computer and cameras

Research drone

- DJI Matrice 100
- Modular research platform with onboard computer and cameras
- Onboard stereo depth sensors

Resist project: Camera drones for bridge inspection

Resist project: Camera drones for bridge inspection

Camera drone applications and research

- Action filming
- Archeology (3D Pitoti, 3D Model)
- Inspection (Bridges, Power pylons)
- Search and Rescue (DJI Challenge)
- Agriculture
- Safe navigation
- Autonomous exploration
- Human-Robot Interaction
- Delivery (<u>Video</u>)
- Inventory drone (<u>Video</u>)

Student project

Past student projects

- "Don't Throw Things At Drones!"
- "Optitrack & RGBD-Sensor Based Indoor Mapping"
- "Hand-Gesture Based Drone Control"
- "Visual Marker Following Drone"
- "Hula Hoop Following Drone"
- "ORB2 SLAM Based Indoor Reconstruction"
- "Snapdragon Flight Based Object Recognition And Waypoint Following"