Camera Drones Lecture - Flight planning

Prof. Friedrich Fraundorfer
WS 2023

Outline

- Flight planning
- Ground sampling distance (GSD)
- Field-of-view (FOV)
- Depth uncertainty
- Overlap

Flight planning

- Ground sampling distance (GSD)
- Ground resolution in meter (What is the size of an image pixel on the ground)
- Defined by image resolution, lens (focal length) and height
- Field-of-View (FOV)
- Angular section of the scene which is visible in the image (measured in degrees)
- Overlap
- Percentage of same image content from two neighboring images
- Important for image matching and stereo
- Defined by movement between two neighboring images
- Depth uncertainty
- Depending on the distance from the camera, triangulation results have a different accuracy

Camera projection

Camera projection

Ground sampling distance

$\mathrm{GSD}_{x}[\mathrm{~m}]$ focal length f [mm]
depth $Z[\mathrm{~m}]_{\ell=\text { height } h[\mathrm{~m}] \text { for nadir }}$ camera)
pxSize ${ }_{X}[\mathrm{~mm}]$

$\mathrm{GSD}_{X}[\mathrm{~m}]=Z[\mathrm{~m}]{ }^{*} \mathrm{pxSize}_{X}[\mathrm{~mm}] / f[\mathrm{~mm}]$

Ground sampling distance


```
GSD
focal length f[mm]
depth Z[m] (= height t[m] for nair
camera)
pxSize }\mp@subsup{}{Y}{[mm
```

Cameras typically have square pixels
GSDx = GSDy
$\operatorname{GSD}_{Y}[\mathrm{~m}]=Z[\mathrm{~m}]{ }^{*} \mathrm{pxSize}_{Y}[\mathrm{~mm}] / f[\mathrm{~mm}]$

Field-of-view (FOV)

- Field-of-view determines how much of a scene you will see in the image
- FOV can be computed from focal length and chip size
$\mathrm{fo}_{X}[\mathrm{rad}]$ focal length f [mm] ccdWidth [mm]

$$
\mathrm{fov}_{x}=2^{*} \tan ^{-1}((\operatorname{ccdWidth} / 2) / f)
$$

Field-of-view (FOV)

- CCD chip is not quadratic, FOV is different in x / y direction
$\mathrm{fo}_{Y}[\mathrm{rad}]$ focal length f [mm] ccdHeight [mm]

$$
\mathrm{fov}_{Y}=2 \text { * }^{\tan ^{-1}((\operatorname{codHeight} / 2) / f)}
$$

Depth Uncertainty $e_{z}[m]$

d ... disparity [pixel]
f .. focal length [pixel]
m .. disparity uncertainty [pixel]

$$
\frac{z}{f}=\frac{b}{d}
$$

$$
\Delta z=\frac{z^{2}}{f b} m
$$

$\mathbf{P}=(X, Y, Z)$

Overlap

- Photogrammetry standard 80% overlap (low!)

Overlap

Example calculation

- Sony Nex5N
- Sensor dimension w: 23.5 mm , h:15.6mm
- Image resolution: 4912x3264 pixel
- Focal length 18 mm
- FOV:
- $\mathrm{x}: 2^{*} \tan ^{-1}((\operatorname{ccdWidth} / 2) / f)=2^{*} \tan ^{-1}((23.5 / 2) / 18)=66.3 \mathrm{deg}$
- $\mathrm{y}: 2^{*} \tan ^{-1}((\operatorname{ccdHeigth} / 2) / f)=2{ }^{*} \tan ^{-1}((15.6 / 2) / 18)=46.9 \mathrm{deg}$
- GSD (100m)
- $x: Z[\mathrm{~m}]{ }^{*} \mathrm{pxSize}_{x}[\mathrm{~mm}] / f[\mathrm{~mm}]=100^{*} 23.5 / 4912 / 18=0.027 \mathrm{~m}=2.7 \mathrm{~cm}$
- $y: Z[\mathrm{~m}] *$ pxSize $_{Y}[\mathrm{~mm}] / f[\mathrm{~mm}]=100^{*} 15.6 / 3264 / 18=0.027 \mathrm{~m}=2.7 \mathrm{~cm}$

Example calculation

height above ground (z) [m]	GSD [m]	
	20	0,0053
	25	0,0066
	30	0,0080
	35	0,0093
	40	0,0106
	45	0,0119
	50	0,0133
	55	0,0146
	60	0,0159
	65	0,0173
	70	0,0186
	75	0,0199
	80	0,0212
	85	0,0226
	90	0,0239
	95	0,0252
	100	0,0266

Example calculation

- Depth uncertainty (1m baseline)
- Disparity uncertainty 0.1 px

Example calculation

- Distance between images to achieve 80% overlap in 100 m height
- Calculating b
- $Z=100 \mathrm{~m}$
- $F O V y=46.9 \mathrm{deg}$
$2^{*} Z^{*} \tan \left(\mathrm{fov}_{Y} / 2\right)-b Z^{*} \tan \left(\mathrm{fov}_{Y} / 2\right) \quad=0.8$
$\mathrm{b}=2^{*} Z^{*} \tan \left(\mathrm{fov}_{Y} / 2\right)-0.8^{*} 2^{*} Z^{*} \tan \left(\mathrm{fov}_{Y} / 2\right)=17.36 \mathrm{~m}$

Comparison UAV and aerial image

Dataset	Reference image				Target image			
	Type/Date	Resolution	height (m)	GSD (cm)	Type/Date	Resolution	height (m)	GSD (cm)
Eichenau	AO 11/2015	9206×7357	600	20	UI $11 / 2015$	573×794	100	1.8
Germering	AI 06/2014	5184×3902	700	9.4	UI $07 / 2014$	823×996	100	2
EOC	AI 06/2014	5184×3902	340	4.6	UI 11/2014	1106×807	$25-40$	$0.5-0.8$
WV2	SI 2010	5292×6410	770,000	46	AI 2015	497×332	350	4.4

Exercises

Exercise 1

- The camera of a drone has a GSD of 2.7 cm at a height of 100 m with its 18 mm lens. If the lens is changed to a 10 mm lens, will the GSD be larger or smaller?
- Sony Nex5N
- Sensor dimension w: 23.5 mm , h: 15.6 mm
- Image resolution: 4912×3264 pixel

Exercise 2

- What are the footprint dimensions (in x and y direction) of a camera with the following parameters at 50 m height?
- Sony Nex5N
- Sensor dimension w: 23.5 mm , h:15.6mm
- Image resolution: 4912x3264 pixel
- Focal length: 18 mm

