Camera Drones
Lecture – Flight mechanics and Control

Prof. Friedrich Fraundorfer

WS 2022
Outline

- Quadrotor flight mechanics
- Quadrotor control principles
Quadrotor dynamics

- Each rotor produces force/lift and torque by accelerating air
- Gravity pulls quadrotor downwards
Quadrotor hovering

- Hovering when the lift exactly balances the gravity and when the torque is precisely canceled
- Torque is canceled by counter-rotating rotors
Quadrotor vertical acceleration

- Thrust

 \[
 F_{\text{thrust}} = F_1 + F_2 + F_3 + F_4
 \]

\[
F_{\text{thrust}} = F_1 + F_2 + F_3 + F_4
\]
Quadrotor vertical and horizontal acceleration

- Thrust \[F_{\text{thrust}} = F_1 + F_2 + F_3 + F_4 \]
Quadrotor pitch and roll

- To pitch or roll the forces produced by the rotors need to be out of balance
- However, pure pitching and rolling not possible. Every pitch or roll induces also a horizontal acceleration
Quadrotor yaw

- Out-of balance torque is used to produce yaw rotation
- Torque $T = T_1 - T_2 + T_3 - T_4$
- Change rotor spin of pairs of rotors to keep the lift constant, but create imbalanced torque
Outline

▪ Quadrotor flight mechanics
▪ Quadrotor control principles
Quadrotor control - Hovering

- Hovering means quadrotor needs to hold position
- Requirement:
 - Each rotor produces exactly the same thrust (if there is a slight imbalance, a movement occurs)
- Practically infeasible – control loop necessary
- Control loop means measuring deviation from hover position and then act against deviation
- What needs to be measured for this?
 - Is attitude/orientation enough? – If attitude is perfect zero than there is no movement
Elements of quadrotor control

- **Position**
- **Velocity**
- **Acceleration**
- **Localization**
- **Attitude estimation**
- **RPM estimation**
 - **Position control**
 - **Attitude control**
 - **Motor speed control**

Sensors → **Physical world** → **Actuators**

- **Position**
- **Velocity**
- **Acceleration**
- **Forces**
- **Torques**
Measurements needed for quadrotor control

- Motor speeds
- Absolute orientation
- Absolute position

Localization → Position control
Attitude estimation → Attitude control
RPM estimation → Motor speed control

Sensors

Physical world

Actuators

Trajectory

Position
Velocity
Acceleration

Forces
Torques
Control timings

- Motor control happens on motor boards (controls every motor tick)
- Attitude control implemented on micro-controller with hard real-time (at 250Hz-1000Hz)
- Position control (at 4-250Hz)
- Trajectory (waypoint) control (at 0.1-1Hz)