Camera Drones
Lecture – Camera drones overview

Prof. Friedrich Fraundorfer

WS 2021
About me

- Assoc. Prof. Dr. Friedrich Fraundorfer
- Email: fraundorfer@icg.tugraz.at
- Institut für Maschinelles Sehen und Darstellen
- Inffeldgasse 16/II
- +43 (316) 873 - 5020
- Sprechstunde nach Vereinbarung
Course schedule

- See dates for lecture slots in TUG-Online
- Project work
 - Drone navigation practical
 - Presentation
 - Documentation

- Practical is group work (groups of three)
- Course grade will be based on the grades for the project work including documentation, project presentation and a questionnaire (60/10/30).
- Start of project work leads to grading of the course
- The project work is the partial course assignment that can be repeated or supplemented
- The course requires a significant amount of self-learning.
Course schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.10.2021</td>
<td></td>
<td>HS i9 (PZ2EG048)</td>
<td>Lecture Introduction</td>
</tr>
<tr>
<td>13.10.2021</td>
<td></td>
<td>HS i9 (PZ2EG048)</td>
<td>Lecture: Flight mechanics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lecture: Sensors</td>
</tr>
<tr>
<td>20.10.2021</td>
<td></td>
<td>HS i9 (PZ2EG048)</td>
<td>Lab introduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Practical 1 discussion</td>
</tr>
<tr>
<td>22.10.2021</td>
<td></td>
<td>HS i9 (PZ2EG048)</td>
<td>Lecture: Sensors (continued)</td>
</tr>
<tr>
<td>27.10.2021</td>
<td></td>
<td>HS i9 (PZ2EG048)</td>
<td>Lab introduction (individual groups)</td>
</tr>
<tr>
<td>03.11.2021</td>
<td></td>
<td>HS i9 (PZ2EG048)</td>
<td>ROS Tutorial (Live streaming with</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>guest lecturer)</td>
</tr>
<tr>
<td>10.11.2021</td>
<td></td>
<td>HS i9 (PZ2EG048)</td>
<td>Lecture: 3D data generation</td>
</tr>
<tr>
<td>17.11.2021</td>
<td></td>
<td>HS i9 (PZ2EG048)</td>
<td>Practical 2 discussion</td>
</tr>
<tr>
<td>24.11.2021</td>
<td></td>
<td>HS i9 (PZ2EG048)</td>
<td>Lecture: Flight planning</td>
</tr>
<tr>
<td>01.12.2021</td>
<td></td>
<td>HS i9 (PZ2EG048)</td>
<td>Lecture: UAV Regulations</td>
</tr>
<tr>
<td>15.12.2021</td>
<td></td>
<td>HS i9 (PZ2EG048)</td>
<td>Practical 3 and 4 discussion</td>
</tr>
<tr>
<td>01.12.2021</td>
<td></td>
<td></td>
<td>No lecture / Discussion on request</td>
</tr>
<tr>
<td>12.01.2022</td>
<td></td>
<td>Seminarraum (IE02082)</td>
<td>No lecture / Discussion on request</td>
</tr>
<tr>
<td>12.01.2022</td>
<td></td>
<td>Seminarraum (IE02082)</td>
<td>Quizz</td>
</tr>
<tr>
<td>19.01.2022</td>
<td></td>
<td>Seminarraum (IE02082)</td>
<td>Presentations</td>
</tr>
<tr>
<td>26.01.2022</td>
<td></td>
<td>Seminarraum (IE02082)</td>
<td>Presentations</td>
</tr>
</tbody>
</table>
Practical part of the course
Course drone

- Ryze Tech Tello EDU (10x10 cm, 80g)
Course drone

Specifications:
- 5MP front camera
- 1080x720px video resolution
- 13min flight time
- Python interface for programming
- Vision Positioning System
 - Downward-looking camera
 - Infrared distance sensors
Lab infrastructure (droneSpace)
Tracking cameras
Practical 2021 – Collision free navigation
Main tasks:

1. Mapping of the environment
 - Create Octomap from sensor input such that it provides a 3D map for path planning.

2. Path planning for safe navigation
 - Implement a path planning algorithm to navigate the drone collision-free to a goal position (e.g. RRT algorithm)

3. Trajectory generation and flight
 - Perform flight and videotape it
Task 1: Mapping of the environment

- Octomap creation from ROS-Bag
Task 2: Path planning
Task 3: Trajectory generation and flight

MAV trajectory generation
- Smooth trajectory from path
- Impose position derivatives (speed, acceleration, jerk, snap)
Camera drones overview
Camera drones overview

- Consumer drones

- Professional drones

- Research drones
Consumer drones – The First

[Image credit: Parrot]
Consumer drones

[Image credit: DJI]

[Image credit: Yuneec]

[Image credit: GoPro]

[Image credit: Parrot]
Consumer drones – The most advanced

- Skydio 2
Professional drones

- Asctec Falcon
- Aerial photography and inspection

[Image credit: Asctec]
Professional drones

- Leica/Aibotix drone
- Inspection and measurement tasks
Professional drones

- Riegl Ricopter
- Photogrammetry and Laser scanning
- 25kg!

[Image credit: Riegl]
Professional drones

- Flyability drone
- Indoor inspection

[Image credit: Flyability]
Professional drones

- Honeywell RQ-16 T-Hawk
- Reconnaissance, long endurance drone
Professional drones

- Schiebel Camcopter
- Industrial inspection, long endurance drone

[Image credit: By User:Stahlkocher, CC BY-SA 3.0]
Professional drones

- Sensefly Ebee
- Fixed wing, long endurance
- Photogrammetry
Professional drones

- Swarmsys Nano-Drone
- Reconnaissance

[Image credit: Swarmsys]
Research drone

- Pixhawk drone
- Modular research platform with onboard computer and cameras
Research drone

- Asctec Firefly
- Modular research platform with onboard computer and cameras
Research drone

- DJI Matrice 100
- Modular research platform with onboard computer and cameras
- Onboard stereo depth sensors
Drone highlight – Mars helicopter

BLADES
Made of carbon fiber foam core provide lift in the thin Mars atmosphere.

ANTENNAS
Radio antennas talk to Earth via the Mars 2020 rover and the Mars orbiters.

SOLAR PANEL
A solar panel helps keep the battery charged.

BATTERIES
Batteries help power the helicopter.

SENSORS & CAMERAS
Sensors collect data on how fast the helicopter is travelling and in which direction. Cameras help the helicopter see.

AVIONICS & BODY
Its avionics — or "brains" — help the helicopter function and navigate. The body has insulation and heaters to keep sensitive electronics warm and survive cold Martian nights.
Technical specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>1.8 kilograms</td>
</tr>
<tr>
<td>Weight</td>
<td>4 pounds on Earth; 1.5 pounds on Mars</td>
</tr>
<tr>
<td>Width</td>
<td>Total length of rotors: ~4 feet (~1.2 meters) tip to tip</td>
</tr>
<tr>
<td>Power</td>
<td>Solar panel charges Lithium-ion batteries, providing enough energy for one 90-second flight per Martian day (~350 Watts of average power during flight)</td>
</tr>
<tr>
<td>Blade span</td>
<td>Just under 4 feet (1.2 meters)</td>
</tr>
<tr>
<td>Flight range</td>
<td>Up to 980 feet (300 meters)</td>
</tr>
<tr>
<td>Flight altitude</td>
<td>Up to 15 feet (5 meters)</td>
</tr>
<tr>
<td>Flight environment</td>
<td>Thin atmosphere, less than 1% as dense as Earth's</td>
</tr>
</tbody>
</table>
The real size
A picture from first flight
Camera drone applications and research

- Action filming
- Archeology ([3D Pitoti, 3D Model](#))
- Inspection (Bridges, Power pylons)
- Search and Rescue ([DJI Challenge](#))
- Agriculture
- Safe navigation ([Video](#))
- Autonomous exploration ([Video](#))
- Human-Robot Interaction ([Video](#))
- Delivery ([Video](#))
- Industrial application ([Video](#))
Past student projects

- "Don’t Throw Things At Drones!"
- "Optitrack & RGBD-Sensor Based Indoor Mapping"
- "Hand-Gesture Based Drone Control"
- "Visual Marker Following Drone"
- "Hula Hoop Following Drone"
- "ORB2 SLAM Based Indoor Reconstruction"
- "Snapdragon Flight Based Object Recognition And Waypoint Following"