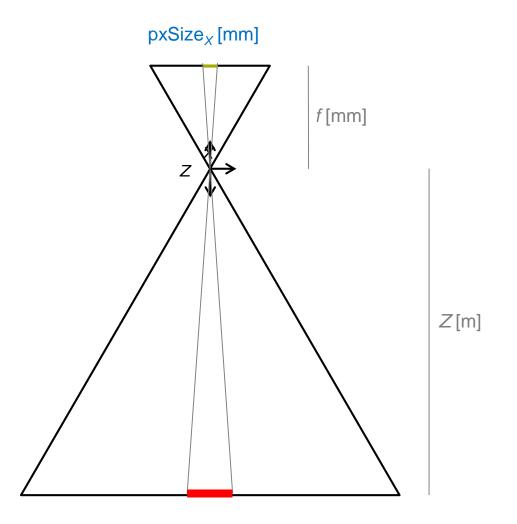
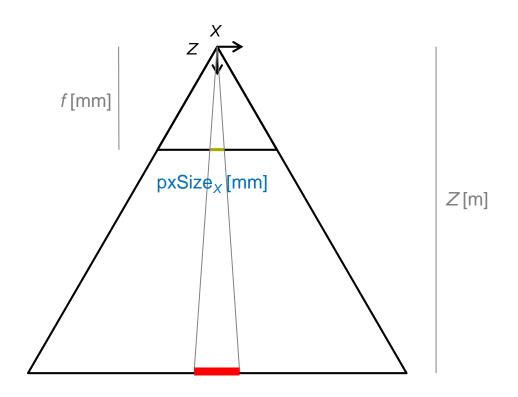
Camera Drones Lecture – Flight planning

Prof. Friedrich Fraundorfer

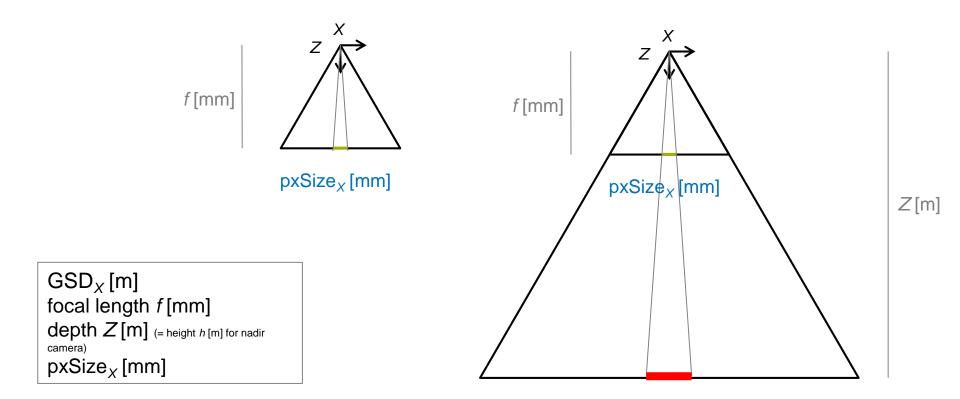
WS 2021


Outline

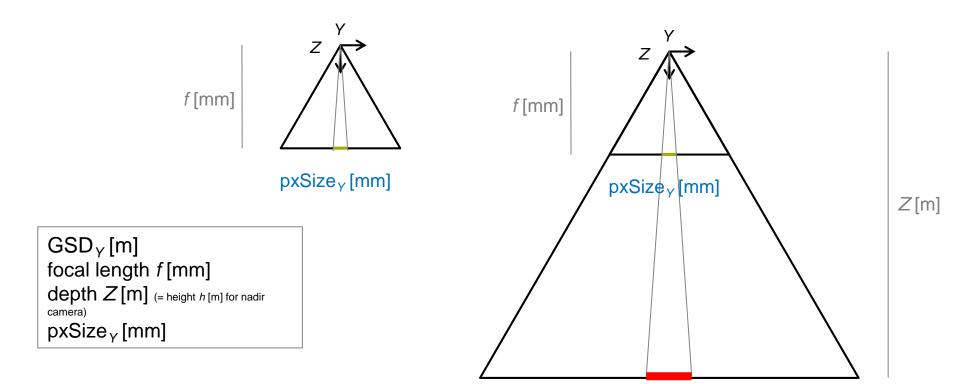
- Flight planning
 - Ground sampling distance (GSD)
 - Field-of-view (FOV)
 - Depth uncertainty
 - Overlap


Flight planning

- Ground sampling distance (GSD)
 - Ground resolution in meter (What is the size of an image pixel on the ground)
 - Defined by image resolution, lens (focal length) and height
- Field-of-View (FOV)
 - Angular section of the scene which is visible in the image (measured in degrees)
- Overlap
 - Percentage of same image content from two neighboring images
 - Important for image matching and stereo
 - Defined by movement between two neighboring images
- Depth uncertainty
 - Depending on the distance from the camera, triangulation results have a different accuracy


Camera projection

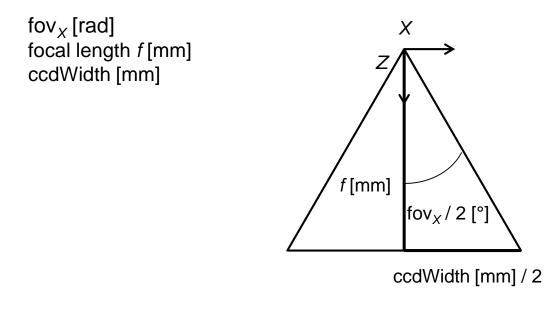
Camera projection



Ground sampling distance

 $GSD_X[m] = Z[m] * pxSize_X[mm] / f[mm]$

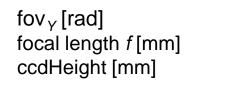
Ground sampling distance



Cameras typically have square pixels GSDx = GSDy

 $GSD_{Y}[m] = Z[m] * pxSize_{Y}[mm] / f[mm]$

Field-of-view (FOV)

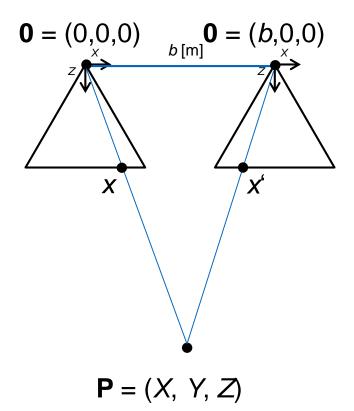

- Field-of-view determines how much of a scene you will see in the image
- FOV can be computed from focal length and chip size



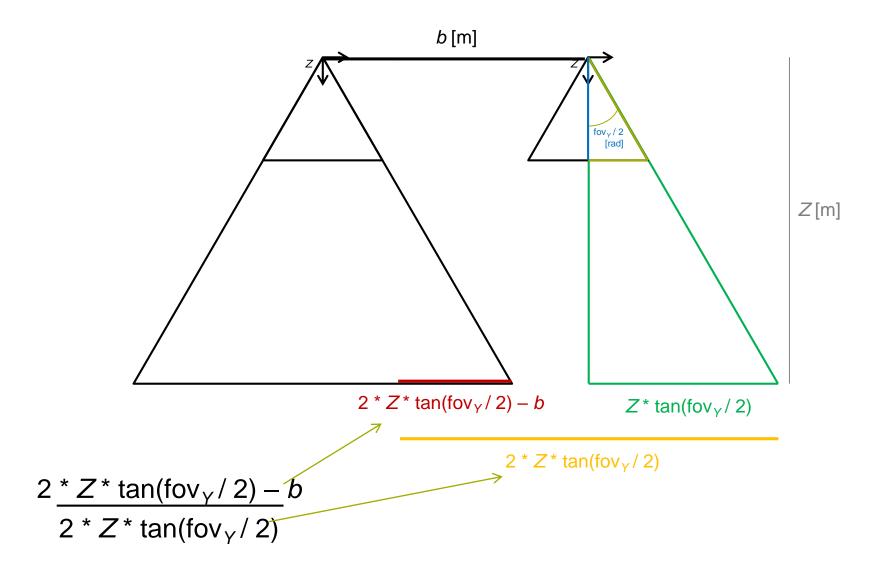
$$fov_X = 2 * tan^{-1}((ccdWidth / 2) / f)$$

Field-of-view (FOV)

CCD chip is not quadratic, FOV is different in x/y direction



$$fov_{Y} = 2 * tan^{-1}((ccdHeight / 2) / f)$$

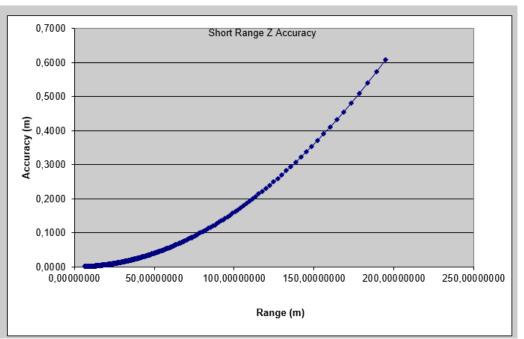

d ... disparity [pixel]f .. focal length [pixel]m .. disparity uncertainty [pixel]

$$\frac{z}{f} = \frac{b}{d}$$
$$\Delta z = \frac{z^2}{fb}m$$

Photogrammetry standard 80% overlap (low!)

Overlap

- Sony Nex5N
 - Sensor dimension w: 23.5mm, h:15.6mm
 - Image resolution: 4912x3264 pixel
 - Focal length 18mm



- FOV:
 - x: 2 * tan⁻¹((ccdWidth / 2) / f) = 2 * tan⁻¹((23.5 / 2) / 18) = 66.3 deg
 - y: 2 * tan⁻¹((ccdHeigth / 2) / f) = 2 * tan⁻¹((15.6 / 2) / 18) = 46.9 deg
- GSD (100m)
 - $x: Z[m] * pxSize_{X}[mm] / f[mm] = 100*23.5/4912/18=0.027m=2.7cm$
 - $y: Z[m] * pxSize_{y}[mm] / f[mm] = 100*15.6/3264/18=0.027m=2.7cm$

height above ground (z) [m]	GSD [m]	
	20	0,0053
	25	0,0066
	30	0,0080
	35	0,0093
	40	0,0106
	45	0,0119
	50	0,0133
	55	0,0146
	60	0,0159
	65	0,0173
	70	0,0186
	75	0,0199
	80	0,0212
	85	0,0226
	90	0,0239
	95	0,0252
	100	0,0266

- Depth uncertainty (1m baseline)
- Disparity uncertainty 0.1px

Disparity	Z (m)	Z accuracy (m)	
1	6238,24000000	623,8240	
1,5	4158,82666667	277,2551	
2	3119,12000000	155,9560	
2,5	2495,29600000	99,8118	
3	2079,41333333	69,3138	
3,5	1782,35428571	50,9244	
4	1559,56000000	38,9890	
4,5	1386,27555556	30,8061	
5	1247,64800000	24,9530	
6	1039,70666667	17,3284	
7	891,17714286	12,7311	
8	779,78000000	9,7473	
9	693,13777778	7,7015	
10	623,82400000	6,2382	

- Distance between images to achieve 80% overlap in 100m height
- Calculating b
- Z = 100m
- FOVy=46.9deg

$$\frac{2 * Z * \tan(\text{fov}_{Y} / 2) - b}{2 * Z * \tan(\text{fov}_{Y} / 2)} = 0.8$$

 $b=2 * Z * tan(fov_Y / 2) - 0.8 * 2 * Z * tan(fov_Y / 2) = 17.36m$

Comparison UAV and aerial image

Dataset	Reference image			Target image				
	Type/Date	Resolution	height (m)	GSD (cm)	Type/Date	Resolution	height (m)	GSD (cm)
Eichenau	AO 11/2015	9206×7357	600	20	UI 11/2015	573×794	100	1.8
Germering	AI 06/2014	5184×3902	700	9.4	UI 07/2014	823×996	100	2
EOC	AI 06/2014	5184×3902	340	4.6	UI 11/2014	1106×807	25-40	0.5-0.8
WV2	SI 2010	5292×6410	770,000	46	AI 2015	497×332	350	4.4

Exercises

Exercise 1

- The camera of a drone has a GSD of 2.7cm at a height of 100m with its 18mm lens. If the lens is changed to a 10mm lens, will the GSD be larger or smaller?
- Sony Nex5N
 - Sensor dimension w: 23.5mm, h:15.6mm
 - Image resolution: 4912x3264 pixel

Exercise 2

- What are the footprint dimensions (in x and y direction) of a camera with the following parameters at 50m height?
- Sony Nex5N
 - Sensor dimension w: 23.5mm, h:15.6mm
 - Image resolution: 4912x3264 pixel
 - Focal length: 18mm