
Regularized 3D Modeling from Noisy Building Reconstructions

Thomas Holzmann Friedrich Fraundorfer Horst Bischof

Institute for Computer Graphics and Vision, Graz University of Technology, Austria

{holzmann,fraundorfer,bischof}@icg.tugraz.at

Abstract

In this paper, we present a method for regularizing

noisy 3D reconstructions, which is especially well suited for

scenes containing planar structures like buildings. At hori-

zontal structures, the input model is divided into slices and

for each slice, an inside/outside labeling is computed. With

the outlines of each slice labeling, we create an irregularly

shaped volumetric cell decomposition of the whole scene.

Then, an optimized inside/outside labeling of these cells is

computed by solving an energy minimization problem. For

the cell labeling optimization we introduce a novel smooth-

ness term, where lines in the images are used to improve the

regularization result. We show that our approach can take

arbitrary dense meshed point clouds as input and delivers

well regularized building models, which can be textured af-

terwards.

1. Introduction

Using standard 3D reconstruction techniques it is pos-

sible nowadays to generate dense point clouds which can

be meshed afterwards to create a surface accurately rep-

resenting the reconstructed scene. For example, one can

use open source Structure-from-Motion (SfM) pipelines

like Bundler [15] or Colmap [14] to estimate the camera

poses and compute a sparse point cloud representing the

scene. Afterwards, densification methods like PMVS2 [4]

or Sure [13] can be used to densify the point cloud. Finally,

meshing techniques like Poisson surface reconstruction [7]

or the approach from Labatut et al. [9] produce a detailed

mesh representing the reconstructed scene.

However, due to measurement uncertainties in various

steps of the reconstruction process, such 3D models are

noisy and contain clutter. Therefore, they are not visually

appealing even though they contain many details. Addi-

tionally, the amount of data used to process, store and trans-

mit such models is quite high, as they can contain millions

of points modeling the reconstructed noisy surfaces, which

might be problematic for applications using 3D maps but

just have limited resources available. Therefore, for many

This research was funded by the Austrian Science Fund (FWF) in the

project V-MAV (I-1537).

Figure 1. Meshed dense 3D reconstruction and resulting regular-

ized model. Top: A 3D building reconstruction created from aerial

images taken by an unmanned aerial vehicle (UAV). The cam-

era poses and initial 3D structure were computed with SfM, then

a dense model was computed with Sure [13] which was finally

meshed using Poisson surface reconstruction [7] (visualized with

vertex coloring). Such a mesh can be used as input for our ap-

proach. Bottom: Resulting regularized model from our pipeline,

textured with [17]. We deliver clean and smooth surfaces where

the meshed dense point cloud contains a lot of noise. The param-

eters were set to: λmesh = 0.4, λlines = 0.1 and d = 50.

processing and viewing applications, a regularized, more

compact representation is desired. This should be a rep-

resentation excluding the noise and clutter from a dense

reconstruction and should be as near as possible to reality

if desired, but it should also be possible to generate more

1



abstract models, that don’t cover details but represent the

geometric structure well.

In this paper, we introduce a 3D reconstruction algo-

rithm, which creates regularized 3D models consisting of

geometric primitives from image-based 3D reconstructions.

Such a regularization should remove small details which are

likely to be noise and should describe the input mesh with

a small set of vertices and faces. Simultaneously to the data

reduction, the regularized model should describe the scene

in a proper way, i.e. that planar surfaces in the scene are

planes in the regularized model and not a noisy surface sim-

ilar to a plane.

Based on [6], we first divide the dense model into multi-

ple horizontal slices, which are parts of the model bounded

by dominant horizontal structures. Then, we compute an

inside/outside labeling for each slice using the visibility in-

formation of each point in the slice. Using the outlines of

the labeling per slice, we compute an irregularly shaped cell

decomposition of the whole scene. Finally, we optimize

the model by solving a CRF. In this optimization, the level

of regularization can be adjusted. In contrast to [6], we

introduce a novel smoothness term based on detected line

segments in the images, which improves the reconstruction

results, especially in areas where the input model contains

noisy surfaces. An example result can be seen in Fig. 1.

2. Related Work

There exist several different approaches to regularize 3D

models using geometric primitives.

In [19], Zebedin et al. introduce a geometric modeling

approach for buildings. Using height data as input, they

approximate façades with planes and roofs as surfaces of

revolution, which are a natural description of domes and

spires and can therefore be used to describe various shapes.

With their approach, it is also possible to adjust the level

of detail of the reconstruction. Even though their algorithm

produces good results with aerial images, they do not model

façades, as they are just using height maps as input.

Another approach for abstraction of image-based recon-

structions of urban scenes was proposed in [16]. They first

classify superfacets into multiple categories like ground,

façades or roofs. Then each category is treated differ-

ently: e.g., ground is represented by a Delaunay triangu-

lation lifted in 3D and façades and roofs are approximated

by a set of planar proxies. With their approach, it is possible

to abstract large-scale urban scenes and create models with

different levels of detail. Though, their approach is limited

to specific pre-defined classes which are used for the super-

facet classification.

Xiao and Furukawa [18] proposed a method for indoor

modeling using Constructive Solid Geometry (CSG). Using

laser scanner data as input, they first separate the model into

horizontal slices. Then, they estimate a 2D CSG represen-

tation for each slice, which is a set of rectangular primi-

tives, by using the visibility information. Taking these 2D

CSG representations as input, they estimate a 3D CSG rep-

resentation, which is a smooth representation of the whole

scene. Finally, they texture the model using ground-level

photographs to create visual appealing results. However,

their approach is restricted to Manhattan-like scenes and is

not designed for noisy image-based reconstructions.

Another approach for indoor scene reconstruction us-

ing laser scan data was presented by Oesau et al. in [10]

and [11]: Similarly to [18], they partition the scene into

horizontal slices at dominant horizontal structures. Then,

they also detect dominant vertical structures and use them

as splitting planes in order to partition the whole scene into

irregularly shaped volumetric cells. These cells are then la-

beled as free or occupied space by solving an energy mini-

mization problem. In contrast to [18], their approach is also

able to reconstruct non-Manhattan-like scenes due to their

irregularly shaped cell representation. Though, it is still not

well suited for image-based reconstructions, which are po-

tentially sparser and contain more clutter.

In Holzmann et al. [6], a similar approach adapted to

image-based reconstructions from buildings was presented.

In their approach, the building model is partitioned into hor-

izontal slices separated by dominant horizontal structures.

Then, for every slice a floor plan is created by using the

visibility information. The floor plans from all slices are

then triangulated and used as base faces for the irregularly

shaped volumetric cells, which span the whole scene. The

whole shape of the building is then estimated by labeling

each volumetric cell as inside or outside by solving an en-

ergy minimization problem. With the smoothness parame-

ter used in the energy minimization, it is possible to create

models with varying degree of regularization. Due to the

adaptations especially made for image-based reconstruc-

tions, their approach works also well on noisy image-based

reconstructions. However, if the error in the input 3D data is

too big (e.g., at reflecting windows, due to missing texture),

the resulting geometrically abstracted model might follow

these errors, as no additional information is used.

In our approach we use horizontal slicing and volumetric

cell decomposition similar as in [6]. Additionally, we use

image information in order to improve the result especially

in erroneous parts of the 3D reconstruction.

3. Geometric Modeling Using Line Cues

In this section, we describe our processing pipeline in

detail. A schematic overview of our system can be seen in

Fig. 2. First, we separate the meshed input point cloud into

horizontal slices and compute an inside/outside labeling for

every slice. Using the outlines of the inside labeled regions

of all slices, we create an irregularly shaped volumetric cell

decomposition of the whole scene. Finally, we generate an



Figure 2. Overview of the processing pipeline. We take any

meshed point cloud with arbitrary density with the corresponding

camera positions and image informations as input. We separate the

input model into horizontal slices and compute an inside/outside

labeling for each slice. Using visibility information and detected

lines in images, we compute an optimized regularized 3D model.

optimized inside/outside labeling of the volumetric cells us-

ing visibility information and 2D line segments by formu-

lating the labeling as an energy minimization problem.

3.1. Input Data

As input data, we take a meshed point cloud with arbi-

trary density and its corresponding camera information (i.e.

the position of the cameras and the captured images). Our

approach works on meshed dense point clouds but also on

meshed sparse point clouds (e.g., a result from SfM). An

example dense building model can be seen in Fig. 1.

3.2. Horizontal Slicing and Cell Decomposition

This section describes the separation of the input model

into horizontal slices, the computation of an inside/outside

labeling for each slice and the creation of an irregularly

shaped cell decomposition of the whole scene. Except some

small changes, this part is already described in [6]. Hence,

we refer the reader to [6] for a more detailed description.

As a first step, we detect horizontal structures and sepa-

rate the model at these structures into horizontal slices. For

this, we first need to detect the horizontal direction. As we

assume that the ground plane is the dominant plane, we do

this by plane fitting: We try to find a plane for which the

most points in the scene lie near to it. However, we could

also use different methods to estimate the horizontal direc-

tion of the scene (e.g., by using inertial measurements). As

we usually work with Manhattan-like scenes, we found out

that it is beneficial for some processing steps to align the

model with the Manhattan world directions. Therefore, we

also detect the most dominant plane perpendicular to the

ground plane and align the model to these directions. How-

ever, one has to mention that a Manhattan world scenery is

not necessary for our approach to work.

Having estimated the ground plane, we estimate domi-

nant horizontal structures by applying mode estimation us-

ing Mean Shift [3]. For this, we just select points with a

normal similar to the normal of the ground plane, which

Figure 3. Slice labeling. Intermediate processing steps of the pro-

cessing of a slice in the middle of a simple building. Left: An

illustration of the free space scores of the slice. The more cam-

eras see the specific area, the more intensive the pixel is red. In

case of no visibility: The farther away this area is from a visible

part, the more intensive the pixel is blue. Right: The resulting

inside/outside labeling.

are the points describing horizontal structure, and apply the

mode estimation in the horizontal dimension of the scene.

The mean shift bandwidth is defined as:

bandwidth =
height

d
, (1)

where height is the 3D model height and d is a parameter

which has to be set.

Next, we separate the model at the detected horizontal

structures into several slices and for each slice, a 2D in-

side/outside labeling is computed. For this, we need to com-

pute a free space score for each position in the slice. The

free space score is positive in areas which could be seen

by cameras and negative in areas which could not be seen.

To compute a 2D free space score for each position in the

slice, we first compute the free space score for each voxel

of a voxel grid spanned over the whole scene. Then, we

sum up the voxels contained in a slice to get 2D free space

scores. Using these free space scores, we compute a bi-

nary inside/outside labeling by formulating it as an energy

minimization problem and solving it using Graph Cuts [2].

These processing steps are illustrated in Fig. 3.

By extruding the labeling from each slice to 3D, we al-

ready get an initial 3D model. However, as each slice is just

optimized separately, the vertical surfaces are not smooth.

Therefore, we need an additional 3D optimization step, for

which we use irregularly shaped volumetric cells, which

represent all important structures from the individual slices.

To get a cell decomposition of the whole scene, we

project the outlines of the inside labeled parts of all slices

onto the ground plane and compute a Constrained Delaunay

Triangulation [12] including this lines (see Fig. 4). Finally

we extrude the computed triangles between all slice bound-

aries to get an irregularly shaped cell decomposition of the

whole scene including all important scene structures.



Figure 4. Constrained Delaunay Triangulation of outlines of all

slices projected to the ground plane. As one can see, near the

building walls are many similar lines in the triangulation (thicker

lines because of several very near lines) due to noise in the input

mesh. All triangles are extruded between all slice boundaries to

create a volumetric cell decomposition of the whole scene.

3.3. Volumetric Cell Labeling Using Line Cues

In the final step, we create a regularized labeling of all

volumetric cells labeled as inside or outside. As a result,

we can create 3D reconstructions consisting of geometric

blocks, for which the degree of regularization can be ad-

justed depending on the smoothness parameters.

We formulate this optimization step as an energy mini-

mization problem. We introduce a novel smoothness term,

which uses lines detected in the input images to create a

regularized transition from inside label to outside label.

The energy to minimize is defined as:

E(L) =
∑

p∈I

Edata(L(p)) +
∑

p,q∈N

Esmooth(L(p), L(q)),

(2)

where I denotes the set of all volumetric cells, N is

the neighborhood of every cell and L is the (binary) la-

beling. The neighborhood relation is defined by the vol-

umetric cell complex: all cells that share a common face

are neighbors. The data terms, Edata(lp), are defined as

the summed up free space scores contained in the volumet-

ric cell normalized by the cell size. The smoothness terms,

Esmooth(L(p), L(q)), are a combination of two smoothness

terms and defined as:

Esmooth(L(p), L(q)) =

λmeshEsmesh
(L(p), L(q)) + λlinesEslines

(L(p), L(q)).
(3)

Esmesh
(L(p), L(q)) is the smoothness term which depends

on the mesh surface, i.e. it is likely that a labeling transition

happens if the input mesh surface is near the face between

the cells p and q and unlikely otherwise. This smoothness

term is described in detail in [6].

The second smoothness term, Eslines
(L(p), L(q)), is our

novel term based on lines detected in the input images. As-

suming an initial estimate of the model, all faces connect-

ing two adjacent cells in the volumetric cell decomposition

Figure 5. Camera view with detected lines and backprojected face.

Left: Backprojected face (blue) is not near detected lines, even

though it is on the surface of the building. Therefore, this view is

not used for the line criterion, as the camera center is not near to

coplanar with the face. Right: Detected face (blue, hardly visible)

and camera are nearly coplanar and the face is nearer to detected

lines, as it should be for a face being on the surface of the building.

Therefore, this view is used for face score computation.

which are visible get backprojected into the images to com-

pute a line-based smoothness score:

Eslines
(L(p), L(q)) =







0 if L(p) == L(q)
faceScore(p, q) else if visible

1 else

,

(4)

where faceScore(p, q) computes a line-based score for the

face connecting cell p and q and visible means that at least

one vertex of the face is visible by a camera. Therefore, a

score gets also computed for faces which are currently not

visible but have a connection to the model surface.

To compute the face score based on lines, first line

segments are detected using the Line Segment Detec-

tor (LSD) [5]. Then, for every face, cameras are selected

for which the camera centers are nearly coplanar to the

face: The maximum allowed angle between face and cam-

era center is set to 25 deg. This improves the influence of

the smoothness term for faces, which belong actually to the

model surface but are in the middle of a façade in the im-

ages. Fig. 5 illustrates this problem.

In the selected cameras for a face, the distance from

the detected line segments to each face edge is computed.

Therefore, we search for the nearest line detection with a

similar direction than the face edge: The maximum allowed

angle between a detected line and face edge is set to 10 deg.

With this restriction, just lines are used that are similar to

the structure of the face.

For all faces with lines with similar direction, we search

for the line which has the smallest normal distance to the

face edge. If this distance is above a threshold, it is trun-

cated. The threshold for this maximum line distance is ad-

justed by the parameter maxLineDist (which we set to

70 pixels) and is computed as maxLineDist normalized

by the camera distance to the current face and the model

size:

truncV al =
maxLineDist

normalizedCamDist
. (5)



Figure 6. Line distance computation. All visible faces are pro-

jected into the suitable images. If, as illustrated, the projected sur-

face of the model of the current iteration (blue) is near a detected

line (red), this surface will likely stay the same also in the next

iteration. Contrary, if the current surface has a high distance to a

detected line, as can be seen at the sides of the projection, the sur-

face will probably get shifted towards the detected line in the next

iteration. If the distance is too high (left side), it gets truncated.

normalizedCamDist is defined as:

normalizedCamDist =
camDist

avgModelSize
, (6)

where avgModelSize is the mean of the maximum x- and

y-extension of the input model and camDist is the distance

of the camera to the face in arbitrary scale retrieved by SfM.

This is necessary, as we don’t have a fixed (or metric) scale

in our reconstructions and want to enforce a similarly scaled

camera distance for all models.

The normalization by normalizedCamDist depicted

in Eq. 5 is beneficial, as the normalized truncation value

truncV al now corresponds to distances in the model and

not to pixel distances. This face-to-line distance truncation

significantly improves the results, as it lets the optimization

focus on relevant, nearby lines and ignore far away lines.

Consequently, the truncated distance of a face to a line

(illustrated in Fig. 6) is computed by

truncFaceDist = min(faceDist, truncV al). (7)

Finally, the computed face-to-line distance gets multi-

plied by normalizedCamDist to transform the distance

from pixel to an absolute scale: If a camera is farther away,

one pixel is a bigger distance than in a near camera. To get

the total face-to-line distance for the face backprojected in

one camera, we compute the average of all face edges.

The final face score, which is calculated using all cam-

eras which fulfill the above mentioned requirements, is de-

fined as:

faceScore =







avgFaceDist
maxLineDist

if

#validCams > 0
1 else

,

(8)

where

avgFaceDist =

∑

validCams truncFaceDist

#validCams
(9)

and maxLineDist is the parameter also used in Eq. 5.

Therefore, the faceScore defined in Eq. 8 is normalized

between 0 and 1, where 0 means the face is near to struc-

tures (lines) in the images, and 1 means that the face is far

from structures.

As we just compute face scores for faces which have a

connection to the currently estimated visible space, we need

to do several iterations of the energy minimization step de-

fined in Eq. 2. In the first iteration, the line smoothness

term is disabled (λlines is set to 0), and an initial model is

estimated. Starting from the second iteration, also the line

smoothness term is used. Usually, 4 iterations are enough to

let the model converge to a good solution. Finally, we get an

optimized inside/outside labeling containing all the irregu-

larly shaped volumetric cells. From this labeling, models

consisting of geometric blocks can be created, which con-

tain well regularized vertical surfaces (e.g., façades) even

when using erroneous input data. In the next section, we

will show and discuss some results with different input data.

4. Experiments

In our experiments, we show that our pipeline can create

geometrically regularized 3D models from buildings which

finally consist of smooth and clean surfaces instead of a

noisy mesh, as in the input data. It can handle input meshes

with different quality and input density, where especially

on meshed point clouds including some errors (e.g., a point

cloud created from SfM) our novel, line-based smoothness

term improves the quality of the resulting 3D model com-

pared to the approach presented in [6] (which will be de-

noted as mesh-based smoothing method in this section). Fi-

nally, we deliver textured output models, which can be vari-

ably regularized and contain smooth surfaces where meshed

point clouds, in contrast, contain a lot of noise and clutter.

4.1. Input Data

As input data, we use meshed 3D reconstructions from

buildings. All input images were captured with an UAV

equipped with a Sony Alpha 6000 camera. Then, they

were processed with our own SfM pipeline. For some ex-

periments, the resulting sparse point cloud from SfM was

meshed with our implementation of [9] and used as input.

However, to get more accurate, dense point clouds, we used

PMVS2 [4] or Sure [13] and used the resulting point cloud

meshed by Poisson surface reconstruction [7] as input.

4.2. Implementation Details

Our implementation uses the Graph Cut implementation

from Olga Veksler [8] [2] [1], OpenCV for various image

processing steps, the original LSD implementation [5] and

is implemented mainly in C++. For texturing, we use the

implementation described in [17]. As our regularized face

triangles were sometimes too big for texturing, we applied

midpoint subdivision on the mesh before texturing to make



PMVS2 [4] + Poisson [7] Our approach

λmesh = 0.5, λlines = 0.5, d = 50

Mesh-based smoothing [6]

λ = 1.0, d = 50

Figure 7. Results for the Block Building with PMVS2. Left: The input data created with PMVS2 and Poisson surface reconstruction. As one

can see, this reconstruction contains more noise and clutter and is incomplete compared to the Sure reconstruction in Fig. 1. Middle: The

result of our approach, which contains less artifacts (green dotted and red dashed circle) compared to the Mesh-based smoothing (right).

The parameters for both were chosen to create smooth and clean façades while simultaneously keeping most of the structural details.

the mesh triangles smaller. Our experiments were executed

on an Intel Core i7-4820k @ 3.7 GHz with 16 GB RAM.

As our approach, compared to [6], additionally detects

line segments and runs multiple iterations of optimization,

it has a higher runtime. Though, the runtime highly depends

on the structure of the 3D model (e.g., number of slices, ra-

tio free/occupied space voxels, number of images used for

line detection) and therefore it can vary significantly be-

tween different models. The runtime at the Block Building

model with PMVS2 input data was 50.4 minutes.

4.3. Parameter Selection
We changed three parameters during our experiments.

First, we set the Mean Shift parameter d depending on the

structure of the scene. If the building is not very high or if

there are not many horizontal structuring elements, one can

set d lower to produce less slices. If there is a lot of hori-

zontal structure in small distances, one should set d higher

to produce more slices and cover all horizontal elements.

Usually, we set this parameter between 40 and 50.

The two smoothness parameters λmesh and λlines define

the amount of regularization. The selection of a good value

for λmesh heavily depends on the quality of the input mesh:

If we use a nearly error-free input mesh just including a lit-

tle bit of noise, it is recommended to set λmesh higher in

comparison to λlines. Contrary, if the input mesh contains

big errors we suggest to set λmesh lower, as otherwise the

regularized output may be influenced too much from the er-

roneous mesh. λlines should be set according to the amount

of errors which should be corrected with this image term.

For an erroneous mesh, one should set λlines to a higher

value, for a mesh containing just few errors, one should set

λlines to a lower value. We usually set λmesh between 0.2
and 0.8 and λlines between 0.1 and 0.5.

4.4. Block Building
This simple building consists out of one block with some

additional installations on the roof and some small roofs

Figure 8. Input images of the Block Building. As one can see,

this simple building consists mainly of planar façades, including

several windows and poorly textured surfaces.

on the side. In Fig. 8, example input images are printed.

For this dataset, we used meshed SfM, PMVS2 [4] and

Sure [13] data as input.

As Sure delivers the most accurate point cloud, also the

results from our pipeline using Sure data as input are the

most convincing ones. You can see the textured result and

the corresponding input data in Fig. 1. Using dense Sure

input data, only a little smoothing was necessary to get

smooth surfaces and the new line smoothness parameter

does not significantly improve the result. Therefore we set

especially the line smoothness parameter comparably low,

as setting the mesh smoothness term already results in a

well regularized model. The Mean Shift parameter d was

set so that all important horizontal structures were detected

(e.g., small roof above entrance, installations on roof).

The results from our pipeline using meshed PMVS2 data

as input can be seen in Fig. 7. Our approach (middle) has

a smoother surface compared to the mesh-based smooth-

ing approach (right) especially in the area in the red dashed

and green dotted circle. In the red dashed circle, a tree was

fused with the building in the input model. Therefore, us-

ing mesh-based smoothing, the optimization found the opti-

mal solution by including the tree within the output model.

Instead, when using our approach, a line could still be de-

tected in the images at the boundary of the building and

therefore the optimization pulled the result towards the cor-



SfM + Labatut et al. [9] meshing Our approach

λmesh = 0.2, λlines = 0.5, d = 50

Mesh-based smoothing [6]

λ = 3.5, d = 50

Figure 9. Results for the Block Building with pure SfM. Left: The input data, which is the SfM point cloud meshed by Labatut et al. [9]. This

reconstruction is very noisy and also contains quite big wrong parts. Middle: Nevertheless, our approach estimates still smooth surfaces.

Though, some details are missing compared to Fig. 7. Right: Even though the smoothing is already quite strong, which leads to smoothing

artifacts (e.g., in the green dotted circle), the mesh-based smoothing still follows the erroneous mesh strictly (e.g., in the red dashed circle).

PMVS2 [4] + Poisson [7] Our approach

λmesh = 0.8, λlines = 0.5, d = 40

Mesh-based smoothing [6]

λ = 3.5, d = 40

Figure 10. Results for the Long Building. As one can see, the input data (left) has errors in the mesh. This occurred due to insufficient

image data of this part of the building. Because of this errors, the mesh-based smoothing (right) cannot regularize this part well (red dashed

circle), where our approach (middle) makes a better approximation of the real façade.

rect solution. In the green dotted circle, the mesh-based

smoothing also follows the noisy mesh surface, where our

approach delivers a cleaner surface. We selected the pa-

rameters to keep important parts of the building (e.g., when

setting λ for mesh-based smoothing higher, the small low

building in front of the Block Building would vanish due to

over-smoothing).

In order to show that our approach can also handle very

noisy meshes created from sparse point clouds, we meshed

the resulting point cloud from SfM with Labatut et al. [9]

and used this data as input for our pipeline. In Fig. 9, the in-

put mesh, the result from our approach and the result from

mesh-based smoothing [6] is shown. Our approach (mid-

dle) delivers smooth surfaces and still contains some small

details. In contrast, the mesh-based smoothing (right) still

follows the erroneous mesh too strictly at some parts (e.g.,

in the red dashed circle), even though the smoothing is al-

ready at its limits, which leads to some smoothing artefacts

(e.g., in the green dotted circle). If we increase the smooth-

ing (i.e. increase the value for λ), more and more artifacts

arise while the error in the red dashed circle will stay.

4.5. Long Building

This building consists of two parts with two different

heights. Input images can be seen in Fig. 11. For this

Figure 11. Input images of the Long Building. The building mainly

consists out of 2 block parts with different height.

dataset, we just used meshed PMVS2 [4] data as input.

In Fig. 10, results from our approach and from the

meshed-based smoothing approach [6] are printed. As not

enough images were captured for the seen side side of the

building, there are big errors in the reconstruction (left).

The mesh-based smoothing approach (right) cannot correct

these errors properly (e.g., at the part in the red dashed cir-

cle). When enforcing more smoothing (i.e. using a higher

value for λ), the result gets even worse as this approach fol-

lows the erroneous mesh. Contrary, our approach (middle)

approximates a planar surface (which is the geometric struc-

ture of the façade) better, as it uses additional information

from the original input images.

In Fig. 12, another part of the building of the results

presented in Fig. 10 is visible. The mesh-based smooth-

ing approach (right) has irregularities on the surface (e.g.,



Our approach Mesh-based smoothing [6]

Figure 12. Back side of the Long Building of the same results as

illustrated in Fig. 10. As one can see, our approach (left) delivers

a smoother façade compared to mesh-based smoothing (right).

Figure 13. Textured Long Building. Same result from our approach

as in Fig. 10 with viewing direction from the opposite side. Tex-

tured afterwards with [17].

Figure 14. Input images of the Non-Manhattan Building. This

building contains non-Manhattan-like façades and sloped surfaces.

in the red dashed circle), as it follows the surface of the

noisy mesh. Contrary, our approach (left) delivers a much

smoother, planar surface similar to the original façade.

The same result from our approach textured afterwards

with [17] can be seen in Fig. 13. Due to a wrong geometry

in the lower left part, several faces could not be textured and

are therefore white in this reconstruction. This happens due

to the noisy PMVS2 data, with which we could not estimate

a correct geometry for this part. However the other parts

look good which indicates that the estimated geometry is

correct.

4.6. Non-Manhattan Building

This dataset contains a more complex building. In dif-

ference to the other buildings shown in our experiments, it

does not have a Manhattan-like outline and contains sloped

surfaces. In Fig. 14, one can see example input images.

The regularized result and the dense input reconstruc-

tion computed with Sure [13] can be seen in Fig. 15. Non-

rectangular outlines of the building are not a problem for the

algorithm, as any outline gets approximated by a polygonal

line. Also sloped structures are approximated by stairway-

Figure 15. Result from the Non-Manhattan Building Top: Input

mesh created with Sure [13] and Poisson meshing [7] (vertex col-

oring). Bottom: Resulting regularized model. Sloped surfaces

are approximated with stairway-like structures, non-Manhattan-

like outline is approximated by a polygonal line. The parameters

were set to: λmesh = 0.4, λlines = 0.2 and d = 50.

like structures. To get a more detailed approximation one

could lower the the Mean Shift bandwidth (i.e. higher the

value for d) in order to get more slices and therefore a finer

stairway approximation. However, one has to mention that

this is a difficult building, where also vegetation is very near

or fused with the building , which makes it difficult at some

parts to get a correct labeling without additional semantic

information. Therefore, some details are missing in the reg-

ularized model.

5. Conclusion and Future Work

We have presented an approach for regularizing noisy

building reconstructions, which improves the regularization

by using detected lines in the input images. We have shown

that our approach improves the results when using erro-

neous input data, where the additional image information

is very beneficial. We deliver well regularized 3D models,

which can be used for visualization, where noisy 3D mod-

els are not desired, but are also useful for further processing

(e.g., on devices with limited resources), as the amount of

data is massively reduced.

Future work will include the usage of semantic scene

information to separate buildings from other 3D objects

(e.g., vegetation). We will also investigate in the model-

ing of sloped roofs, which are currently just approximated

by stairway-like structures.



References

[1] Y. Boykov and V. Kolmogorov. An experimental comparison

of min-cut/max-flow algorithms for energy minimization in

vision. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2004. 5

[2] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-

ergy minimization via graph cuts. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 20(12):1222–1239,

2001. 3, 5

[3] D. Comaniciu and P. Meer. Mean shift: A robust approach

toward feature space analysis. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 24(5):603–619, 2002. 3

[4] Y. Furukawa and J. Ponce. Accurate, dense, and robust multi-

view stereopsis. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2010. 1, 5, 6, 7

[5] R. Grompone, J. Jakubowicz, J. M. Morel, and G. Randall.

Lsd: A fast line segment detector with a false detection con-

trol. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 32(4):722–732, April 2010. 4, 5

[6] T. Holzmann, C. Hoppe, S. Kluckner, and H. Bischof. Ge-

ometric abstraction from noisy image-based 3d reconstruc-

tions. In Proceedings of The 38th Annual Workshop of

the Austrian Association for Pattern Recognition (ÖAGM),

2014. 2, 3, 4, 5, 6, 7, 8

[7] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface

reconstruction. In Eurographics Symposium on Geometry

Processing, 2006. 1, 5, 6, 7, 8

[8] V. Kolmogorov and R. Zabih. What energy functions can be

minimized via graph cuts? In Proceedings European Con-

ference on Computer Vision, 2002. 5

[9] P. Labatut, J.-P. Pons, and R. Keriven. Efficient multi-view

reconstruction of large-scale scenes using interest points, de-

launay triangulation and graph cuts. In Proceedings Interna-

tional Conference on Computer Vision, 2007. 1, 5, 7

[10] S. Oesau, F. Lafarge, and P. Alliez. Indoor scene reconstruc-

tion using primitive-driven space partitioning and graph-cut.

In Eurographics Symposium on Geometry Processing, 2013.

2

[11] S. Oesau, F. Lafarge, and P. Alliez. Indoor scene reconstruc-

tion using feature sensitive primitive extraction and graph-

cut. In Proceedings International Society for Photogramme-

try and Remote Sensing, 2014. 2

[12] L. Paul Chew. Constrained delaunay triangulations. Algo-

rithmica, 4(1-4):97–108, 1989. 3

[13] M. Rothermel, K. Wenzel, D. Fritsch, and N. Haala. Sure:

Photogrammetric surface reconstruction from imagery. In

Proceedings LC3D Workshop, Berlin, 2012. 1, 5, 6, 8

[14] J. L. Schönberger and J.-M. Frahm. Structure-from-motion

revisited. In Proceedings IEEE Conference Computer Vision

and Pattern Recognition, 2016. 1

[15] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: Ex-

ploring image collections in 3d. In ACM Trans. on Graphics

(SIGGRAPH), 2006. 1

[16] Y. Verdie, F. Lafarge, and P. Alliez. Lod generation for urban

scenes. In ACM Transactions on Graphics, 2015. 2

[17] M. Waechter, N. Moehrle, and M. Goessele. Let there be

color! - large-scale texturing of 3d reconstructions. In Pro-

ceedings European Conference on Computer Vision, 2014.

1, 5, 8

[18] J. Xiao and Y. Furukawa. Reconstructing the world’s mu-

seums. In Proceedings European Conference on Computer

Vision, 2012. 2

[19] L. Zebedin, J. Bauer, K. Karner, and H. Bischof. Fusion

of feature- and area-based information for urban buildings

modeling from aerial imagery. In Proceedings European

Conference on Computer Vision, 2008. 2


