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Adipocyte triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are intracellular lipases that
mobilize triglycerides, the main energy source in mammals. Deletion of genes encoding ATGL (Pnpla2) or HSL
(Lipe) in mice results in striking phenotypic differences, suggesting distinct roles for these lipases. The goal of
the present study was to identify the biological processes that are modulated in the metabolic tissues of
ATGL- and HSL-deficient mice. DNA microarrays were employed to provide full genome coverage concerning
the types of genes that are differentially expressed in wild-type and mutant mice. For both mouse models,
transcript signatures were identified in white adipose tissue, brown adipose tissue (BAT), skeletal muscle
(SM), cardiac muscle (CM), and liver. Genetic ablation of ATGL and HSL alters the transcript levels of a large
number of genes in metabolic tissues. The genes affected in the two models are, however, largely different
ones. Indeed, only one biological process was modulated in the same way in both mouse models, namely the
down-regulation of fatty acid metabolism in BAT. The most pronounced modulation of biological processes
was observed in ATGL”- CM, in which a concerted down-regulation of transcripts associated with oxidative
pathways was observed. In HSL”~ mice, in contrast, the most marked changes were seen in SM, namely,
alterations in transcript levels reflecting a change of energy source from lipid to carbohydrate. The transcript
signatures also provided novel insights into the metabolic derangements that are characteristic of ATGL™
mice. Our findings suggest that ATGL and HSL differentially modulate biological processes in metabolic
tissues. We hypothesize that the intermediary metabolites of the lipolytic pathways are signaling molecules
and activators of a wide range of biochemical and cellular processes in mammals.
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Lipid metabolism

Triglycerides (TGs), stored in adipose tissue, are the main energy
source of mammals. TG stores are constantly turned over and tightly
regulated according to the needs of the organism. Indicative of this,
imbalances in TG metabolism are linked to metabolic disorders such as
obesity and diabetes [1,2]. TGs are hydrolyzed (mobilized) by lipases in a
regulated manner to release fatty acids. Until recently, hormone sensitive
lipase (HSL) was considered to be the most important lipase for the
hydrolysis of intracellular TGs and diglycerides (DGs) [3]. HSL-deficient
mice are, however, nonobese [4-6] and are resistant to diet-induced
obesity [7], suggesting that another lipase catalyzes the initial step in TG
hydrolysis. This enzyme, adipocyte triglyceride lipase (ATGL), also known
as desnutrin and calcium-independent phospholipase A2¢ [8,9], was
recently discovered [10] and shown to catalyze the initial step in TG
hydrolysis. HSL catalyzes the rate-limiting step in the catabolism of DGs.
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ATGL is expressed mainly in adipose tissue and to a lesser extent in testis,
cardiac muscle, and skeletal muscle [9,10]. In vitro experiments have
demonstrated that the role played by ATGL in lipid storage and degra-
dation in adipose tissue is also important in cell types other than
adipocytes [11].

The important role of ATGL in the mobilization of fat stores in vivo
was recently demonstrated using an ATGL-deficient mouse model [12].
Unlike HSL”~ mice, ATGL”- mice have increased TG deposition in several
tissues and exhibit mild obesity caused by enlarged adipose lipid drop-
lets. Notably, severe fat accumulation in cardiac muscle in these mice
leads to cardiac insufficiency and premature death. ATGL” mice further-
more exhibit increased sensitivity to low temperatures due to defects
in thermogenesis. Other notable features of ATGL-deficient mice are
increased glucose tolerance, increased insulin sensitivity, and increased
respiratory quotient during fasting, suggesting the use of glucose as
metabolic fuel [12].

The striking phenotypic differences between these lipase-deficient
mouse strains with defects at adjacent steps in the same metabolic
pathway vividly demonstrate the highly complex and unpredictable
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Fig. 1. Number of differentially expressed ESTs in each analyzed tissue for each mouse
model, ATGL”~ and HSL™-, based on the z ratio.

properties of metabolic networks that comprise hundreds of inter-
connected biochemical reactions. Because of this interconnectivity the
modification of the activity of only a single enzyme can have profound
effects on the whole organism. The goal of our study was to identify
the biological processes that are modulated in metabolic tissues of
ATGL- and HSL-deficient mice. To avoid a priori assumptions concern-
ing the affected processes we used whole-genome DNA microarrays
for the generation of transcript signatures for white adipose tissue
(WAT), brown adipose tissue (BAT), skeletal muscle (SM), cardiac
muscle (CM), and liver (LIV) for each mouse model. Our findings show
that genetic ablation of intracellular lipases alters the levels of
transcripts for a large number of genes. Notably, the genes that are
modulated in the two models are largely different ones, despite the
fact that the two lipases catalyze adjacent steps in TG catabolism.
Only one biological process was altered in both models in the same
way, namely the down-regulation of fatty acid B-oxidation in BAT. In
ATGL-deficient mice, oxidative pathways were coordinately down-
regulated in CM. The largest number of deregulated genes in HSL-
deficient mice was found in the SM, in which we detected changes in
transcript levels consistent with a switch from lipid to carbohydrate
metabolism. Finally, the changes in transcript levels and predicted
changes in biological processes in the tissues of both mouse models
were consistent with and to some extent accounted for the respective
model phenotypes.

Results

Distinct transcript signatures in metabolic tissues of ATGL”" and HSL”
mice

Microarray analysis showed that a total of 628 ESTs were up- and 599
ESTs were down-regulated in ATGL” mice. The number of ESTs
deregulated in HSL”" mice was lower (323 ESTs up- and 285 down-
regulated) (Fig. 1). The distribution of differentially expressed genes
among tissues also differed between the two models. The expression
levels of differentially expressed ESTs (z>1.5, p<0.05) can be viewed in
Supplementary File 1. Most differentially expressed genes in ATGL™
mice were found in BAT (538), followed by CM (419), and liver (144). Of
these genes, only 79, 16, and 9 ESTs were also deregulated, respectively,
in BAT, CM, and liver of HSL”" mice (Fig. 2). In contrast, in HSL"" mice
the majority of differentially expressed genes were observed in SM
(276), WAT (197), and BAT (182). 47, 35, and 79 ESTs that were
differentially expressed in HSL”" mice (in SM, WAT, and BAT, res-
pectively) were also deregulated in ATGL”" mice (Fig. 2). Additionally,
the genes that were deregulated in ATGL”- SM were more similar to
those deregulated in HSL/~ BAT than in HSL” SM (Fig. 2).
Interestingly, there was no relationship between the transcript sig-
natures and the levels of expression of HSL and ATGL in the metabolic
tissues (see Supplementary File 2 for the ratio of the expression levels
of ATGL and HSL).

Genes differentially expressed in each mouse model were clas-
sified according to Gene Ontology (GO) [13] (see Supplementary File
3). Since ATGL and HSL are enzymes from the same metabolic
pathway, similar modulation of biological pathways was expected.
Significantly overrepresented GO terms (category “biological pro-
cess”) for up- and down-regulated genes in all ATGL”" and HSL'
tissues that were analyzed are shown in Fig. 3. Strikingly, only one
biological process, i.e., fatty acid metabolism, was altered in the same
manner in both models. In both cases it was down-regulated in BAT
(Fig. 3). Lipid metabolism in BAT was modulated in both models,
although in opposite directions (up-regulation in ATGL~ mice and
down-regulation in HSL”- mice). Overall, in ATGL”" mice the highest of
the modulated biological processes in an individual metabolic tissue
were detected in CM. In contrast, in HSL”" mice, most modulated
processes were found in BAT. With respect to the number of
modulated processes, the tissue that was least affected was WAT.

Concerted down-regulation of transcripts associated with oxidative pathways
in cardiac muscle of ATGL”" mice

Notably, the tissue in which ATGL ablation modulated the largest
number of biological processes was CM (Fig. 3). A total of 419 genes

ATGL.J- WAT (257/54)
ATGL-/- BAT (1329/538) 34
ATGL-/- CM (1584/418) 40 318
ATGL-/- LIV (433/144) 16 50 69
ATGL-/- SM (390/72) 3 4 46 H]
HSL-/- WAT (815197) 35 110 77 18 21
HSL-/- BAT (877/182) 1 79 100 15 80 143
HSL-/- CM (19212) 2 15 16 4 1 10 6
HSL-/- LIV (211/41) 2 11 12 9 4 31 12 0
HSL-/- SM (1357/276) 6 39 20 " 47 192 13 8 20
ATGL-/-WAT | ATGL-/- BAT | ATGL-/-CM | ATGL-/- LIV | ATGL-/- SM | HSL---WAT | HSL-/-BAT | HSL-/-CM HSL-/- LIV HSL-/- SM
(257/54) (1329/538) | (1594/419) (433144) (390772) (915187) (877182) (19212) (211/41) (1357/276)

Fig. 2. Number of commonly up- or down-regulated ESTs comparing two tissues of ATGL/~ and HSL”" mice. First number in parentheses corresponds to the number of ESTs
differentially expressed in that tissue. Second number in parentheses corresponds to the number of ESTs differentially expressed in that tissue with no missing value in all other tissues.
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Fig. 3. Significantly overrepresented Gene Ontology terms (GO category “biological process”) for up- and down-regulated genes in all analyzed tissues for both ATGL™- and HSL”~ mice.

were found to be differentially expressed in this tissue. In marked
contrast, only 12 genes were deregulated in HSL”~ CM. Most of the
modulated genes in CM of ATGL - mice were assigned to catabolic and
oxidative pathways, including the tricarboxylic acid cycle, lipid meta-
bolism, fatty acid [3-oxidation, glycolysis, electron transport, oxidative
phosphorylation, and ATP biosynthesis.

The down-regulated genes included mediators of glucose meta-
bolism such as the glucose transporters Slc2a4 and Sic2a3 and key
glycolytic enzymes, i.e., pyruvate dehydrogenase (Pdhal, Pdhb) and
phosphofructokinase (Pfkm). Differentially expressed genes involved
in lipid metabolism included genes for fatty acid uptake (solute carrier
family 27 (fatty acid transporter) (Slc27a1) and fatty acid oxidation
(acetyl-coenzyme A dehydrogenase) (Acadl)), the mitochondrial carni-
tine palmitoyltransferase transporters (Cptlb, Cpt2), and carnitine
acetyltransferase (Crat). Genes of the tricarboxylic acid cycle that were
down-regulated included succinate dehydrogenase (Sdhd), isocitrate
dehydrogenase 2 (NADP*) (Idh2), fumarate hydratase 1 (Fh1), and
malate dehydrogenase 1 and 2 (Mdh1, Mdh2).

Taken together, these results suggest that ablation of ATGL, but not
of HSL, in CM results in a concerted down-regulation of the oxidative
pathways required for energy production from alternative substrates
such as glucose and fatty acids. The genes observed to be differentially
expressed in ATGL”" mice are unaffected in HSL”" mice (e.g., Fh1, Idh2)
or else the effects were undetectable.

Fatty acid B-oxidation is down-regulated in both ATGL”- and HSL”- BAT

The largest number of differentially expressed genes were detected
in BAT—a total of 720 (see Fig. 1: 538 differentially expressed ESTs in
ATGL- and 182 in HSL™"). Notably, analysis of the deregulated genes in
ATGL" BAT revealed a significant down-regulation of lipid and fatty
acid metabolism in this tissue (Fig. 3). The cellular localizations of the
gene products deregulated in ATGL”- BAT are shown in Fig. 4 and [14].
The down-regulated genes associated with fatty acid oxidation in-
clude acyl-coenzyme A dehydrogenase very long chain (Acadvl),
involved in the first step of fatty acid PB-oxidation; dodecenoyl-
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Fig. 4. Cellular role and localization of differentially expressed genes in BAT of ATGL” mice.

coenzyme A d-isomerase (3,2 trans-enoyl-coenyme A isomerase) (Dci),
responsible for isomerization of auxiliary steps for mitochondrial 3-
oxidation; carnitine palmitoyltransferase 2 (Cpt2), which facilitates the
binding of coenzyme A to long-chain fatty acids for mitochondrial B~
oxidation; acyl-CoA synthetase long-chain family member 5 (Acsl5),
involved in activation of long-chain fatty acids for both the synthesis of
cellular lipids and their degradation via p-oxidation; and hydroxyster-
oid dehydrogenase (Hsd17b4) and acyl-coenzyme A oxidase 1, palmitoyl
(Acox1), enzymes of the peroxisomal R-oxidation pathway (Fig. 4).
Remarkably, many genes encoding enzymes of the tricarboxylic acid
cycle, for instance, fumarate hydratase 1 (Fh1) and succinate-coenzyme
A ligase (Sucla2), were also down-regulated, as were genes encoding
members of the electron transport chain (Fig. 4).

Fatty acid metabolism was also down-regulated in HSL”" mice,
although to a smaller extent than in ATGL”" mice. The following genes
were down-regulated: one gene of the B-oxidation pathway (Echs1),
one fatty acid transporter (Slc27al), the lipoprotein lipase (Lpl), the
uncoupling protein 3 (Ucp3), and ankyrin repeat domain 23 (Ankrd23).
The latter gene encodes a protein whose physiological function is not
clear [15] but which is putatively involved in lipid metabolism.

Expression changes underlying the use of an alternative energy source in
SM of HSL” mice

The observed changes in gene expression in HSL’- mice were most
pronounced in SM. Furthermore, the number of deregulated ESTs in
HSL7- SM was significantly greater than in ATGL”- SM (276 in HSL”-
and 72 in ATGL”" mice). Fig. 5 and [ 14] show the cellular localization of

the deregulated genes involved in metabolism in SM of HSL”- mice.
Among these, genes involved in lipid uptake (Lpl), lipid synthesis (the
fatty acid synthase, Fasn), and lipid storage (the adipose differentia-
tion-related protein, Adfp) were down-regulated. At the same time,
genes involved in glycogen and glucose utilization were up-regulated,
for instance, the glucose transporters Slc2a3 and Slc2a4, the glycolytic
enzyme enolase 2 (Eno2), amylo-1,6-glucosidase, 4-o-glucanotrans-
ferase (Agl), and several genes encoding components of the electron
transport chain. Taken together, these changes are consistent with
previous studies suggesting a metabolic switch from lipid to
carbohydrate metabolism in SM in HSL”- mice [16].

Correspondence between gene expression and phenotype

Our comparative transcriptomic analysis of lipase-deficient meta-
bolic tissues provided a bird's eye view of molecular processes at the
organism level and enabled us to correlate changes in gene expression
with the corresponding phenotypes (Table 1). Specifically, defective
cold adaptation and lipid accumulation in the heart of the ATGL'
mouse were mirrored by changes in the levels of transcripts associated
with the corresponding biological processes. Moreover, our results
shed new light on the observed cardiac insufficiency of ATGL”" mice:
energy starvation in CM.

Deficient thermogenesis in ATGL”" mice

We have demonstrated that genes involved in lipid metabolism
and fatty acid B-oxidation are down-regulated in ATGL”" BAT. This is
consistent with current theories that place ATGL as the first enzyme in
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Fig. 5. Cellular role and localization of differentially expressed genes in SM of HSL”~ mice.

the TG hydrolytic chain, with HSL acting subsequently on DG. Thus, a
lack of ATGL would lead to a net reduction in fatty acids to be
metabolized and thus a reduced requirement for 3-oxidation. We also
observed the down-regulation of genes involved in the tricarboxylic
acid cycle and in electron transport (Fig. 4). Taken together, these
results suggest that ATGL deficiency results in a general impairment of
energy production pathways in BAT. Consistent with this, ATGL”- mice
exhibit reduced oxygen consumption and severe defects in thermo-
regulation, i.e., they are cold sensitive [12].

Lipid accumulation in CM of ATGL”" mice

Our analysis of CM in ATGL”" mice revealed the down-regulation of
the transcripts of genes involved in fatty acid uptake and in 3-oxidation,
such as the fatty acid transporter Slc27al and the mitochondrial fatty
acid transporters Cpt1b and Cpt2. This suggests that TG accumulation
resulting from the impairment of lipid hydrolysis subsequently induces
a negative feedback regulation that decreases fatty acid influx and
oxidation.

Energy starvation in CM of ATGL”" mice

The results of this study reveal concerted down-regulation of oxi-
dative pathways in CM in the ATGL-deficient mouse model. Under
physiological conditions, CM is able to switch over to the use of
glucose as an energy source. As shown in Fig. 3, both glycolysis and the
tricarboxylic acid cycle were down-regulated in ATGL”- CM. Further-
more, the glucose transporters Slc2a3 and Slc2a4 were also down-
regulated. Our results therefore do not suggest a metabolic switch to

glucose utilization as under physiological conditions. The conse-
quence of the concerted down-regulation of oxidative processes is
energy starvation in CM and consequent cardiac insufficiency.

Toxicity of lipid intermediates of ATGL”" mice

TGs cannot be hydrolyzed in ATGL” mice and thus accumulate,
resulting in the down-regulation of a range of metabolic processes in
metabolic tissues. Lipid accumulation can furthermore lead to adverse
effects on other processes. Processes that were up-regulated in the
ATGL mouse include cell death in cardiac muscle and in liver, in

Table 1
Phenotypic characteristics of the lipase-deficient mouse models (Refs. [12] and [4])

ATGL HSL™-
Obesity Mild No
TG in heart Yes No
Defective thermoregulation Yes No
Fat cell hypertrophy Yes Yes
B-Adrenergic-stimulated lipolysis in WAT No No
Plasma FFA (fed/fasted) Reduced/reduced Reduced
Plasma TG (fed/fasted) Equal/reduced Equal/reduced
Plasma hydroxybutyrate (fed/fasted) Equal/reduced Equal/reduced
Plasma total cholesterol (fed/fasted) Equal/reduced Equal/reduced
Plasma HDL-cholesterol (fasted) Reduced Increased
Plasma insulin Reduced/equal
Plasma glucose (fed/fasted) Equal/equal Jequal
RQ fasting Increased Equal
Oxygen consumption fasting Reduced Equal
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accordance with the concept of lipotoxicity [17], in which lipid species
exhibit adverse effects in nonadipose tissues.

Discussion

In this study, we performed the first genome-wide examination of
the modulation of biological processes in response to genetic ablation
of two intracellular lipases, ATGL and HSL. Our chosen approach was
to profile gene expression in the metabolic tissues of ATGL- and the
HSL-deficient mice using DNA microarrays. This comparative tran-
scriptomics approach and subsequent comprehensive bioinformatics
analyses suggest several important conclusions.

First, the transcript signatures of the metabolic tissues of the two
mouse models were distinct and tissue specific. Strikingly, very few
genes were deregulated in both models. At the level of biological
processes, only fatty acid metabolism in BAT was modulated in the same
manner in both ATGL”- and HSL~ mice. That said, the deregulated genes
underlying this change were different in the two mouse models. The
most pronounced modulation of biological processes was observed in
CM of the ATGL”" mouse and in SM of the HSL"~ mouse. Interestingly,
only moderate changes in the levels of transcripts associated with
identifiable biological processes were observed in WAT. In wild-type
mice, both lipases are highly expressed in this tissue.

Second, the transcript signatures provided novel insights into the
metabolic derangements characteristic of ATGL”" mice. ATGL”" mice
have massive TG accumulation in heart tissue, which leads to cardiac
insufficiency and premature death [12]. In the heart, dietary fatty acids
are directed either to oxidation or to TG depots. Previous studies had
already suggested a tight regulation of fatty acid uptake, oxidation, and
lipid storage and it is thought that an imbalance between fatty acid
influx and oxidation causes cardiac lipid droplet formation [18,19]. Our
results in ATGL™" mice lend support to the hypothesis that these pro-
cesses are regulated in a concerted manner, since lack of intracellular TG
mobilization also impairs fatty acid influx and oxidation, as demon-
strated by the strong down-regulation of genes involved in fatty acid
uptake, 3-oxidation and TG synthesis. The biochemical consequences of
these down-regulations have been previously shown [12]. Another
interesting finding was the down-regulation of the pathways for glucose
utilization, suggesting energy starvation in CM of ATGL”- mice.

Third, the data provide evidence for a high degree of interconnectiv-
ity of metabolic networks and other biological processes. This has
important implications for the development of drugs that modulate the
activity of rate-limiting enzymes in lipid metabolism (despite intensive
efforts in preclinical and clinical research, very few approved drugs
target such key enzymes). Because metabolic networks are so highly
interconnected, perturbation at one key point can have profound and
unpredictable effects on many other metabolic pathways. Metabolic
pathways are strongly evolutionarily conserved as recently demon-
strated by the identification of an ATGL homolog in yeast [20]. Moreover,
these pathways are controlled through hard-wired neural, metabolic,
and hormonal signals. Evidence that metabolic intermediates are sig-
naling molecules for a variety of biological processes including cell
death, cell proliferation, and apoptosis must also be taken into account in
the drug development process. The modulating effects of the signaling
molecules can be direct or indirect and further studies in which lipid
species are measured will be necessary to identify the key ligands and
their target molecules. Thus, drug development for treatment of obesity
will be successful only if large-scale technologies, including microarrays
and metabolomics techniques, are used to elucidate the cellular changes
in the relevant tissues.

Conclusion
This study is the first to demonstrate the specific effects of genetic

ablation of the intracellular lipases ATGL and HSL on the mouse
transcriptome in metabolic tissues. Our findings show largely distinct

tissue-specific modulation of biological processes in ATGL”~ and HSL™-
mice. The transcript signatures observed also provided novel insights
into the metabolic derangements characteristic of ATGL”" mice. The
specific alterations observed in this work expand the understanding of
the toxicological consequences of lipase inhibition and highlight
metabolic and signaling pathways previously not known to be affected
by intracellular lipases.

Materials and methods

Animal procedures. ATGL'- [12] and HSL'- [4] mice and their respective wild-type litter-
mates were used for this study. Animals were kept on a chow diet (4.5% w/w fat) and on a
12-h light/dark cycle. Tissues were collected only from male mice in a fed state (ATGL”- at
the age of 3 months, HSL" at the age of 6 months). All animal procedures used were
approved by the Austrian Bundesministerium fiir Bildung, Wissenschaft, und Kultur.

Sample preparation. Five different tissues—WAT, BAT, CM, LIV, and SM—were isolated
(six mice per tissue). RNA from these tissues was extracted with the TRIzol reagent
(Invitrogen) according to the manufacturer's protocol. For each tissue, total RNA was
pooled from two mice and experiments were performed in triplicate.

Gene expression and data analysis. The mouse cDNA microarrays and the hybridization
protocols used have been described previously [21]. Briefly, the spotted microarrays
contain >27,000 elements with mouse cDNA clones representing 16,000 different genes
(UniGene clusters). Twenty micrograms of total RNA from each tissue of interest from
ATGL™- (HSL"") mice and ATGL*/* (HSL*/*) mice was reverse transcribed into cDNA, which
was then indirectly labeled with Cy5 or Cy3, respectively. To account for technical varia-
tion, procedures were repeated using the same samples with reversed dye assignment.
The microarrays were prehybridized with 5x SSC, 0.1% SDS, 1% BSA. Pairwise-labeled cDNA
samples were combined and 20 pg of mouse Cot1 DNA and 20 pg of poly(A) DNA were
added. The mixture was hybridized onto the slides overnight at 42 °C. Following washing,
slides were scanned with a GenePix 4000B microarray scanner (Axon Instruments) at
10 um resolution. The resulting TIFF images were analyzed with GenePix Pro 4.1 software
(Axon Instruments). Features were filtered for low-quality spots. To obtain expression
values for saturated spots, slides were scanned a second time with lower photomultiplier
tube settings and reanalyzed [22]. Following subtraction of the local background, the
arrays were global median and dye-swap normalized using ArrayNorm [23] and the
resulting ratios log, transformed. All experimental parameters, images, raw data, and
transformed data were uploaded to the microarray database MARS [24] and submitted via
MAGE-ML export to a public repository (ArrayExpress [25], Accession Nos. E-MARS-8, E-
MARS-9, and A-MARS-5). After outliers were removed the median expression values of
replicated ESTs on the microarray were calculated. Only ESTs with z>1.5 and significant
replication (p<0.05) using the z test and assuming a standard normal distribution were
considered differentially expressed and used for further analysis [26,27]. Expression
values and z scores for differentially expressed ESTs were averaged over biological repli-
cates. All calculations were implemented in PERL 5.8.0, and cluster analyses and
visualizations were performed using Genesis [28].

Functional annotation, cellular role, and pathway context. For each of the selected EST
sequences, we attempted to find the corresponding protein sequence as described pre-
viously [21]. All protein sequences were annotated de novo with >40 academic prediction
tools that are integrated into the Annotator, a novel protein sequence analysis system [29].
Further information was retrieved from the Mouse Genome Informatics [30] and Entrez
Gene [31] databases. Gene products were mapped onto known pathways and assigned
putative cellular roles and subcellular localizations using a combination of PathwayEx-
plorer [32], a literature survey, and domain-based assignments. Differentially expressed
genes were also classified according to GO [13]. Significant GO terms for biological process,
cellular component, and molecular function for proteins encoded by differentially expres-
sed genes were identified by comparison with the GO assignment of all mouse proteins
included in the RefSeq database [33] using the one-sided Fisher exact test. To account for
multiple testing, p values were adjusted controlling for the false discovery rate (FDR) as
proposed by Benjamini and Hochberg [34], and directed acyclic graphs for statistically
overrepresented GO terms within the category “biological process” were constructed.
Only terms with three or more entries from the dataset and with FDR <5% were consi-
dered statistically significant.

Validation of microarray data using real-time PCR. Microarray results were verified by
quantitative real-time PCR for Cpt2, Slc2a4, Ucp2, Dgat2, Mdh1, Mgll, G0s2, Kif4, Igf1, and
Igfbp4 (sequences of primer pairs can be found in Supplementary File 2). The RNA
samples from three biological replicates from wild-type and knockout mice (ATGL™ and
HSL ) previously used for microarrays were used for qPCR. cDNA from 2.5 pug RNA was
generated using Stratascript reverse transcriptase (Stratagene) according to the
manufacturer's instructions. The reverse-transcription product was diluted in water and
a volume corresponding to 20 ng original RNA used for qPCR. Quantitative real-time PCR
amplification and detection were performed using the Sybr Green Master Mix (Applied
Biosystems, Warrington, UK) in a fluorescence thermal cycler (ABI Prism 7000 sequence
detection system; Applied Biosystems) according to the manufacturer's protocol. Each
sample was quantified in duplicate. Gene expression was normalized using Gtf2b as a
reference gene. Relative mRNA expression levels were calculated following the AAC
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method. The AAC; values for each biological replicate were averaged and transformed to
log, ratios. A high degree of correlation between microarray data and real-time PCR data
was found (2=0.86, Supplementary File 4).
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