

Biomedical Sensor Systems

Laboratory

Laboratory Tutorial: Oscillation Measurement

Place: BMT02002, Stremayrgasse 16, 2.OG Supervised by: Christian Baumgartner, Theresa Rienmüller, Sonja Langthaler

Short Description:

In this lab students will perform oscillation measurements implemented by a piezo transducer and appropriate amplifier circuits. The signals will be analysed and interpreted using a storage oscilloscope.

Learning Objectives:

The students are able to ...

- ... understand the principles of sensors and amplifiers
- ... design appropriate amplifier curcuits for given problems
- ... handle oscilloscopes and understand the functional principles
- ... to solve linear ordinary second-order differential equations with constant coefficients

Content

1.	The	ory		2
	1.1.	Ana	logue measurement	2
	1.1.	1.	Operational Amplifier "OpAmp"	3
	1.2.	Tra	nsducers, sensors and actuators	4
	1.1.	2.	Piezo sensors	5
	1.3.	Osc	illoscope	8
	1.3.	1.	Functional principle	8
	1.3.	2.	Setup and basic functions	10
2.	Pre	parat	ory activities for the lab	11
	2.1.	Dim	nensioning and completion appropriate amplifier circuits	11
	2.2.	Mat	thematical model of a (weak) damped oscillation	12
	2.3.	Osc	illoscope	14
3.	Imp	leme	entation in the lab	14
	3.1.	Cha	rge amplifier	14
	3.2.	Elec	ctrometer amplifier	14
4.	Арр	endi	x	14

1. Theory

1.1. Analogue measurement

Why do we need amplifiers?

- \rightarrow measured potentials and currents often low
- \rightarrow sensor elements often load-sensitive
- \rightarrow tapping/transforming of measured variables

Requirements:

- low response to measured variable
- high resolution small current or voltage signals and changes should be measurable
- defined response characteristics the output signal should uniquely depend on the input signal
- good dynamic behavior the output signal should follow the input signal as fast as possible

• output stable and insensitive to response ouput signals should not be changed by following measurement instruments

1.1.1. Operational Amplifier "OpAmp"

Amplifiers can consist of one or several OpAmps. Figure 1 shows the simplified internal wiring of an OpAmp.

Differential input stage (yellow): differential amplifier with two inputs and constant current source; converts small potential differences to a proportional output current.

Amplifier stage (orange): transforms the small input current into a high output voltage; sets high off-load voltage amplification; frequency-dependent feedback of the capacitor ensures stability and determines the cutoff frequency.

Figure 1: Simplified internal wiring of an OpAmp

Output stage (blue): often a push-pull, no voltage amplification, acts as current driver for the output, small output resistor which enables a high output current.

Ideal OpAmps are assumed to have a voltage-controlled power supply with open load voltage gain V₀ $\rightarrow \infty$ (see Figure 2). **Real** OpAmps have an open loop voltage gain of about 10⁴ to 10⁷.

Figure 2: Equivalent curcuit diagram OpAmp

The transfer characteristic of an OpAmp is illustrated in Figure 3. u_A is *limited by the supply voltage* $U_B \rightarrow \text{so } u_{A,\text{max}}$ is always smaller than U_B !

Figure 3: Transfer characteristic OpAmp, U_{D0}: input offset voltage

1.2. Transducers, sensors and actuators

Transducers convert one form of energy to another form of energy. If a transducer converts a measurable quantity (mechanical, thermal, ...) into an electrical signal (voltage, current) we will call it a sensor. In turn, a transducer is referred to as an actuator in case electrical signals are converted into other energy forms, for example machanical movement, light or sound.

A sensor is the primary element in a measurement chain. Sensors can be divided into active and passive sensors. Active sensors convert non-electrical energy into electrical energy (voltage) without auxiliary voltage. Passive sensors change their electrical properties under the influence of non-electrical variables. Table 1 lists some active and passive sensors and their variables.

Active sensors	non-electrical	parameter					
thermal element	temperature, radiation						
photo element	light, temp	light, temperature					
electrochemical element	ph-Value, redo	x potential					
piezo sensor	force, pressure, tensi	ion, acceleration,					
	tempera	temperature					
induction sensor	rate of rotation,	acceleration					
Passive sensors	influenced electrical	non-electrical					
	parameter	parameter					
potentiometer	ohmic resistance	length, angle					
strain gauge	ohmic resistance	force, pressure,					
		length, angle,					
		strain, torsion					
photo resistor, photo transistor,	ohmic resistance	light variables					
photo diode							
resistance thermometer	ohmic resistance	length, angle					
transformer	magnetic coupling	length, angle					
Hall probe	voltage	length, angle					
induction sensor	inductance	length, angle					
capacitive sensor	capacitance	length, angle					
magnetic sensor	magnetic field	length, angle					

1.1.2. Piezo sensors

Piezoelectric effect

Figure 4: Piezoelectric effect in Quartz

Figure 4 shows the piezoelectric effect of a quartz molecule. Mechanical deformation like tension or compression causes a charge shifting and thereby a voltage. Reversely, an applied voltage leads to a deformation of the material. Thus, piezoelectric crystals and ceramics can be both, actuators as well as sensors.

Piezo Sensors

Figure 5: Piezo Sensor for acceleration

Piezo sensors (see Figure 5) can be used to determine a variety of physical variables (e.g. pressure, acceleration, temperature, strain or force). The function principles are mainly based on the longitudinal effect, transversal effect and shear effect. Figure 5 illustrates the longitudinal effect, caused by two crystals put together, which results in a force meter. The charge is proportional to the applied force, at least in a limited area.

The charge shift is characterised by displacement of the shift flux density D

$$D = \frac{Q}{A} \tag{1}$$

$$Q = k_p \cdot F , \qquad (2)$$

where Q is the charge and A the area. The coefficient k_p depicts the piezoelectric constant, also called piezo modul and F is the force.

The charges are not directly measurably and have to be converted to a proportional voltage U_q by a capacitor. Thereby charge Q can be written as

$$Q = C.U_q \Longrightarrow U_q = \frac{Q}{C} = \frac{k_p.F}{C}$$
(3)

Therefore amplifiers with a great high-ohmic input are applicable, so called electrometer amplifiers (non-inverting amplifier) and charge amplifiers.

Electrometer amplifier

The input resistance R_e of the amplifier as well as the loss resistance R_p have to be very high-ohmic. Otherwise the charge would be compensated quickly. The time constant of the measurement setup as shown in Figure 6 can be calculated as follows

$$\tau = R_{ges}C_{ges} = \left(\frac{R_e \cdot R_p}{R_e + R_p}\right) \cdot \left(C_0 + C_L + C_e\right) \qquad R_e \parallel R_p \to \infty$$
(4)

and the output voltage U_a is

$$U_{a} = U_{q} \left(1 + \frac{R_{2}}{R_{1}} \right) = \frac{Q}{C_{ges}} \left(1 + \frac{R_{2}}{R_{1}} \right) = F \cdot \frac{k_{p}}{C_{ges}} \left(1 + \frac{R_{2}}{R_{1}} \right).$$
(5)

Attention:

- $U_q = f(F)$
- unavoidable, external switching capacities lower sensitivity

Figure 6: Piezo sensor with electrometer amplifier

Charge amplifier

The charge amplifier converts the charge quantity, proportional to the force, into the voltage u_a . The current $i_q(t)$ is directly derived from the charge shifting and the current $i_k(t)$ from the output voltage of the OpAmp, and the capacitor C. The equations for $i_q(t)$ and $i_k(t)$ can be written as follows

$$i_q(t) = \frac{dQ}{dt} \tag{6}$$

$$i_k(t) = C.\frac{du_a(t)}{dt}$$
⁽⁷⁾

Figure 7: a) Equivalent curcuit digram charge amplifier b) Piezo sensor with charge amplifier

As shown in Figure 7 a), $i_q(t) + i_k(t) \approx 0$. After integration, the equation for u_a of the charge amplifier is given by

$$u_{a}(t) = -\frac{1}{C} \int_{0}^{T} iq(t)dt = -\frac{Q}{C} = -\frac{k_{p}.F}{C}.$$
(8)

C is the only decisive capacitance for u_a (instead of the parasitic capacitances (C₀, C_L, C_e)). A disadvantage is the restriction to the measurement of alternating parameters, because of charge changes over time.

1.3. Oscilloscope

1.3.1. Functional principle

Oscilloscopes are used to display the change of an electrical signal over time. Basically, all procedures which can be reproduced as a voltage time curve can also be displayed by an oscilloscope. The observed waveform can be analyzed for shape parameters such as amplitude, frequency, rise time, time interval, phase shift, distortion and others.

Figure 8: Basic construction analogue oscilloscope

Before the advent of digital electronics, analogue oscilloscopes (Figure 8) used electrode ray tubes to display the signals. Thereby, an electron emitter generates free electrons which are focused and accelerated by high voltage U_B . The measured signal is amplified and is used to diffract the electron beam by deflection plates. Finally the deflected electrons come upon the screen and induce the fluorescing screen material to light up.

In principle, a digital oscilloscope works like an analogue, but the measured signals are converted by an ADC (analog digital converter) before processing and the signals can be stored for further investigations. The digital-analog conversion enables the use of additional implemented analysis software (FFT, average, ...), the autoset-autorange function, pre-trigger and allows the recording of slow signal curves. Several ADCs are used to illustrate high frequency signals accurately. In order to

be able to represent signals accurately and to avoid aliasing, the conditions of the **sampling theorem** have to be observed.

Figure 9: Functional principle oscilloscope

To obtain a temporal representation of the input signal, the light point has to move with constant speed, horizontally along the screen. This happens thanks to a sawtooth voltage U_t generated by the time base (see Figure 9). During the falling edge of U_t the light point is faded out. The rise time of this voltage sets the time dimension of the X-axis. K_t (e.g. 0,2 µs/raster element) gives the time per raster element or cm of the X-axis.

The **Trigger** starts the sawtooth voltage, which generates the stationary image. To obtain the same sequence in all periods, the measured signal U and U_t have to run paired. Therfore a trigger level is used, whereby the sawtooth voltage gets started as soon as U exceeds this level.

x-y mode: most modern oscilloscopes have several inputs for voltages which can be used to plot one varying voltage versus another. In x-y mode the oscilloscope have the same deflection sensitivity for both the x- and y-direction. This is especially useful for graphing I-V curves (current versus voltage

characteristics) for components such as diodes. Lissajous figures for example are used to track phase differences between multiple input signals and can be used for frequency measurement as illustrated in Figure 11.

Figure 11: a) Measuring setup for frequency measurement. b) Lissajous figures.

1.3.2. Setup and basic functions

The basic oscilloscope is typically divided into four sections: the display, vertical controls, horizontal controls and trigger controls. In addition to the screen, most display sections are equipped with three basic controls: a focus knob, an intensity knob and a beam finder button.

The vertical section controls the amplitude of the displayed signal. This section carries a Volts-per-Division (Volts/Div) selector knob, an AC/DC/Ground selector switch and the vertical (primary) input for the instrument. Additionally, this section is typically equipped with the vertical beam position knob.

The horizontal section controls the time base or "sweep" of the instrument. The primary control is the Seconds-per-Division (Sec/Div) selector switch. Also included is a horizontal input for plotting dual X-Y axis signals. The horizontal beam position knob is generally located in this section.

The trigger section controls the start event of the sweep and can be set to automatically restart after each sweep or it can be configured to respond to an internal or external event. The principal controls of this section will be the source and coupling selector switches. An external trigger input (EXT Input) and level adjustment will also be included.

2. Preparatory activities for the lab

As preparatory activities for the lab you should:

- I. dimension appropriate amplifier circuits for oscillation measurement with a piezo element (see section 2.1). You should be able to describe principal differences and advantages as well as disadvantages of the circuits.
- II. mathematically establish the descriptive equation of a (weak) damped oscillation (see section 2.2)
- III. get familiar with the functional principles of a oscilloscope

2.1. Dimensioning and completion of appropriate amplifier circuits

Figure 12 and Figure 13 illustrate incomplete circuitries of a charge and electrometer amplifier, respectively. Dimension and complete the circuitry by adding resistors under the following conditions:

- the sensor will be the miniature-accelerometer sensor KS93, with charge changing proportional to acceleration
- measured frequencies are in the range of 40 to 80 Hz
- a LM324 will be used as operational amplifier
- capacitors are available in the range of 1 pF to 47 pF
- resistors up to 10 MΩ are available

useful hints:

- you can find all data sheets in the appendix
- consider, the input of the op-amp should always be on defined levels
- also consider the power supply of the LM324

Figure 12: Incomplete charge amplifier

Figure 13: Incomplete electrometer amplifier

2.2. Mathematical model of a (weak) damped oscillation

Together with the amplifier circuit the piezo sensor provides an electrical signal, corresponding to a damped oscillication. During the lab you will be concerned with oscillations u(t) with decreasing amplitudes A over time. A (linear) signal progression can be described by the following mathematical equation:

$$u(t) = A \cdot e^{-\frac{t}{\tau}} \cdot \left[\cos(\omega t) + \frac{1}{\omega \cdot \tau} \cdot \sin(\omega \cdot t) \right], \tag{9}$$

where A is the amplitude at time t = 0, ω the angular frequency of the oscillation and τ the decay coefficient. The differential equation of a free damped oscillation is given by

$$u'' + \frac{k_1}{m}u' + \frac{k_2}{m}u = 0$$
(10)

where u(t) is the deflection at time t, k_1 is the damping coefficient, k_2 the spring constant and m the mass of the swinging body. The right side of the equation is set to 0, because of a free oscillation without an exterior time excitation. A quite handy substitution with

$$\frac{2}{\tau} = \frac{k_1}{m}$$
 and $\omega^2 = \frac{k_2}{m}$

and the consideration of the initial conditions $u(t=0) = u_0 = A$ (deflection at time t=0) as well as $u'(t=0) = u'_0 = 0$ (the body will not be given an initial speed) lead – after appropriate computation – to equation 9.

Execute that computation and demonstrate that equation 9 is the result of equation 10 regarding the

- initial conditions
- the fact that it's a weak damped oscillation
- correlating given substitutions

Please note: The calculation should be performed **solely** in the time domain without using laplace transforms.

useful hints:

Make use of the fact that it's a weak damped oscillation where ω can be set as

$$\omega >> \frac{1}{r^2}$$

consistently you can set expressions like

$$\sqrt{\frac{1}{\tau^2} - \omega^2} = j \cdot \sqrt{\omega^2 - \frac{1}{r^2}} \cong j \cdot \sqrt{\omega^2} = j \cdot \omega$$

On the basis of your measured results you will determine paramters A, ω and τ . In advance, plan ahead how the determination respectively the calculation can be carried out. Keep in mind that you have to expect corresponding fluctuation ranges for ω and τ . Hence you should average over several periods.

For this purpose, assume an oscillation as shown in Figure 14:

Figure 14: Example of an oscillation course u(t) out of equation 9, with decaying amplitude over time ($A.e^{-\tau}$). In this case paramter A = 5 rad/s, τ = 2,5 s and ω = 5 1/s. The red lines show the contour of the oscillation.

2.3. Oscilloscope

The signals will be measured with a digital storage oscilloscope. Could the signals also be measured by an analogue oscilloscope? Explain your answear.

3. Implementation in the lab

3.1. Charge amplifier

Tension the ruler at 10 cm and 20 cm. Deflect it slightly first (1) and greater secondly (2) and record the oscillation until the ruler is resting again.

Please note: in case of large oscillations the saturation region can be reached depending on the dimension of your charge amplifier!

Conduct and answer following tasks and questions for both deflections:

- a) Implement your designed charge amplifier circuit on a patch panel.
- b) Metrologically determine the frequency of the fundamental oscillation with the help of an oscilloscope.
- c) Does the frequency remain constant?
- d) Determine the damping coefficient under assuming a damped harmonic oscillation.
- e) Additionally, switch a capacitor parallel to the input. The capacitor should simulate a changed interconnected capacitance. Are there changes in the output signal? Justify your observation.

3.2. Electrometer amplifier

Repeat tasks a) to e) of 3.1 with an electrometer amplifier.

4. Appendix

Single Supply Quad Operational Amplifiers

The LM324 series are low–cost, quad operational amplifiers with true differential inputs. They have several distinct advantages over standard operational amplifier types in single supply applications. The quad amplifier can operate at supply voltages as low as 3.0 V or as high as 32 V with quiescent currents about one–fifth of those associated with the MC1741 (on a per amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage.

- Short Circuited Protected Outputs
- True Differential Input Stage
- Single Supply Operation: 3.0 V to 32 V (LM224, LM324, LM324A)
- Low Input Bias Currents: 100 nA Maximum (LM324A)
- Four Amplifiers Per Package
- Internally Compensated
- Common Mode Range Extends to Negative Supply
- Industry Standard Pinouts
- ESD Clamps on the Inputs Increase Ruggedness without Affecting Device Operation

MAXIMUM RATINGS ($T_A = +25^{\circ}C$, unless otherwise noted.)

Rating	Symbol	LM224 LM324, LM324A	LM2902, LM2902V	Unit
Power Supply Voltages Single Supply Split Supplies	V _{CC} V _{CC} , V _{EE}	32 ±16	26 ±13	Vdc
Input Differential Voltage Range (Note 1)	V _{IDR}	±32	±26	Vdc
Input Common Mode Voltage Range	V _{ICR}	-0.3 to 32	-0.3 to 26	Vdc
Output Short Circuit Duration	tsc	Cont	inuous	
Junction Temperature	TJ	1	50	°C
Storage Temperature Range	T _{stg}	–65 te	o +150	°C
Operating Ambient Temperature Range	T _A			°C
LM224		-25 to +85		
LM324, 324A		0 to +70		
LM2902			-40 to +105	
LM2902V, NCV2902			-40 to +125	

1. Split Power Supplies.

ON Semiconductor®

http://onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 10 of this data sheet.

ELECTRICAL CHARACTERISTICS ($V_{CC} = 5$	$0.0 \text{ V}, \text{ V}_{\text{FF}} = \text{Gnd}, \text{ I}_{\text{A}} = 25^{\circ}\text{C}, \text{ unless otherwise noted.}$
---	---

			LM224			LM324/	4		LM324	ļ		LM2902	2	LM2902V/NCV2902			
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage $V_{CC} = 5.0 V to 30 V$ (26 V for LM2902, V), $V_{ICR} = 0 V to$ $V_{CC} - 1.7 V,$ $V_{O} = 1.4 V, R_{S} = 0 \Omega$ $T_{A} = 25^{\circ}C$ $T_{A} = T_{high}$ (Note 2) $T_{A} = T_{low}$ (Note 2)	V _{IO}		2.0	5.0 7.0 7.0		2.0	3.0 5.0 5.0		2.0	7.0 9.0 9.0		2.0	7.0 10 10		2.0	7.0 13 10	mV
Average temperature Coefficient of Input Offset Voltage $T_A = T_{high}$ to T_{low} (Notes 2 and 4)	ΔV _{IO} /Δ1	_	7.0	_	_	7.0	30	_	7.0	_	_	7.0	_	_	7.0	-	μv/°C
Input Offset Current $T_A = T_{high}$ to T_{low} (Note 2)	I _{IO}	-	3.0 -	30 100		5.0 -	30 75		5.0 -	50 150	-	5.0 -	50 200	-	5.0 -	50 200	nA
$\begin{array}{l} \mbox{Average Temperature}\\ \mbox{Coefficient of Input}\\ \mbox{Offset Current}\\ \mbox{T}_A = \mbox{T}_{high} \mbox{ to } \mbox{T}_{low}\\ \mbox{(Notes 2 and 4)} \end{array}$	ΔΙ _{ΙΟ} /ΔΤ	-	10	-	-	10	300	I	10	-	-	10	-	-	10	Ι	pA/°C
Input Bias Current $T_A = T_{high}$ to T_{low} (Note 2)	Ι _{ΙΒ}	-	-90 -	-150 -300	-	-45 -	-100 -200	1 1	-90 -	-250 -500	-	-90 -	-250 -500	-	-90 -	-250 -500	nA
Input Common Mode Voltage Range (Note 3) V _{CC} = 30 V (26 V for LM2902, V)	V _{ICR}	0		28.3	0		28.2	0		28.2	0		24.3	0		24.3	V
$T_A = +25^{\circ}C$ $T_A = T_{high}$ to T_{low} (Note 2)		0	_	28	0	_	28	0	-	28	0	-	24.3	0	_	24.3	
Differential Input Voltage Range	V _{IDR}	-	-	V _{CC}	-	-	V _{CC}	-	-	V _{CC}	-	-	V _{CC}	-	-	V _{CC}	V
Large Signal Open Loop Voltage Gain $R_L = 2.0 k\Omega$, $V_{CC} = 15 V$, for Large V_O Swing $T_A = T_{high}$ to T_{low} (Note 2)	A _{VOL}	50 25	100	-	25 15	100	-	25 15	100	-	25 15	100	-	25 15	100	-	V/mV
Channel Separation 10 kHz \leq f \leq 20 kHz, Input Referenced	CS	-	-120	-	-	-120	-	-	-120	-	-	-120	-	-	-120	-	dB
Common Mode Rejection, $R_S \le 10 \text{ k}\Omega$	CMR	70	85	-	65	70	-	65	70	-	50	70	-	50	70	-	dB
Power Supply Rejection	PSR	65	100	-	65	100	-	65	100	-	50	100	-	50	100	-	dB

2. LM224: $T_{low} = -25^{\circ}C$, $T_{high} = +85^{\circ}C$ LM324/LM324A: $T_{low} = 0^{\circ}C$, $T_{high} = +70^{\circ}C$ LM2902: $T_{low} = -40^{\circ}C$, $T_{high} = +105^{\circ}C$ LM2902V & NCV2902: $T_{low} = -40^{\circ}C$, $T_{high} = +125^{\circ}C$ *NCV2902 is qualified for automotive use.*

The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common mode voltage range is V_{CC} –1.7 V.

4. Guaranteed by design.

			LM224	<u></u>	<u> </u>	LM324/	Δ		LM324			LM290	2	LM29	02V/NC	:V2902	
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	- Max	Min	Тур	Max	Unit
$\label{eq:2.1} \begin{array}{l} \hline \text{Output Voltage-} \\ \text{High Limit} \\ (T_A = T_{high to} T_{low}) \\ (Note 5) \\ \text{V}_{CC} = 5.0 \text{ V}, \text{ R}_L = \\ 2.0 \text{ k}\Omega, \text{ T}_A = 25^\circ\text{C} \\ \text{V}_{CC} = 30 \text{ V} \\ (26 \text{ V for LM2902, V}), \\ \text{ R}_L = 2.0 \text{ k}\Omega \\ \text{V}_{CC} = 30 \text{ V} \\ (26 \text{ V for LM2902, V}), \\ (26 \text{ V for LM2902, V}), \end{array}$	V _{OH}	3.3 26 27	3.5	-	3.3 26 27	3.5 - 28	_	3.3 26 27	3.5 - 28	-	3.3 22 23	3.5 - 24	_	3.3 22 23	3.5 - 24		V
$\label{eq:relation} \begin{split} R_L &= 10 \ \text{k}\Omega \\ \hline \text{Output Voltage} - \\ \text{Low Limit,} \\ V_{CC} &= 5.0 \ \text{V}, \\ R_L &= 10 \ \text{k}\Omega, \\ T_A &= T_{high} \ \text{to } T_{low} \\ (\text{Note 5)} \end{split}$	V _{OL}	-	5.0	20	-	5.0	20	-	5.0	20	-	5.0	100	-	5.0	100	mV
$\label{eq:constraint} \begin{array}{l} \mbox{Output Source Current} \\ (V_{ID} = +1.0 \ V, \\ V_{CC} = 15 \ V) \\ T_A = 25^\circ C \\ T_A = T_{high} \ to \ T_{low} \\ (Note \ 5) \end{array}$	I _{O +}	20 10	40 20		20 10	40 20	-	20 10	40 20	- -	20 10	40 20	-	20 10	40 20		mA
$\label{eq:states} \begin{array}{l} \mbox{Output Sink Current} \\ (V_{ID} = -1.0 \ V, \\ V_{CC} = 15 \ V) \\ T_A = 25^\circ C \\ T_A = T_{high} \ to \ T_{low} \\ (Note \ 5) \\ (V_{ID} = -1.0 \ V, \\ V_O = 200 \ mV, \end{array}$	I _O –	10 5.0 12	20 8.0 50		10 5.0 12	20 8.0 50	-	10 5.0 12	20 8.0 50	-	10 5.0 -	20 8.0 –	- -	10 5.0 -	20 8.0 –		μA
T _A = 25°C) Output Short Circuit to Ground (Note 6)	I _{SC}	 -	40	60	-	40	60	-	40	60	_	40	60	_	40	60	mA
Power Supply Current ($T_A = T_{high}$ to T_{low}) (Note 5) $V_{CC} = 30 V$ (26 V for LM2902, V), $V_O = 0 V, R_L = \infty$ $V_{CC} = 5.0 V,$	Icc	-	-	3.0	-	1.4	3.0	-	-	3.0	_	-	3.0	_	-	3.0	mA
$V_O = 0 V, R_L = \infty$ $V_{CC} = 5.0 V,$ $V_O = 0 V, R_L = \infty$		-	-	1.2	-	0.7	1.2	-	-	1.2	-	-	1.2	-	-	1.2	

ELECTRICAL CHARACTERISTICS (V_{CC} = 5.0 V, V_{FF} = Gnd, T_A = 25°C, unless otherwise noted.)

5. LM224: $T_{low} = -25^{\circ}C$, $T_{high} = +85^{\circ}C$ LM324/LM324A: $T_{low} = 0^{\circ}C$, $T_{high} = +70^{\circ}C$ LM2902: $T_{low} = -40^{\circ}C$, $T_{high} = +105^{\circ}C$ LM2902V & NCV2902: $T_{low} = -40^{\circ}C$, $T_{high} = +125^{\circ}C$ NCV2902 is qualified for automotive use.

The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common mode voltage range is V_{CC} –1.7 V.

Figure 1. Representative Circuit Diagram (One–Fourth of Circuit Shown)

CIRCUIT DESCRIPTION

The LM324 series is made using four internally compensated, two-stage operational amplifiers. The first stage of each consists of differential input devices Q20 and Q18 with input buffer transistors Q21 and Q17 and the differential to single ended converter Q3 and Q4. The first stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the transconductance, a smaller compensation capacitor (only 5.0 pF) can be employed, thus saving chip area. The transconductance reduction is accomplished by splitting the collectors of Q20 and Q18. Another feature of this input stage is that the input common mode range can include the negative supply or ground, in single supply operation, without saturating either the input devices or the differential to single-ended converter. The second stage consists of a standard current source load amplifier stage.

Single Supply

Figure 2. Large Signal Voltage Follower Response

Each amplifier is biased from an internal–voltage regulator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection.

Split Supplies

Figure 3.

Figure 10. Voltage Reference

Figure 11. Wien Bridge Oscillator

Figure 12. High Impedance Differential Amplifier

Figure 13. Comparator with Hysteresis

Figure 14. Bi–Quad Filter

Figure 15. Function Generator

Given: f_0 = center frequency A(f_0) = gain at center frequency

Choose value fo, C

Then: R3 =
$$\frac{Q}{\pi f_0 C}$$

R1 = $\frac{R3}{2 A(f_0)}$
R2 = $\frac{R1 R3}{4Q^2 R1 - R3}$

For less than 10% error from operational amplifier, $\frac{Q_0 f_0}{BW} < 0.1$

where f_{o} and BW are expressed in Hz.

If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.

Device	Package	Operating Temperature Range	Shipping
LM224D	SO-14		55 Units/Rail
LM224DR2	SO-14		2500 Tape & Reel
LM224DTB	TSSOP-14	–25° to +85°C	96 Units/Rail
LM224DTBR2	TSSOP-14		2500 Tape & Reel
LM224N	PDIP-14		25 Units/Rail
LM324D	SO-14		55 Units/Rail
LM324DR2	SO-14		2500 Tape & Reel
LM324DTB	TSSOP-14		96 Units/Rail
LM324DTBR2	TSSOP-14		2500 Tape & Reel
LM324N	PDIP-14	00 45 1 7000	25 Units/Rail
LM324AD	SO-14	0° t0 +70°C	55 Units/Rail
LM324ADR2	SO-14		2500 Tape & Reel
LM324ADTB	TSSOP-14		96 Units/Rail
LM324ADTBR2	TSSOP-14		2500 Tape & Reel
LM324AN	PDIP-14		25 Units/Rail
LM2902D	SO-14	-	55 Units/Rail
LM2902DR2	SO-14		2500 Tape & Reel
LM2902DTB	TSSOP-14	–40° to +105°C	96 Units/Rail
LM2902DTBR2	TSSOP-14		2500 Tape & Reel
LM2902N	PDIP-14		25 Units/Rail
LM2902VD	SO-14		55 Units/Rail
LM2902VDR2	SO-14		2500 Tape & Reel
LM2902VDTB	TSSOP-14	100 to 110500	96 Units/Rail
LM2902VDTBR2	TSSOP-14	-40° to +125°C	2500 Tape & Reel
LM2902VN	PDIP-14		25 Units/Rail
NCV2902DR2	SO-14]	2500 Tape & Reel

ORDERING INFORMATION

MARKING DIAGRAMS

л

0

ፕ

1

= 2 or 3 х А = Assembly Location WL = Wafer Lot YY, Y = Year WW, W = Work Week

*This marking diagram also applies to NCV2902.

PACKAGE DIMENSIONS

PDIP-14 **N SUFFIX** CASE 646-06 **ISSUE M**

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

114-3M, 1982.
 CONTROLLING DIMENSION: INCH.
 DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 DIMENSION B DOES NOT INCLUDE MOLD FLASH.

5. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	IETERS		
DIM	MIN	MAX	MIN	MAX		
Α	0.715	0.770	18.16	18.80		
В	0.240	0.260	6.10	6.60		
C	0.145	0.185	3.69	4.69		
D	0.015	0.021	0.38	0.53		
F	0.040	0.070	1.02	1.78		
G	0.100	0.100 BSC		2.54 BSC		
Н	0.052	0.095	1.32	2.41		
J	0.008	0.015	0.20	0.38		
K	0.115	0.135	2.92	3.43		
L	0.290	0.310	7.37	7.87		
M		10°		10°		
N	0.015	0.039	0.38	1.01		

SO-14 **D SUFFIX** CASE 751A-03 **ISSUE F**

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 DIMENSION D DES NOT INCLUDE DAMBAR

PROTRUSION & DEES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	8.55	8.75	0.337	0.344
В	3.80	4.00	0.150	0.157
C	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050	BSC
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
М	0 °	7°	0 °	7°
Ρ	5.80	6.20	0.228	0.244
B	0.25	0.50	0.010	0.019

PACKAGE DIMENSIONS

TSSOP-14 DTB SUFFIX CASE 948G-01 ISSUE O

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH,
- DIMENSION A DOES NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD
- DIMEŃSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 DIMENSION K DOES NOT INCLUDE DAMBAR
- DIMENSIÓN K DOES NOT INCLUDE DAMBAR PROTRUSIÓN. ALLOWABLE DAMBAR PROTRUSIÓN SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSIÓN AT MAXIMUM MATERIAL CONDITIÓN
- MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
 DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026 BSC		
Н	0.50	0.60	0.020	0.024	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
Κ	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40	BSC	0.252	BSC	
М	0 °	8°	0 °	8 °	

ON Semiconductor and **W** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death wits such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

- Literature Distribution Center for ON Semiconductor
- P.O. Box 5163, Denver, Colorado 80217 USA
- Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.

Miniatur-Beschleunigungsaufnehmer **Miniature Accelerometers**

Eigenschaften

- Für leichte Messobjekte
- KS91 in Subminiaturausführung
- KS91 mit IEPE-Spannungsausgang
- KS93 mit Ladungsausgang
- · Hoher Dynamikbereich
- Hohe Resonanzfrequenzen
- KS93 mit auswechselbarem Kabel
- KS93 mit M3-Befestigungsgewinde im Boden • KS91 mit isoliertem Boden gegen Erdschleifen

Properties

- · For light test objects
- KS91 in subminiature design
- KS91 with IEPE voltage output
- · KS93 with charge output
- Wide dynamic range
- · High resonant frequency
- KS93 with replaceable cable
- · KS93 with M3 mounting thread in base
- · KS91 with insulated base avoiding ground loops

1.6.2 Sensoren

Sensors

KS91

KS93

M3-Buchse/

KS93

socket

gewinde/

Ausgang • Output IEPE Ladung • Charge Piezosystem • Piezo design Scherprinzip • Shear design Charge Ladungsübertragungsfaktor • Charge sensitivity B_{an} 10 ± 20% - mV/g Spannungsübertragungsfaktor • Voltage sensitivity B_{an} 10 ± 20% - mV/g Messbercich • Range $a, / a$ 700 6000 g Bruchbeschleunigung • Destruction limit a_{max} 8000 8000 g Linearer Frequezbereich • Linear frequency range $f_{a,00}$ $4 26 000$ 22 000 Hz Resonanzfrequenz • Resonant frequency ft >50 (+25 dB) >42 (+25 dB) kHz Querrichtungsfaktor • Transverse sensitivity Γ_{gabbax} < 5 < 5 % Eigenauschen (Effektiwert 10 Hz - 50 kHz) • Residual noise (NB, 10 Hz - 50 kHz) $a_{a, the hout}$ 100 - µg/Hz Konstantstromversorgung • Constant current supply l_{const} 4 20 - mA Ausgangsimpedarz bel cogent = 4 mA • Output impedance at l _{const} = 4 mA (σ_{tort} < 50 - Q Kusstantstromversorgung • Constant current supply l_{const} - <td< th=""><th></th><th></th><th>KS91</th><th>KS93</th><th></th></td<>			KS91	KS93	
Piezosystem - Piezo designScherprinzip - Shear designLadungsübertragungsfaktor - Voltage sensitivity B_{ab} - $5 \pm 20\%$ pC/g Spannungsübertragungsfaktor - Voltage sensitivity B_{ab} 10 ± 20%- mW/g Messbereich - Range a_1/a 7006000gBruchbeschleunigung - Destruction limit a_{max} 800022 000HzLinearer Frequenzbereich - Linear frequency range $f_{10,6,6}$ 426 00022 000Hz $f_{10,6,6}$ $f_{10,6,6}$ 50 (+25 dB)>42 (+25 dB)HzQuerrichtungsfaktor - Transverse sensitivity Γ_{cowax} < 5	Ausgang • Output		IEPE	Ladung • Charge	
Ladungsübertragungsfaktor • Charge sensitivity B_{an} $5 \pm 20\%$ pC/g Spannungsübertragungsfaktor • Voltage sensitivity B_{an} $10 \pm 20\%$ - mV/g Messbereich • Range $a_{,}/a_{,}$ 700 6000 g Bruchbeschleunigung • Destruction limit a_{max} 8000 8000 g Linearer Frequenzbereich • Linear frequency range $f_{1,sa}$ 426000 22.000 HzLinearer Frequenzbereich • Linear frequency range $f_{1,sa}$ 426000 22.000 HzResonanzfrequenz • Resonant frequency f_{1} $>50(+25dB)$ $>42(+25dB)$ KHzQuerrichtungsfaktor • Transverse sensitivity Γ_{advack} < 5 < 5 $\%$ Resonanzfrequenz • Resonant frequency f_{1} $>50(+25dB)$ $>42(+25dB)$ KHzQuerrichtungsfaktor • Transverse sensitivity Γ_{advack} < 3000 - $\mu g/(Hz)$ Rauschdichten • Noise densities $10 Hz$ $a_{q,1}$ 100 - $\mu g/(Hz)$ Rauschdichten • Noise densities $10 Hz$ $a_{q,1}$ 100 - $\mu g/(Hz)$ Arbeitspunktspannung bel $_{coxet} = 4 mA • Output bias voltage at _{coxet} = 4 mA • O_{out}1012 V-VAusgangsimpedanz bel _{coxet} = 4 mA • Output bias voltage at _{coxet} = 4 mA • O_{out}-20/120-20/150^{*}CTemp-koeffizient der Kapazitat • Temp. coefficient of charge sensitivityTK(B_{a})-0,06\%/KTemp-koeffizient der Lad-Empfindl • Temp. coefficient of charge sensitivity$	Piezosystem • Piezo design		Scherprinzip •	Shear design	
Spannungsübertragungsfaktor • Voltage sensitivity B_{int} 10 ± 20% - mV/g Messbereich • Range a, /a 700 6000 g Bruchbeschleunigung • Destruction limit a_{max} 8000 8000 g Linearer Frequenzbereich • Linear frequency range $f_{p,db}$ 4 26 000 12 000 Hz Resonanzfrequenz • Resonant frequency f. > 50 (+25 dB) > 42 (+25 dB) KHz Querrichtungsfaktor • Transverse sensitivity Γ_{edMAX} < 5	Ladungsübertragungsfaktor • Charge sensitivity	B _{ga}	-	5 ± 20%	pC/g
Messbereich · Rangea, / a.7006000gBruchbeschleunigung · Destruction limit a_{max} 80008000gLinearer Frequenzbereich · Linear frequency range $f_{3,m}$ 426 000022 000Hz $f_{10,5k}$ 12100009000HzResonanzfrequenz · Resonant frequencyf,>50 (+25 dB)>42 (+25 dB)KHzQuerrichtungsfaktor · Transverse sensitivity Γ_{0000xx} <5	Spannungsübertragungsfaktor • Voltage sensitivity	B _{ua}	10 ± 20%	-	mV/g
Bruchbeschleunigung • Destruction limit a_{max} 8000 8000 g Linearer Frequenzbereich • Linear frequency range $f_{0.5,k}^{-0.5,k}$ 426 000 22 000 Hz Resonar/frequenz • Resonant frequency $f_{1}^{-0.5,k}$ 815 000 12 0.000 Hz Querrichtungsfaktor • Transverse sensitivity $\Gamma_{0.0,k}^{-1}$ >50 (+25 dB) >42 (+25 dB) KHz Querrichtungsfaktor • Transverse sensitivity $\Gamma_{0.0,k}^{-1}$ $< 50 (+25 dB)$ >42 (+25 dB) KHz Rauschdichten • Noise densities 10 Hz a_{nack} < 3000 - µg (Hz) Rauschdichten • Noise densities 10 Hz a_{nac} 10 - µg (Hz) Rauschdichten • Noise densities 10 Hz a_{nac} 1012 V - V Acbetspunktspannung bei lower = 4 mA • Output ibas voltage at lower = 4 mA Γ_{our} <50	Messbereich • Range	a, / a_	700	6000	g
	Bruchbeschleunigung • Destruction limit	a _{max}	8000	8000	g
$ \frac{f_{0.\%}}{f_{0.\%}} = \frac{8 \dots 15000}{12 \dots 0000} = \frac{12000}{9000} + Hz \\ Resonanzfrequenz \cdot Resonant frequency f_{1} > 50 (+25 dB) > 42 (+25 dB) + 4z (+25 dB) \\ Querrichtungsfaktor \cdot Transverse sensitivity \Gamma_{BOMAX} < 5 < 5 < 5 < 6 < 9 < 6 \\ Eigenrauschen (Effektiwert, 10 Hz - 50 kHz) \cdot Residual noise (RMS; 10 Hz - 50 kHz) a_{n wide hand} < 3000 - \mug (/Hz) \\ Rauschdichten \cdot Noise densities 10 Hz a_{1,1} = 100 - \mug //Hz \\ 100 Hz a_{2,0} = 10 - \mug //Hz \\ 100 Hz a_{2,0} = 10 - \mug //Hz \\ Arbeitspunktspannung bei I_{CONST} = 4 mA \cdot Output bias voltage at I_{CONST} = 4 mA U_{BIAS} = 10 \dots 12 V - V \\ Ausgangsimpedanz bei I_{CONST} = 4 mA \cdot Output bias voltage at I_{CONST} = 4 mA r_{OUT} < <50 - 0.4 mF \\ Verhatten gegenüber Umgebungsbedingungen · Environmental characteristics \\ Arbeitspunder Direction Coefficient of voltage sensitivity TK(B_m) - 0.06 %/K \\ Temp-koeffizient der Lad -Empfindl · Temp. coefficient of charge sensitivity b_{aT} = 2 3 ms^{-7}/LD %/K \\ Temp-koeffizient der Kapazität · Temp. coefficient of capacitance TK(C_1) - 0.14 %/K \\ Temp-koeffizient der Kapazität · Temp. coefficient of capacitance TK(C_1) - 0.14 %/K \\ Temperatursperindlichkeit · Temp ensensitivity b_{aT} = 2 3 ms^{-7}/LD %/K \\ Temperatursperindlichkeit · Temp ensensitivity b_{aT} = 2 3 ms^{-7}/LD %/K \\ Temperatursperindlichkeit · Temp ensensitivity b_{aT} = 2 3 ms^{-7}/LD %/K \\ Temperatursperindlichkeit · Temp ensensitivity b_{aT} = 0.0,2 ms^{-7}/LD %/K \\ Temperatursprungempfindlichkeit · Base strain sensitivity b_{aT} = 0.0,2 ms^{-7}/LD %/K \\ Temperatursperindlichkeit · Temp ensensitivity b_{aT} = 0.0,2 ms^{-7}/LD %/K \\ Temperatursperindlichkeit · Base strain sensitivity b_{aT} = 0.0,2 ms^{-7}/LD %/K \\ Temperatursprungempfindlichkeit · Base strain sensitivity b_{aT} = 0.2,7 / 0.095 g / 0.2 ms^{-7}/LD \\ Messobjektdehnungsempfindlichkeit · Base strain sensitivity b_{aT} = 0.2,7 / 0.095 g / 0.2 ms^{-7}/LD \\ Gehäusematerial · Case material Malue table material field sensitives b_{aT} = 0.2,7 / 0.095 g / 0.2 ms^{-7}/LD \\ Magnetfieldempfind$	Linearer Frequenzbereich • Linear frequency range	f _{3 dB}	4 26 000	22 000	Hz
Is s_s_112100009000HZQuerrichtungsfaktor • Transverse sensitivity f_r >50 (+25 dB)>42 (+25 dB)kHzQuerrichtungsfaktor • Transverse sensitivity Γ_{goMAX} <5		f _{10 %}	815000	12 000	Hz
Resonant Trequencyr,> 50 (426 dB)> 42 (425 dB)KHzQuerrichtungsfaktor • Transverse sensitivity Γ_{gouark} < 5		Т _{5 %}	1210000	9000	HZ
Querrichtungsfaktor • Transverse sensitivity Γ_{00MXX} < 5< 5< 5%Eigenzuschen (Effektiwwert; 10 Hz - 50 kHz) • Residual noise (RMS; 10 Hz - 50 kHz) $a_{n, unde hand}$ < 30000	Resonanzfrequenz • Resonant frequency	t,	> 50 (+25 dB)	> 42 (+25 dB)	kHz
Eigenrauschen (Effektivwert; 10 Hz - 50 kHz) • Residual noise (RMS; 10 Hz - 50 kHz) Rauschdichten • Noise densities10 Hz ant 100 Hz and< 3000-µg (Hz) µg/\Hz µg/\Hz µg/\Hz µg/\Hz µg/\Hz hz 100 Hz and100 hz and< 3000-µg (Hz) µg/\Hz µg/\Hz µg/\Hz µg/\Hz hz<	Querrichtungsfaktor • Transverse sensitivity	Γ_{90MAX}	< 5	< 5	%
Rauschdichten • Noise densities10 Hz 100 Hz a_{n1} 100 Hz100 a_{n2} 100 100 100 Hz $-$ $\mug/\Hz\mug/\HzKonstantstromversorgung • Constant current supplyI_{CONST}220-mAArbeitspunktspannung bei I_{CONST} = 4 mA • Output bias voltage at I_{CONST} = 4 mA1012 V-VAusgangsimpedanz bei I_{CONST} = 4 mA • Output impedance at I_{CONST} = 4 mAr_{OUT}<50$	Eigenrauschen (Effektivwert; 10 Hz - 50 kHz) • Residual noise (RMS; 10 Hz - 50 kHz)	a _{n wide band}	< 3000	-	µg (Hz)
100 Hz a_{h2} 10-µg//HzKonstantstromversorgung • Constant current supply I_{CONST} 220-mAArbeitspunktspannung bei $I_{CONST} = 4 \text{ mA} • Output bias voltage at I_{CONST} = 4 \text{ mA}U_{BIAS}1012 V-VAusgangsimpedanz bei I_{CONST} = 4 \text{ mA} • Output impedance at I_{CONST} = 4 \text{ mA}r_{OUT}<50$	Rauschdichten • Noise densities10 Hz	a _{n1}	100	-	µg/√Hz
Konstantstromversorgung • Constant current supply I_{CONST} 2 20 - mA Arbeitspunktspannung bei $I_{CONST} = 4 \text{ mA} \cdot \text{Output bias voltage at } I_{CONST} = 4 \text{ mA} \cdot \text{Output impedance at } I_{CONST} = 4 \text{ mA} \cdot \text{Ma} \text$	100 Hz	a _{n2}	10	-	µg/√Hz
Arbeitspunktspannung bei $I_{CONST} = 4 \text{ mA} \cdot Output bias voltage at I_{CONST} = 4 \text{ mA} r_{OUT} 1012 V - V Ausgangsimpedanz bei I_{CONST} = 4 \text{ mA} \cdot Output impedance at I_{CONST} = 4 \text{ mA} r_{OUT} <50$	Konstantstromversorgung • Constant current supply	I _{CONST}	2 20	-	mA
Ausgangsimpedanz bei $l_{CONST} = 4 \text{ mA} \cdot Output impedance at l_{CONST} = 4 \text{ mA} r_{OUT} <50$	Arbeitspunktspannung bei I _{CONST} =4 mA • Output bias voltage at I _{CONST} =4 mA	U _{BIAS}	10 12 V	-	V
Kapazität ohne Kabel • Capacitance without cable C1 - 0,4 nF Verhalten gegenüber Umgebungsbedingungen • Environmental characteristics Arbeitstemperaturbereich • Operating temperature range T_{min}/T_{max} -20 / 120 -20 / 150 °C Tempkoeffizient der LadEmpfindl. • Temp. coefficient of charge sensitivity TK(B _{un}) - 0,06 %/K Tempkoeffizient der Kapazität. • Temp. coefficient of capacitance TK(C ₁) - 0,14 %/K Temperatursprungempfindlichkeit • Temperature transient sensitivity b_{aT} 2 3 ms²/K Messobjektdehnungsempfindlichkeit • Base strain sensitivity b_{aS} - 0,2 ms²/L Magnetfeldempfindlichkeit • Magnetic field sensitivity b_{aB} - 1,3 ms²/T Mechanische Daten • Mechanical data - 1,0 / 0,035 2,7 / 0,095 g / oz Gehäusematerial • Case material Alu, Edelstahl Titan, Edelstahl Titan, stainl. st. Titan, stainl. st. - Anschlusskabel / -buchse • Connection radial radial radial - - Befestigung • Mounting Kleben / adhesive M3 Gew. / thread	Ausgangsimpedanz bei $I_{CONST} = 4 \text{ mA} \cdot \text{Output impedance at } I_{CONST} = 4 \text{ mA}$	r _{out}	<50	-	Ω
Verhalten gegenüber Umgebungsbedingungen • Environmental characteristics Arbeitstemperaturbereich • Operating temperature range T_{min}/T_{max} -20 / 120 -20 / 150 °C Tempkoeffizient der LadEmpfindl. • Temp. coefficient of charge sensitivity TK(B_ga) - 0,06 %/K Tempkoeffizient der SpgEmpfindl. • Temp. coefficient of voltage sensitivity TK(B_ga) -0,2 Tempkoeffizient der Kapazität. • Temp. coefficient of capacitance TK(C ₁) - 0,14 %/K Temperatursprungempfindlichkeit • Temperature transient sensitivity b_{aT} 2 3 ms²/K Messobjektdehnungsempfindlichkeit • Base strain sensitivity b_{aS} - 0,2 ms²/L Magnetfeldempfindlichkeit • Magnetic field sensitivity b_{aB} - 1,3 ms²/L Mechanische Daten • Mechanical data - 1,3 ms²/L - Masse ohne Kabel • Weight without cable m 1,0 / 0,035 2,7 / 0,095 g / oz Gehäusematerial • Case material - Alu, Edelstahl Alum. stainl. st. Titan, Edelstahl Titan, stainl. st. - Kabelanschluss • Cable connection socket fest / integral ⁽¹⁾ <t< td=""><td>Kapazität ohne Kabel • Capacitance without cable</td><td>C</td><td>-</td><td>0,4</td><td>nF</td></t<>	Kapazität ohne Kabel • Capacitance without cable	C	-	0,4	nF
Arbeitstemperaturbereich • Operating temperature range T_min/T_max -20 / 120 -20 / 150 °C Tempkoeffizient der LadEmpfindl. • Temp. coefficient of charge sensitivity TK(B _{qa}) - 0,06 %/K Tempkoeffizient der SpgEmpfindl. • Temp. coefficient of voltage sensitivity TK(B _{qa}) -0,2 Tempkoeffizient der Kapazität. • Temp. coefficient of capacitance TK(C ₁) - 0,14 %/K Temparatursprungempfindlichkeit • Temperature transient sensitivity b _{aT} 2 3 ms²/K Messobjektdehnungsempfindlichkeit • Base strain sensitivity b _{aS} - 0,2 ms²/μD Magnetfeldempfindlichkeit • Magnetic field sensitivity b _{aB} - 1,3 ms²/T Mechanische Daten • Mechanical data - 1,0 / 0,035 2,7 / 0,095 g / oz Gehäusematerial • Case material Malu, Edelstahl Alu, Edelstahl Alum. stainl. st. Titan, Edelstahl Titan, stainl. st. - Anschlusskabel / -buchse • Connection cable / socket fest / integral ⁽¹⁾ Subminiat. M3 - Befestigung • Mounting Ma Gew./ thread - - - -	Verhalten gegenüber Umgebungsbedingungen • Environmental	characteris	stics		
Tempkoeffizient der LadEmpfindl. • Temp. coefficient of charge sensitivity TK(B _{qa}) - 0,06 %/K Tempkoeffizient der SpgEmpfindl. • Temp. coefficient of voltage sensitivity TK(B _{qa}) -0,2 Tempkoeffizient der Kapazität. • Temp. coefficient of capacitance TK(C ₁) - 0,14 %/K Temperatursprungempfindlichkeit • Temperature transient sensitivity b _{aT} 2 3 ms²/K Messobjektdehnungsempfindlichkeit • Base strain sensitivity b _{aS} - 0,2 ms²/L Messobjektdehnungsempfindlichkeit • Magnetic field sensitivity b _{aS} - 1,3 ms²/L Mechanische Daten • Mechanical data - 1,3 ms²/T Masse ohne Kabel • Weight without cable m 1,0 / 0,035 2,7 / 0,095 g / oz Gehäusematerial • Case material • Case material Alu, Edelstahl Alum. stainl. st. Titan, Edelstahl Titan., stainl. st. Kabelanschluss • Cable connection radial radial radial Anschlusskabel / -buchse • Connection cable / socket fest / integral ⁽¹⁾ Subminiat. M3 Befestigung • Mounting Mounting Kleben / adhesive <td>Arbeitstemperaturbereich • Operating temperature range</td> <td>T_{min}/T_{max}</td> <td>-20 / 120</td> <td>-20 / 150</td> <td>°C</td>	Arbeitstemperaturbereich • Operating temperature range	T_{min}/T_{max}	-20 / 120	-20 / 150	°C
Tempkoeffizient der SpgEmpfindl. • Temp. coefficient of voltage sensitivity TK(B _{ua}) -0,2 0,14 %/K Tempkoeffizient der Kapazität. • Temp. coefficient of capacitance TK(C ₁) - 0,14 %/K Temperatursprungempfindlichkeit • Temperature transient sensitivity b _{aT} 2 3 ms²/K Messobjektdehnungsempfindlichkeit • Base strain sensitivity b _{aS} - 0,2 ms²/µD Magnetfeldempfindlichkeit • Magnetic field sensitivity b _{aS} - 1,3 ms²/T Mechanische Daten • Mechanical data - 1,3 ms²/T Masse ohne Kabel • Weight without cable m 1,0 / 0,035 2,7 / 0,095 g / oz Gehäusematerial • Case material Alu, Edelstahl Alum. stainl. st. Titan, Edelstahl Titan, stainl. st. - Kabelanschluss • Cable connection radial radial - - Anschlusskabel / -buchse • Connection cable / socket fest / integral ⁽¹⁾ Subminiat. M3 - Befestigung • Mounting Kleben / adhesive M3 Gew. / thread -	Tempkoeffizient der LadEmpfindl. • Temp. coefficient of charge sensitivity	$TK(B_{qa})$	-	0,06	%/K
Tempkoeffizient der Kapazität. • Temp. coefficient of capacitance TK(C ₁) - 0,14 %/K Temperatursprungempfindlichkeit • Temperature transient sensitivity b _{aT} 2 3 ms²/K Messobjektdehnungsempfindlichkeit • Base strain sensitivity b _{aS} - 0,2 ms²/μD Magnetfeldempfindlichkeit • Magnetic field sensitivity b _{aS} - 1,3 ms²/T Mechanische Daten • Mechanical data - 1,3 ms²/T Masse ohne Kabel • Weight without cable m 1,0 / 0,035 2,7 / 0,095 g / oz Gehäusematerial • Case material Alu, Edelstahl Alum. stainl. st. Titan, Edelstahl Titan, stainl. st. Titan, stainl. st. Kabelanschluss • Cable connection radial radial radial Anschlusskabel / -buchse • Connection cable / socket fest / integral ⁽¹⁾ Subminiat. M3 Befestigung • Mounting Kleben / adhesive M3 Gew. / thread	Tempkoeffizient der SpgEmpfindl. • Temp. coefficient of voltage sensitivity	TK(B _{ua})	-0,2		
Temperatursprungempfindlichkeit • Temperature transient sensitivity b _{aT} 2 3 ms²/K Messobjektdehnungsempfindlichkeit • Base strain sensitivity b _{aS} - 0,2 ms²/µD Magnetfeldempfindlichkeit • Magnetic field sensitivity b _{aB} - 1,3 ms²/T Mechanische Daten • Mechanical data - 1,3 ms²/T Masse ohne Kabel • Weight without cable m 1,0 / 0,035 2,7 / 0,095 g / oz Gehäusematerial • Case material Alu, Edelstahl Alum. stainl. st. Titan, Edelstahl Titan, stainl. st. Titan, stainl. st. Kabelanschluss • Cable connection radial radial radial and	Tempkoeffizient der Kapazität. • Temp. coefficient of capacitance	TK(C _I)	-	0,14	%/K
Messobjektdehnungsempfindlichkeit • Base strain sensitivity bas - 0,2 ms²/µD Magnetfeldempfindlichkeit • Magnetic field sensitivity bas - 1,3 ms²/T Mechanische Daten • Mechanical data - 1,0 / 0,035 2,7 / 0,095 g / oz Gehäusematerial • Case material Maun. stainl. st. Titan, Edelstahl Alum. stainl. st. Titan, Edelstahl Titan., stainl. st. - Kabelanschluss • Cable connection radial radial - - Anschlusskabel / -buchse • Connection cable / socket fest / integral ⁽¹⁾ Subminiat. M3 -	Temperatursprungempfindlichkeit • Temperature transient sensitivity	b _{at}	2	3	ms⁻²/K
Magnetfeldempfindlichkeit • Magnetic field sensitivity base - 1,3 ms²/T Mechanische Daten • Mechanical data - 1,3 ms²/T Masse ohne Kabel • Weight without cable m 1,0 / 0,035 2,7 / 0,095 g / oz Gehäusematerial • Case material Alu, Edelstahl Alum. stainl. st. Titan, Edelstahl Titan, stainl. st. Titan, stainl. st. * Kabelanschluss • Cable connection radial radial subminiat. M3 * Befestigung • Mounting Kleben / adhesive M3 Gew. / thread *	Messobjektdehnungsempfindlichkeit • Base strain sensitivity	b _{aS}	-	0,2	ms⁻²/µD
Mechanische Daten • Mechanical data Masse ohne Kabel • Weight without cable m 1,0 / 0,035 2,7 / 0,095 g / oz Gehäusematerial • Case material Alu, Edelstahl Alum. stainl. st. Titan, Edelstahl Titan., stainl. st. Titan, Edelstahl Titan., stainl. st. Kabelanschluss • Cable connection radial radial radial Anschlusskabel / -buchse • Connection cable / socket fest / integral ⁽¹⁾ Subminiat. M3 Befestigung • Mounting Kleben / adhesive M3 Gew. / thread	Magnetfeldempfindlichkeit • Magnetic field sensitivity	b _{aB}	-	1,3	ms ⁻² /T
Masse ohne Kabel • Weight without cable m 1,0 / 0,035 2,7 / 0,095 g / oz Gehäusematerial • Case material Alu, Edelstahl Alum. stainl. st. Titan, Edelstahl Titan., stainl. st. Titan, Edelstahl Titan., stainl. st. Titan, Edelstahl Titan., stainl. st. Kabelanschluss • Cable connection radial radial radial Anschlusskabel / -buchse • Connection cable / socket fest / integral ⁽¹⁾ Subminiat. M3 Befestigung • Mounting Kleben / adhesive M3 Gew. / thread	Mechanische Daten • Mechanical data				
Gehäusematerial • Case material Alu, Edelstahl Alum. stainl. st. Titan, Edelstahl Titan., stainl. st. Kabelanschluss • Cable connection radial radial Anschlusskabel / -buchse • Connection cable / socket fest / integral ⁽¹⁾ Subminiat. M3 Befestigung • Mounting Kleben / adhesive M3 Gew. / thread	Masse ohne Kabel • Weight without cable	m	1,0 / 0,035	2,7 / 0,095	g / oz
Alum. stainl. st. Titan., stainl. st. Kabelanschluss • Cable connection radial radial Anschlusskabel / -buchse • Connection cable / socket fest / integral ⁽¹⁾ Subminiat. M3 Befestigung • Mounting Kleben / adhesive M3 Gew. / thread	Gehäusematerial • Case material		Alu, Edelstahl	Titan, Edelstahl	
Kabelanschluss • Cable connection radial radial Anschlusskabel / -buchse • Connection cable / socket fest / integral ⁽¹⁾ Subminiat. M3 Befestigung • Mounting Kleben / adhesive M3 Gew. / thread			Alum. stainl. st.	Titan., stainl. st.	
Anschlusskabel / -buchse • Connection cable / socket fest / integral ⁽¹⁾ Subminiat. M3 Befestigung • Mounting Kleben / adhesive M3 Gew. / thread	Kabelanschluss • Cable connection		radial	radial	
Befestigung • Mounting Mieben / adhesive M3 Gew. / thread	Anschlusskabel / -buchse • Connection cable / socket		fest / integral ⁽¹⁾	Subminiat. M3	
	Befestigung • Mounting		Kleben / adhesive	M3 Gew. / thread	
Isolation • Insulation ja / yes nein / no	Isolation • Insulation		ja / yes	nein / no	

(1) KS91 hat 1,5 m fest angebrachtes Kabel mit UNF 10-32-Stecker KS91 has 1.5 m integral cable with UNF 10-32 plug

Typischer Frequenzgang Typical Amplitude Response

Temperaturverhalten

% KS91 ABua(T)

10 5

0 -5

-10 -15

-20

Temperature Characteristics

Noise Characteristics

-20 20 60 100 c Passendes Zubehör • Suitable Accessories

	KS91	KS93
Anschluss- zubehör	 010-UNF-BNC-5/10: Kabel UNF 10-32 / BNC; 5 / 10 m lang (zur Verlängerung) 016: Kupplung für 2 UNF 10-32-Stecker 017: Adapter UNF 10-32 / BNC (männlich) 117: Adapter UNF 10-32 / BNC (weiblich) 025: Adapter UNF 10-32 / TNC (männlich) 	 009-SUB-UNF-1,5: Störarmes Kabel Subminiatur / UNF 10-32; 1,5 m lang;120 °C 009/T-SUB-UNF-1,5: Störarmes Kabel Subminiatur / UNF 10-32; 1,5 m lang; 200 °C 010-UNF-BNC-10: Störarmes Kabel UNF 10-32 / BNC; 5 / 10m lang (zur Verlängerung) 016: Kupplung für 2 UNF 10-32-Stecker 017: Adapter UNF 10-32 / BNC (männlich) 117: Adapter UNF 10-32 / BNC (weiblich) 025: Adapter UNF 10-32 / TNC (männlich)
Connection accessories	 010-UNF-BNC-5/10: cable UNF 10-32 / BNC; 5 / 10 m long (for extension) 016: Coupler for 2 UNF 10-32 plugs 017: Adapter UNF 10-32 / BNC (male) 117: Adapter UNF 10-32 / BNC (female) 025: Adapter UNF 10-32 / TNC (male) 	 009-SUB-UNF-1,5: Low noise cable Subminiature / UNF 10-32; 1.5 m long; 80 °C 009/T-SUB-UNF-1,5: Low noise cable Subminiature / UNF 10-32; 1.5 m long; 200 °C 010-UNF-BNC-10: Low noise cable UNF 10-32 / BNC; 5 / 10 m long (for extension) 016: Coupler for 2 UNF 10-32 plugs 017: Adapter UNF 10-32 / BNC (male) 117: Adapter UNF 10-32 / BNC (female) 025: Adapter UNF 10-32 / TNC (male)
Befestigungs- zubehör	• 002: Klebewachs	 002: Klebewachs 021: Gewindestift M3 106: Isolierflansch M3 129: Isolierendes Klebepad M3 022: Gewindeadapter M3 / M5 108: Haftmagnet M3 130: Triaxial-Befestigungswürfel M3 140: Handgriffadapter für gekrümmte Oberflächen
Mounting accessories	• 002: Adhesive wax	 002: Adhesive wax 021: Mounting stud M3 106: Insulating flange M3 129: Insulating adhesive pad M3 022: Thread adapter M3 / M5 108: Magnetic base M3 130: Triaxial mounting cube M3 140: Handle adapter for curved surfaces

Bestellinformation • Ordering Information

KS93/01:	Aufnehmer mit Zubehöretui; Inhalt: Kabel 009-SUB-UNF-1,5, Adapter 017, Gewindestift 021, Klebewachs 002,	
	Isolierflansch 106, Klebepad 129, Haftmagnet 108, Bedienungsanleitung, Kennblatt	
	Sensor with accessories kit including cable 009-SUB-UNF-1,5, adapter 017, mounting stud 021 adhesive wax 002, insulating flange 106, adhesive pad 129, magnetic base 108, instruction manual, data sheet	
KS91; KS93:	Aufnehmer mit Kennblatt Sensor with data sheet	
1.1		

Hinweis: Auf Wunsch liefern wir unsere Aufnehmer mit einem kostengünstigen DKD-Kalibrierzertifikat. Preise auf Anfrage. Änderungen vorbehalten.

Note: Our transducers can be supplied with an attractively priced calibration certificate of DKD. Prices on demand. Specifications subject to change without prior notice.

Manfred Weber Metra Meß- und Frequenztechnik in Radebeul e.K. Meißner Str. 58 P.O.Box 01 01 13 D-01445 Radebeul D-01435 Radebeul Tel. +49-(0)351-836 2191 Fax: +49-(0)351-836 2940

Ausgabe / Edition: 01/12

Internet: www.MMF.de Email: Info@MMF.de