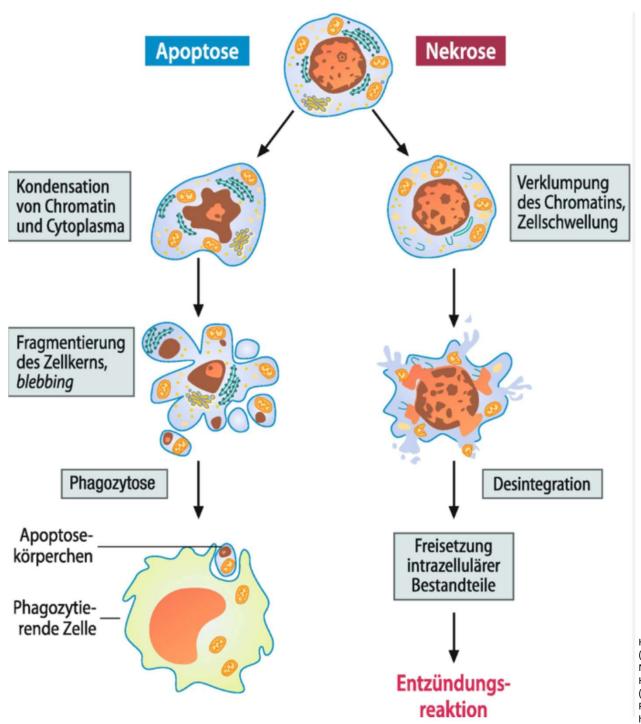


Dr.med.univ. Marion Pollheimer
Diagnostik- und
Forschungsinstitut für Pathologie
Medizinische Universität Graz

Krankhafte Veränderungen von Zellen und Geweben

Nekrose



Nekrose = ungewollter Zelltod (Apoptose = gewollter Zelltod)

Koagulation = Eiweißdenaturierung, Verklumpung

Kolliquation = Gewebeauflösung durch Verflüssigung (hydrolytische Enzyme)

Enzymatische/tryptische Nekrose durch eiweißauflösende Enzyme (z. B. Bauchspeicheldrüse)

Heinrich, P.C., Wajant, H., Koch, HG., Brix, J. (2022). Der programmierte Zelltod – Apoptose, Nekroptose, Ferroptose und Pyroptose. In: Heinrich, P.C., Müller, M., Graeve, L., Koch, HG. (eds) Löffler/Petrides Biochemie und Pathobiochemie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-60266-9_51

Ursachen für den Zelluntergang

Hypoxisch: Sauerstoffmangel (Hypoxie/Ischämie)

Organinfarkt

Toxisch

Physikalisch

Immunologisch

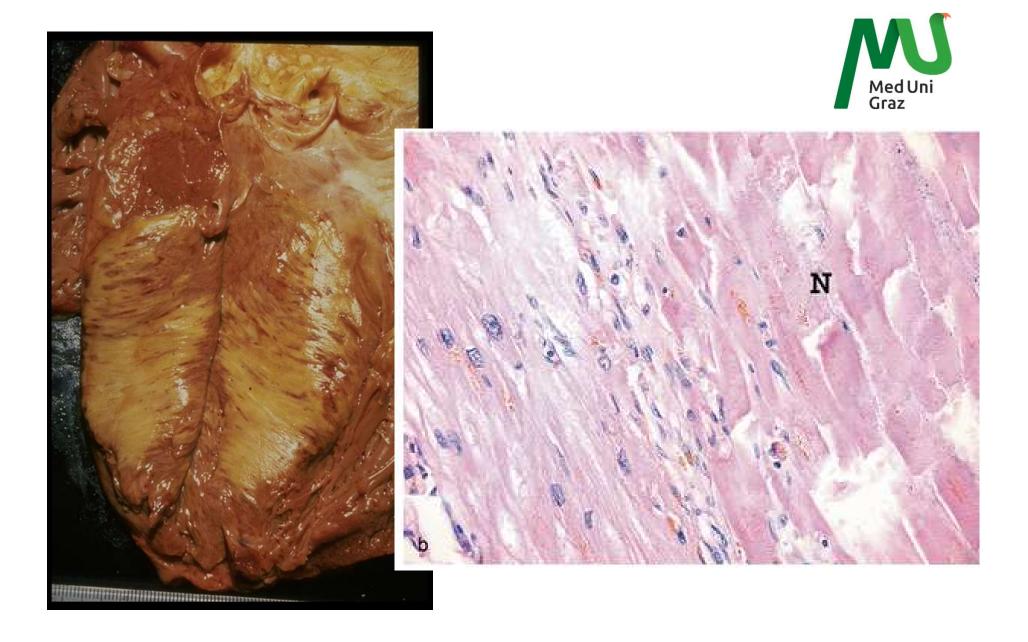
Mikrobiell

Sauerstoffmangel: Ischämie reversibel oder Infarktentstehung (Infarkt = Nekrose durch Sauerstoffmangel) abhängig von:

▶ Dauer des Versorgungsmangels

Sauerstoffempfindlichkeit des Gewebes (Gehirn!)

► Möglichkeit einer Kollateralkreislaufbildung (= Umgehungskreislauf)


Infarkt

 Anämischer (ischämischer) Infarkt (Verschluss der zuführenden Arterie)

► Hämorrhagische Infarzierung (Verschluss der abführenden Vene)

► Hämorrhagischer Infarkt (nur in der Lunge)

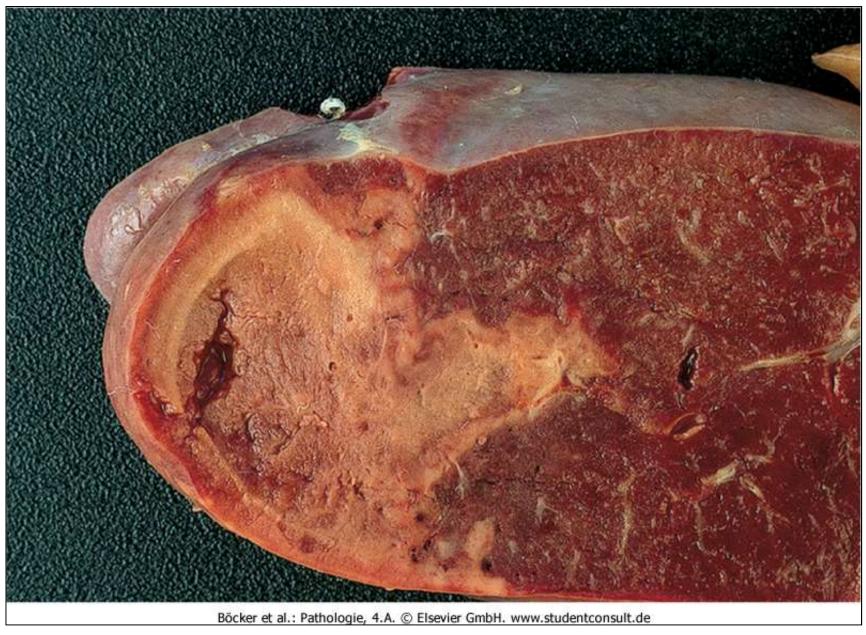
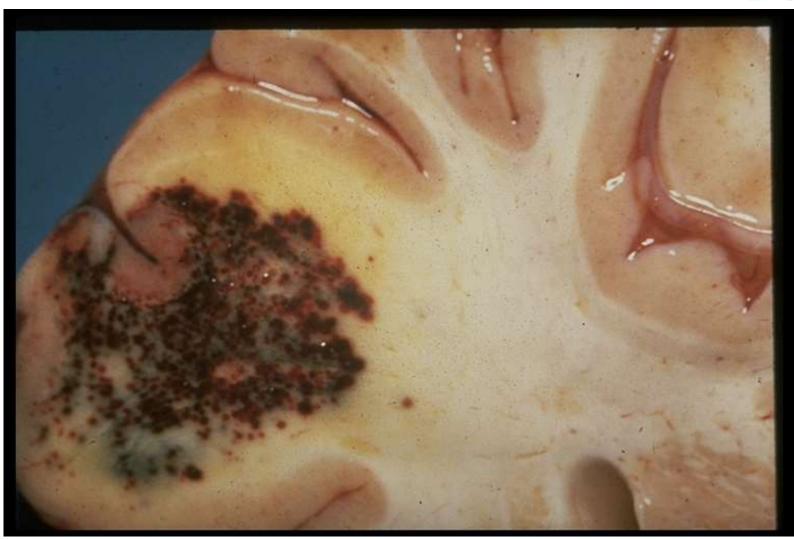



Abbildung 7.14 Anämischer Milzinfarkt mit graugelber, lehmartiger Verfärbung. Im Randbereich bereits eine resorbierende Entzündung. Daran angrenzend normales Milzgewebe.

Hirninfarkt: Kolliquationsnekrose (mit Einblutung)

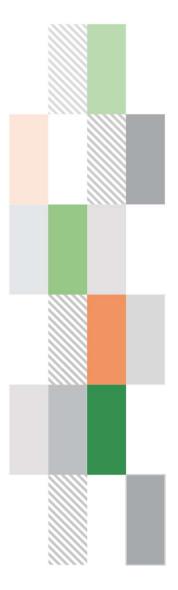


Abbildung 2.27 Zehengangrän durch arteriellen Gefäßverschluss bei Diabetes mellitus.

Das Immunsystem

Aufbau des Immunsystems MJ

Zelluläre und humorale Abwehrmechanismen

natürliches System der angeborenen Immunität (unspezifisches Immunsystem)

adaptives System der erworbenen Immunität (spezifisches Immunsystem)

Eigenschaften des Immunsystems

	Angeborenes IS	Erworbenes IS
Physikochemische Barrieren	Haut und Schleimhaut	
Humorale (lösliche) Komponenten	Komplementsystem Akut-Phase-Proteine Zytokine	
Zelluläre Komponenten	Granulozyten Monozyten/Makro- phagen, NK-Zellen Dendritische Zellen	
Erkennungsmechanismen	PRR (pattern recognition receptors)	
Biologische Eigenschaften	Rasche Verfügbarkeit	

Eigenschaften des Immunsystems

	Angeborenes IS	Erworbenes IS
Physikochemische Barrieren	Haut und Schleimhaut	Haut und mukosaassoziiertes lymphatisches Gewebe Sekretorische Anitkörper (IgA)
Humorale (lösliche) Komponenten	Komplementsystem Akut-Phase-Proteine Zytokine	Antikörper Zytokine
Zelluläre Komponenten	Granulozyten Monozyten/Makro- phagen, NK-Zellen Dendritische Zellen	B-Lymphozyten T-Lymphozyten
Erkennungsmechanismen	PRR (pattern recognition receptors)	Spezifische Ag-Rezeptoren B-Lymphozyten: Ig-Bildung T-Lymphozyten: T-Zell- Rezeptor
Biologische Eigenschaften	Rasche Verfügbarkeit	Hohe Spezifität Immunologisches Gedächtnis

Entzündung

Eine Entzündung ist eine intravitale (= während des

Lebens auftretende) Reaktion auf einen Gewebeschaden, der durch eine Noxe ausgelöst wird

Sie wird mit der Nachsilbe – itis bezeichnet (Ausnahmen: Pneumonie, Angina)

Bsp: Ösophagitis, Gastritis, Colitis,

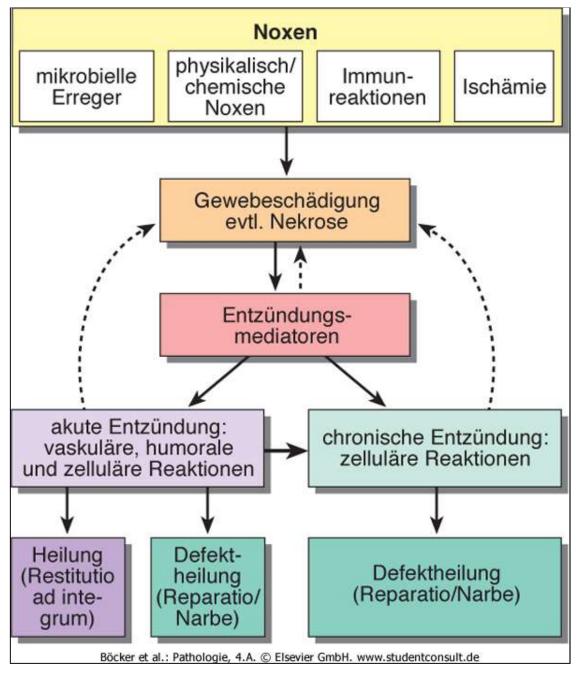
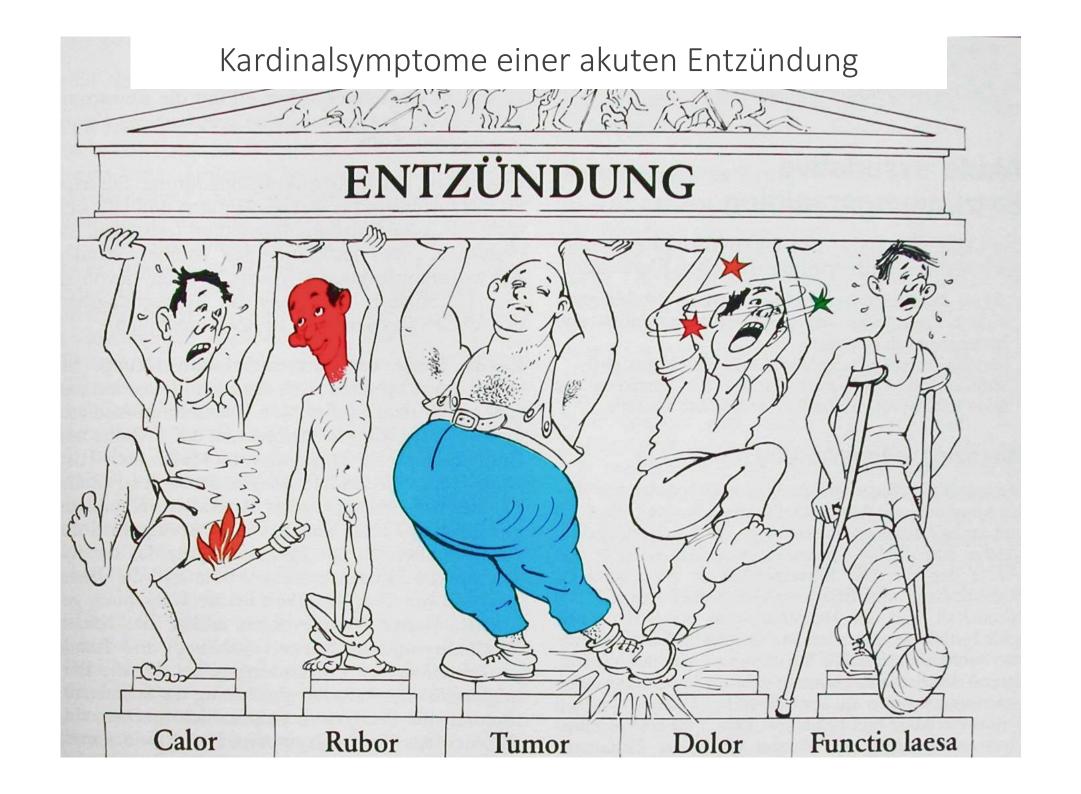
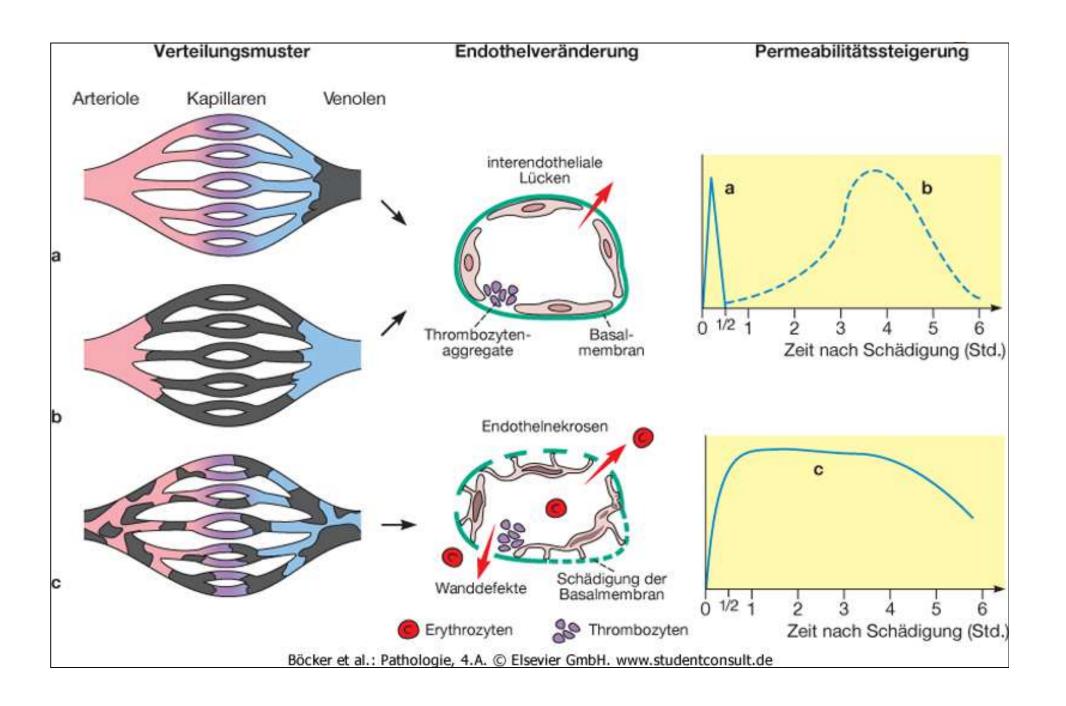
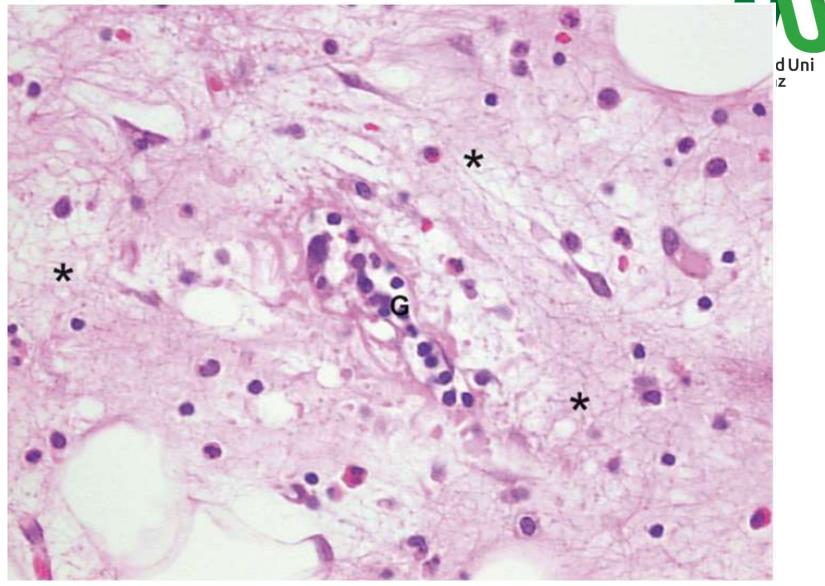





Abbildung 4.1 Ablauf der akuten und chronischen Entzündung.

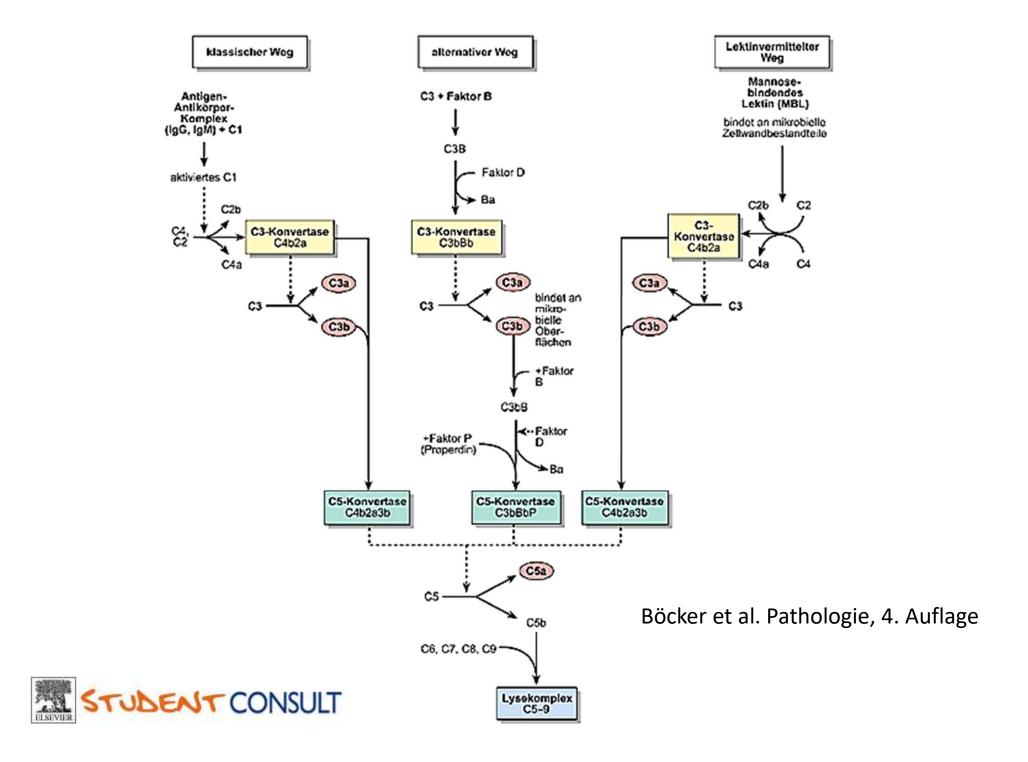
Böcker et al. Pathologie, 4. Auflage

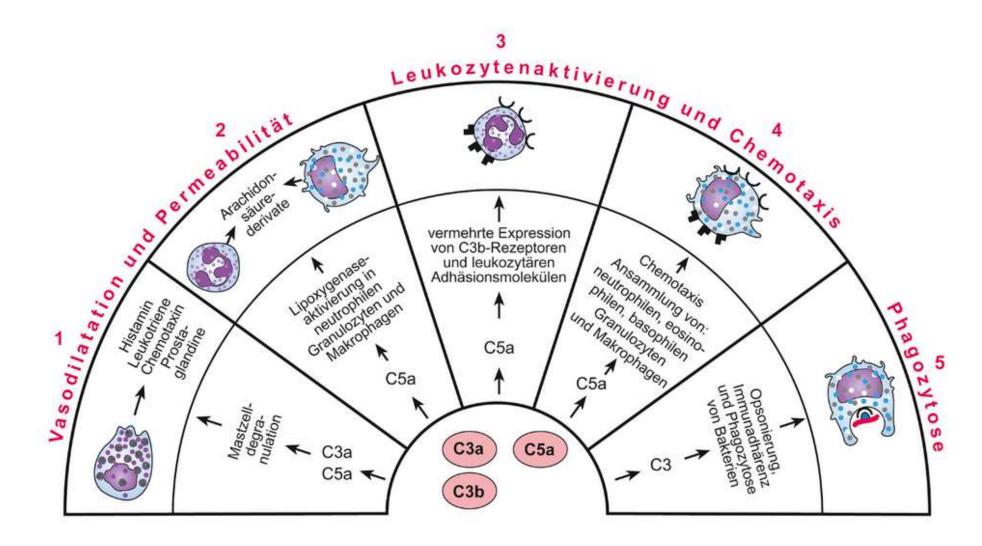
Mediatoren der Vasodilatation und Gefäßpermeabilität

Wirkung	Mediator	
Vasodilatation	Histamin, Serotonin, Prostaglandine, Kinine, PAF	
erhöhte Permeabilität	Histamine, PAF, Leukotriene, Kinine, C3a, C5a	
PAF = plättchenaktivierender Faktor		

Im Mittelpunkt der akuten Entzündung: **Auswanderung** von **Leukozyten** aus der Blutbahn in das geschädigte Gewebe

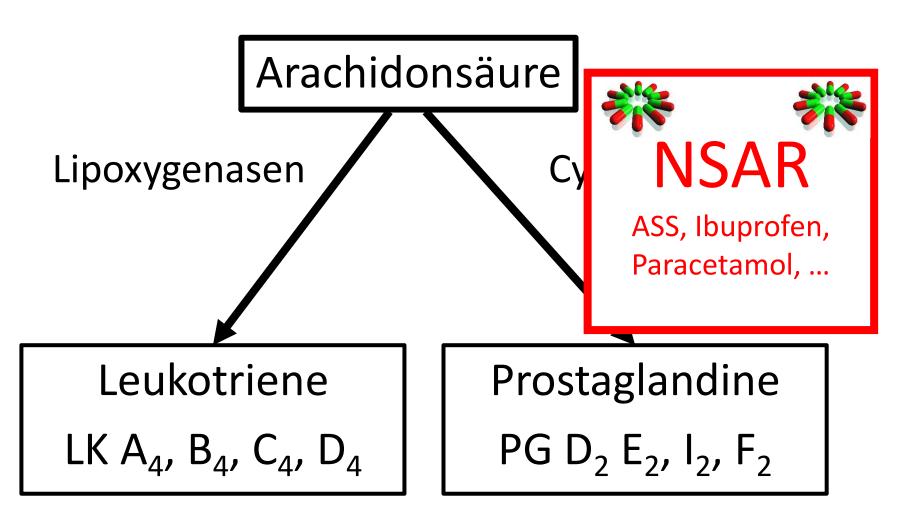
- Margination (Wechsel aus dem zentralen, schnell fließenden in den randnahen, langsam fließenden Strombereich)
- 2. Interaktionen mit dem Endothel
- 3. Chemotaxis/Emigration
- 4. Phagozytose (Aufnahme von Fremdmaterial)

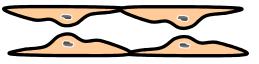

Effektormechanismen der Entzündung


- >Humorale und zelluläre Effektoren
- Komplexer Abwehrprozess zum Schutz des Organismus
- ➤ Die humoralen Effektoren werden mit dem Exsudat in das geschädigte Gewebe transportiert
- ➤ Komplementsystem
- >Zelluläre Mediatoren: biogene Amine (Histamin, Serotonin), Arachidonsäurederivate (Leukotriene, Prostaglandine, Prostazyklin und Thromboxan), plättchenaktivierender Faktor (PAF), inflammatorische Zytokine (IL-1, IL-8, TNF-α), NO, Sauerstoffradikale und Proteasen

Das Komplementsystem

- Komplementiert das angeborene und erworbene IS
- ➤ besteht aus **über 30 verschiedenen Plasmaproteinen** und umfasst **die Komplementproteine C1 bis C9** des klassischen Aktivierungsweges und Faktoren des alternativen Aktivierungsweges wie Faktor B und D, Serinproteinasen
- > 3 Wege zur Aktivierung des Komplementsystems
- > Bildung des sog. Lyse-Komplexes



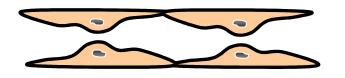

Arachidonsäurederivate

Zellen der Entzündung

►Thrombozyten

> neutrophile, eosinophile und basophile Granulozyten

Mastzellen, Monozyten, Makrophagen


►NK Zellen; dendritische Zellen

►B- und T Lymphozyten und Plasmazellen

Endothelzellen

Beeinflussen den Verlauf von Entzündungs- und Immunreaktionen entscheidend:

- ► ↑ Permeabilität des Endothels
- ► Expression von **Adhäsionsmolekülen** und die Sekretion chemotaktischer Zytokine (Chemokine) wird durch proinflammatorische Zytokine (z.B. TNF-α, IFN-γ, IL-1) in Endothelzellen erhöht (→ verstärkte Rekrutierung, Adhäsion, Aktivierung und Transmigration von Entzündungszellen)
- ► Endothelzellen bilden vasokonstriktorisch und vasodilatatorisch wirkende Substanzen (z.B. Endotheline bzw. Stickstoffmonoxid [NO])

Thrombozyten

- ▶von herausragender Bedeutung für die Blutstillung
- ► kleine, kernfreie Zellen enthalten viele Enzyme und Granulakomponenten
- ► Bildung chemotaktischer Faktoren (z.B. PAF, Serotonin, Arachidonsäurederivate) und Wachstumsfaktoren (TGF-α und -β, basischer Fibroblastenwachstumsfaktor [bFGF] und Plättchenwachstumsfaktor [PDGF]) bilden

Neutrophile Granulozyten

- ► Täglich werden ca. 9 × 10⁸ neue neutrophile Granulozyten prokg Körpergewicht
- ►entspricht ungefähr 60% der täglich neu gebildeten Zellen des Knochenmarks
- ► Anzahl neutrophiler Granulozyten im Blut kann im Verlauf einer Entzündung drastisch ansteigen
- ► Mittlere Verweildauer im Blut lediglich 6–8 Stunden
- ➤ Verstärkte Neubildung der neutrophilen Granulozyten, die bei akuten Infekten um das 10-Fache gesteigert werden kann (Leukozytose)

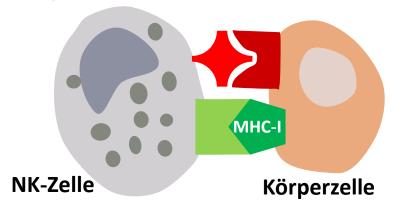
Bsp: bakterielle Infektion, Sepsis durch bakteriellen Erreger

Eosinophile Granulozyten

- ► Haut und im Bereich der Mukosa von Lunge und Gastrointestinaltrakt
- Nur ein kleiner Anteil (1–4% aller Leukozyten) hält sich bei Gesunden im peripheren Blut auf
- ▶ Die Halbwertszeit zirkulierender eosinophiler Granulozyten beträgt 6–18 Stunden
- Im Gewebe ausgewanderten eosinophilen Granulozyten können einige Tage überleben

► Bsp: allergische Reaktionen

Basophile Granulozyten



- Im peripheren Blut weniger als 1% aller Leukozyten aus und finden sich hauptsächlich im Bindegewebe unterschiedlicher Organe
- ► Enthalten große Granula
- ► Freigesetzte Mediatoren: z.B **Histamin**
- ► Histamin vermittelt über 3 spezifische Rezeptoren (**H1, H2, H3**) seine biologische Wirkung:
- ►erhöhte kapilläre Permeabilität, die Kontraktion glatter Muskulatur, die vermehrte Schleimproduktion, die gezielte Attraktion sowie teilweise Aktivierung von Leukozyten und die Produktion von Prostaglandinen

NK Zelle

- ► Ca. 10–15% aller Lymphozyten im peripheren Blut
- ► Besitzen verschiedene Rezeptoren: entweder inhibitorisch oder aktivierend auf Zellfunktionen wirken
- Lyse der Zielzelle durch Perforin, Lysozym

NK Zelle

- ► Ca. 10–15% aller Lymphozyten im peripheren Blut
- ▶ Besitzen verschiedene Rezeptoren: entweder inhibitorisch oder aktivierend auf Zellfunktionen wirken
- Lyse der Zielzelle durch Perforin, Lysozym

Abwehr infektiöser Erreger, Beseitigung transformierter Zellen als antimikrobielle Effektoren bei **viral infizierten Zielzellen**

Monozyten/Makrophagen

- ► Ca. 1–6% der zirkulierenden Leukozyten des peripheren Blutes
- ▶ Unter physiologischen Bedingungen bildet das Knochenmark täglich 6×10^6 Monozyten pro Kilogramm Körpergewicht; bei Entzündungen steigt die Produktion um ein Mehrfaches
- ► Zwei Drittel aller Monozyten an Gefäßendothelien (Margination) und bilden so einen intravaskulären Zellpool
- Exprimieren viele unterschiedliche Zelloberflächenmoleküle

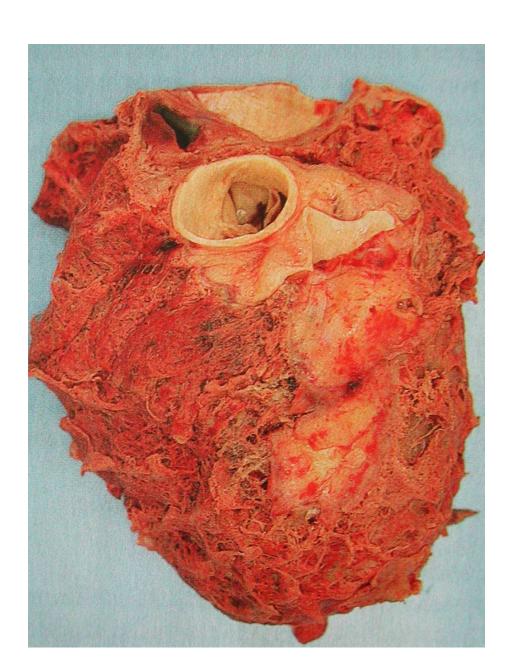
Monozyten/Makrophagen

- ► Ca. 1–6% der zirkulierenden Leukozyten des peripheren Blutes
- ► Unter physiologischen Bedingungen bildet das Knochenmark täglich 6×10^6 Monozyten pro Kilogramm Körpergewicht; bei Entzündungen steigt die Produktion um ein Mehrfaches
- ► Zwei Drittel aller Monozyten an Gefäßendothelien (Margination) und bilden so einen intravaskulären Zellpool
- Exprimieren viele unterschiedliche Zelloberflächenmoleküle
- ► Gewebemakrophagen; Exsudatmakrophagen
- ▶ Phagozytose und Elimination von Erregern
- ➤ Synthese und Sekretion verschiedenster Mediatoren, z.B. zytotoxische Mediatoren, proinflammatorische Zytokine
- ► Entfernung apoptotischer Zellen

Lymphozyten: B, T

- Med Uni Graz
- ▶ B-Lymphozyten: 10–20% der peripheren Blutlymphozyten
- ► Antikörper (Immunglobuline, Ig)-Bildung
- ► Humorale Immunabwehr

- ▶ T-Lymphozyten: zwei Drittel aller Lymphozyten im peripheren Blut
- ► hochspezifischen Erkennung einer größtmöglichen Anzahl von Fremdantigenen
- ► Zell-vermittelte Antwort des erworbenen Immunsystems beteiligt: T-Zell-Zytotoxizität (z.B. gegenüber virusinfizierten Zellen), die Aktivierung von Makrophagen und die Beeinflussung der humoralen Immunantwort, Modulation von Immunreaktionen


Morphologische Varianten der akuten Entzündung

- ► <u>Seröse Entzündung</u> (serumähnlich): Bildung von klarer eiweißreicher Flüssigkeit, (Ödem, Erguss, Rhinitis = Schnupfen)
- ► <u>Katarrhalische Entzündung:</u> starke Schleimbildung (Schnupfen, Bronchitis)
- ► <u>Hämorrhagische Entzündung:</u> durch Gefäßschaden gelangen Erythrozyten ins Exsudat
- Fibrinöse Entzündung:
 Bildung eines Fibrinnetzes führt zu Verklebungen, Pericarditis (Herzbeutelentzündung, Pleuritis Lungenfellentz.), Peritonitis (Bauchfellentz.) > Funktionsstörungen durch Verwachsungen
- **►**Eitrige Entzündung

Fibrinöse Entzündung

"Zottenherz" Fibrinöse Perikarditis

Ausbreitung einer Entzündung

► Kontinuierliche Ausbreitung

- ▶ Direkt in die Umgebung
- ► Kanalikulär (innerhalb eines Hohlraumsystems, z.B. Bronchien, Harnwege)
- ► Kavitär (innerhalb von Körperhöhlen)

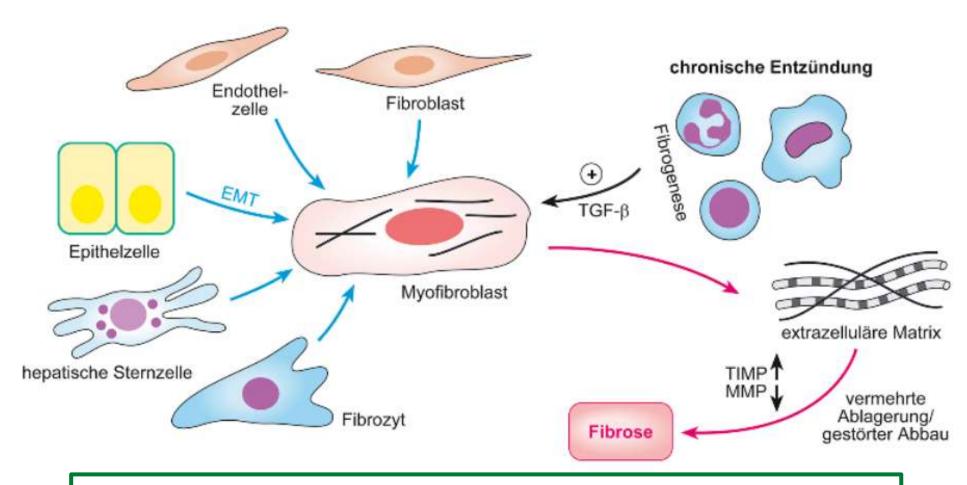
► Lymphogene Ausbreitung

- entlang der Lymphgefäße, in die Lymhknoten (=Lymphangitis, Lymphadenitis)

► <u>Hämatogene Ausbreitung</u>

- ► Bakteriämie (Bakterien im Blut)
- Pyämie (pathogene Bakterien im Blut > Abszesse)
- ➤ Sepsis (schwere Symptomatik bei reduzierter Abwehrlage des Immunsystems)

Folgen einer Entzündung


Völlige Heilung

- **▶** Übergang in chronische Entzündung,
 - Bildung von **Granulationsgewebe** führt zu **Narbenbildung**,
 - Knötchenbildung = Granulome, (je nach
 Entzündungsursache unterschiedlicher Aufbau)

Bildung von Narbengewebe

Bildung von Bindegewebe/Fibrose = Narbengewebe

Autoimmune Entzündungen (Antikörperbildung gegen eigenes Gewebe) Verlust der Immuntoleranz

- ► Schilddrüsenentzündung (Hashimoto-Thyreoiditis)
- ► Magenschleimhautentzündung (Typ A-Gastritis)
- ► Leberentzündung (Autoimmun-Hepatitis)
- ▶ Bauchspeicheldrüsenentzündung (Autoimmun-Pankreatitis)
- ► Gelenksentzündung (Rheumatoide Arthritis)
- Systemischer Lupus erythematodes (gegen DNA-Antikörper)
- ► Antibasalmembran-AK (Niere und Lunge): Goodpasture-Syndrom
- ► Multiple Sclerose (?)
- ► Hämolyse (Auflösung der Erythrozyten)