

Schematic of biaxial testing device

Consider homogeneous biaxial deformation

The output of the biaxial machine yields following quantities:

- Two stretch ratios λ_1, λ_2
- Applied forces f_1, f_2

The thickness T of the tissue has to be measured optically prior testing (reference configuration) Specimen geometry X_1, X_2 (width and length) is known in reference configuration

Schematic of biaxial testing device

Consider homogeneous biaxial deformation

The Cauchy stress (actual, current force divided by current area) can be defined as follows:

$$\sigma_{11} = \frac{f_1}{tx_2} \quad \sigma_{22} = \frac{f_2}{tx_1}$$

assuming incompressibility simplifies analysis, as thickness *t* is purely dependent on changes in width and hight:

$$t = \frac{TX_1X_2}{x_1x_2}$$

Using the definition of the stretches $\lambda_1 = \frac{x_1}{X_1}$ $\lambda_2 = \frac{x_2}{X_2}$ The Cauchy stress can be then calculated as follows

$$\sigma_{11} = \frac{f_1 \lambda_1}{T X_2} \qquad \sigma_{22} = \frac{f_2 \lambda_2}{T X_1}$$