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Aorta abdominalis after layer-separation

250 m

Figure: Photomicrographs of 3-m-thick Elastica Van Gieson - stained sections
from wall layers in circumferential direction stemming from aorta abdominalis after anatomic separation and mechanical testing. 

A: intima. Note homogeneous thickening due to diffuse intimal fibrous hyperplasia in an aged patient. The outer part (lowest part in 
image) carries elastic fibers from the membrana elastica interna. B: media. Note irregularities in the surface are caused by 

histological processing during embedding. C: adventitia. Note tendency to separate and stretching after microtome cutting, because 
of loose collagen fibers in the outer part (histologic artefact). Original magnification 40x.
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Aorta abdominalis

a) Second Harmonic Generation (SHG) images throughout the depth of the abdominal aorta (top) and a side view of the radial
direction. Note the distinct layers, the highly aligned fibers in the media and the axially aligned, very wavy fibers of the adventitia.
b) Intensity plot of fiber angle distribution throughout the depth of the same specimen

a) 
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Material response is nonlinear stiffening

Pre-strained

Non-homogeneous (in a microscopic sense)

Incompressible 

Anisotropic (fibers have preferred directions)

Large deformations, viscoelastic (viscoplastic) behavior

General mechanical characteristics of soft tissues
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Concentration and structural arrangement of constituents
collagen, elastin, hydrated matrix of proteoglycans

Material properties depend on
Topographical site and respective function in the organism
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Species

(Vascular) risk factors

Age

Concentration and structural arrangement of constituents
collagen, elastin, hydrated matrix of proteoglycans

Material properties depend on
Topographical site and respective function in the organism

SHG images of the circumferential – radial planes of two 
abdominal aortic aneurysmsSHG image of the circumferential – radial plane of a 

healthy abdominal aorta

Diseases
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for proposing and evaluating broader theoretical 
concepts as well as for solving many boundary value
and initial value problems of importance.

Experimental biomechanics is a challenging and important 
discipline itself.

for formulating constitutive relations

Experiments provide information that is essential:
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Various conditions influencing the results need to be 
considered:

• Preparation and shape of the sample
• Clamping
• Tissue Integrity
• Time between death and test
• Liquid bath
• Temperature
• Biochemical equilibrium
• Preconditioning

Sample preparation and procedures
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Preparation and shape of the sample: e.g. abdominal aorta

Sample preparation and procedures

a) Sample which was punched out of the intact abdominal aorta
b) Adventitial layer during peeling off – note some media attached to it
c) Removal of the intimal layer from the media
d) Sample of medial layer after preparation
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Clamping

Sample preparation and procedures

Different gripping methods for 
biaxial testing (Sun et al 2005)
result in different boundary
conditions for the sample.
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Clamping

Sample preparation and procedures

Number of attachement points changes strain field inside the region
they define, as indicated by the color-plots.

A. Eilaghi et al., Journal of biomechanical engineering, 2009.
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Tissue Integrity

The specimen may not be damaged by 

• pathological processes in the body (e.g. inflammations, tumors)

• autopsy (e.g. tear trauma during disembowelling)

• excision (e.g. superficial cuts)

• storage (e.g. to high temperatures, to long storage)

Sample preparation and procedures
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It appears that active and passive behaviour are both relatively
insensitive to storage at 5°C for up to 48 hours (Cox 1978)

There is no universally prescribed method for storage.

In the literature there are also reports of storage for up to 5 days at
4°C (e.g., von Maltzahn et al 1984), or 1 month at -20°C (Carmines et
al 1991).

Time between Death and Test

Sample preparation and procedures
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Soft tissues are usually tested within a Physiologic Salt Solution (PSS), 
also called Krebs-Ringer solution consisting of water with:
• NaCl
• Na2HCO3, 
• NaH2PO4
• NaSO4
• KCl
• MgSO4
• CaCl
• dextrose

To ensure, that only the passive behavior of muscle tissue is measured, 
metabolic poisons may be added. 

Sample preparation and procedures

Liquid bath
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The body typically maintains its temperature within a narrow range 
near 37°C.

If this normal range is exceeded, physiologic functions may cease, and 
thermally induced cell death and tissue degradation may occur.

The rate at which the latter occurs depends strongly on small changes 
in temperature above 41°C (Chen et al 1998).

For this reasons, measurement and control of temperature is 
very important in biomechanical testing (Humphrey 2002).

Sample preparation and procedures

Temperature
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Related to the bath temperature and chemical composition is the time
required for an immersed artery to come to biochemical equilibrium.

Due to the lack of a rigorous analysis of ionic transport across soft
tissues as a function of temperature and bath composition, most
studies are based on empirical criteria.

Not surprisingly, there are variations in the literature, but about 1
hour of initial equilibration time appears to be preferred for arteries
(Humphrey 2002).

Sample preparation and procedures

Biochemical equilibrium
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Arterial behaviour depends on the strain history. Soft tissues tend to
soften in multiple cycles; this was observed before in rubber.

After a number of loading-unloading-cycles, the stress-strain results
become repeatable. This procedure is called preconditioning.

The mechanisms which cause this behaviour are unknown.

Sample preparation and procedures

Preconditioning
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Uniaxial Tensile Test
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Dumbbell-shape, 
helical strip, 
ring specimen
(Hayashi 2000)

Shape of strips
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(Holzapfel et al. 2005)
Schematic experimental setup
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Uniaxial Tensile Test
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Videoextensometer
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Holzapfel et al., 
2005, AJP

Preconditioning Behavior: Human LAD
• Weakening of material in the first few load cycles
• Converges to a preconditioned state
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Planar Biaxial Tensile Test
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(Haspinger 2013)
Sample preparation of flat specimens
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(Lanir and Fung JBIO 1974)
Setup of specimen hooking and force distribution
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Schematic of mechanism and optical system
(Lanir and Fung JBIO 1974)
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(Sacks JE 2000)
Schematic of biaxial testing device
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(Sacks JE 2000)
Schematic of biaxial testing device

Consider homogeneous biaxial deformation

• X and x are locations of material particles in reference and 
deformed state, respectively

• λi and κi are components of F (λi are stretch ratios, κi are
measures of in-plane shear

• λ3 is calculated from incompressibility constrain
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Schematic of biaxial testing device

Consider homogeneous biaxial deformation

The output of the biaxial machine yields following quantities:
• Two stretch ratios
• Applied forces

The thickness of the tissue has to be measured optically prior
testing (reference configuration)
Specimen geometry (width and length) is known in 
reference configuration
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Schematic of biaxial testing device

Consider homogeneous biaxial deformation

The Cauchy stress (actual, current force divided by current area) 
can be defined as follows:

assuming incompressibility simplifies analysis, as thickness t is purely
dependent on changes in width and hight:

Using the definition of the stretches
The Cauchy stress can be then calculated as follows
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Crocodile clips are used to clamp the tissue 
(Prendergast et al. ASME 2003)

Markers serve for stretch calculations
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Biaxial device of the Institute of Biomechanics
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Experimental setup in biaxial device
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Example: intraluminal thrombus (ILT) from
abdominal aortic aneurysm (AAA)
Work of J. Tong



Biaxial Tensile Test

40

thrombus

luminal medial layer abluminal

Layer separation of ILT
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luminal (ruptured)

circumferential axial

Luminal layer of ILT
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medial layer (ruptured)

circumferential axial

Medial layer of ILT
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abluminal (ruptured)

circumferential axial

Abluminal layer of ILT
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Tube Testing (Bi- and Triaxial)
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(Hayashi 2000)
Schematic of experimental setup
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(Schulze-Bauer et al. AJP 2003)
Arterial tube testing in Graz
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Common Carotid Artery: Evaluation
• The in vivo axial stretch is around 1.2
• No length change during cardiac cycle for CCA
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Shear Testing
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(Arbogast et al JBIO 1997)
Schematic of shear testing apparatus – 2 axes
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(Dokos et al. ASME 2000)
Schematic of shear testing apparatus – 3 axes
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load cell

x-cross head

y-cross head

z-cross head

guide bolt

Shear testing apparatus in Graz – 3 axes
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Upper Platform

Lower Platform
Sample

Shear testing apparatus in Graz – 3 axes
Close up of the sample chamber
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Possibilities of shear directions depending on fibers
and sheets
(Dokos et al. 2002)

Recall the anatomy of the myocardium!
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Example: shear testing of adipose tissue
Work of G. Sommer

Background:
Breast cancer

(Manas Informatics Pvt. Ltd). (Mentor Corporation)

Radical total mastectomy and 
reconstruction with abdominal fat

Development of force-feedback applications (haptic modelling)
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Preparation of cube-shaped specimens with different orientations

x

y
z

x

y

z
y

x

z

I II III

Specimen glued to specimen-holder Specimen during shearing

Example: shear testing of adipose tissue
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Representative shear behavior

Circumferential and axial direction
Cube I

x

yz

I

Example: shear testing of adipose tissue
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Radial and circumferential directionCircumferential and axial direction
Cube I

x

yz

I

Representative relaxation behavior
Example: shear testing of adipose tissue
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Other Testing Methods
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Schematic Experimental apparatus

www.claisse.info/Soils%20tests.htm

Uniaxial compression test
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Experimental Apparatus

Plot

www.claisse.info/Soils%20tests.htm

Uniaxial compression test
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Experimental Apparatus Plot

Average bone volume fraction (BV/TVAVG), CT %
Bone mineral density vBMD = TISSUE · BV/TVAVG

Linear variablen Differential-
Transformators (LVDT)

Nazarian et al., Calcified Tissue Int., 2008

Uniaxial compression test
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Schematic Experimental apparatus Plot

Tension-torsion test

nees.buffalo.edu/seesl/a22.html
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Schematic

Experimental apparatus

Plot (rubber membrane)

Membrane inflation test

www.mech.ed.ac.uk/.../wavepower/valve/index.htm
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Sample

Moving part

Stationary part

F

2l

Three-point bending test: bone screws

Bachelor’s thesis of Lukas Peicha

• Human cortical bone
• Löwenherz thread
• 3-point bending DIN 53457

Schematic

Bone screw in the testing apparatus
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Sample

Moving part

Stationary
part

Shear testing on bone screws

Bachelor’s thesis of Lukas Peicha

Bone screw in the testing apparatus

• Shear test DIN 50141
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Sample

Clutch

Torque sensor

Bone screw in the testing apparatus

Torsion testing on bone screws

Bachelor’s thesis of Lukas Peicha


