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Arterial Histology
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%  Aorta abdominalis after Iayer—separationﬂEU
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Figure: Photomicrographs of 3-um-thick Elastica Van Gieson - stained sections
from wall layers in circumferential direction stemming from aorta abdominalis after anatomic separation and mechanical testing.
A: intima. Note homogeneous thickening due to diffuse intimal fibrous hyperplasia in an aged patient. The outer part (lowest part in
image) carries elastic fibers from the membrana elastica interna. B: media. Note irregularities in the surface are caused by
histological processing during embedding. C: adventitia. Note tendency to separate and stretching after microtome cutting, because
of loose collagen fibers in the outer part (histologic artefact). Original magnification 40x. 4
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a) Second Harmonic Generation (SHG) images throughout the depth of the abdominal aorta (top) and a side view of the radial
direction. Note the distinct layers, the highly aligned fibers in the media and the axially aligned, very wavy fibers of the adventitia.
b) Intensity plot of fiber angle distribution throughout the depth of the same specimen
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General mechanical characteristics of soft tissues

II[IE> Anisotropic (fibers have preferred directions)

Incompressible

Non-homogeneous (in a microscopic sense)
Large deformations, viscoelastic (viscoplastic) behavior

Pre-strained

Material response is nonlinear stiffening
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Material properties depend on

I[I:> Topographical site and respective function in the organism

Intima

Media

Adventitia




"
@mech

Experimental Methods in Biomechanics ﬂgw

rezm

Material properties depend on
II]I:> Topographical site and respective function in the organism

II]I:> Concentration and structural arrangement of constituents
collagen, elastin, hydrated matrix of proteoglycans

Material Ultimate tensile | Ultimate tensile Collagen Elastin
strength (MPa) strain (20) (%0 dry weight) | (%6 dry weight)
Tendon 50-100 10-15 75-85 <3
Ligament 50-100 10-15 70-80 10-15
Aorta 0.3-0.8 50-100 25-35 40-50
Skin 1-20 30-70 60-80 5-10
Articular Cartilage 9-40 60-120 40-70 -
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Material properties depend on
I[I:> Topographical site and respective function in the organism

I[I:> Concentration and structural arrangement of constituents
collagen, elastin, hydrated matrix of proteoglycans

[—) Species
I|]|:> Age

I|]|:> (Vascular) risk factors

SHG images of the circumferential — radial planes of two
abdominal aortic aneurysms

SHG image of the circumferential — radial plane of a
healthy abdominal aorta



©mech

8¢  Experimental Methods in Biomechanics Ryl

2 |

Experimental biomechanics is a challenging and important
discipline itself.

Experiments provide information that is essential:

IIHE> for formulating constitutive relations

IHE> for proposing and evaluating broader theoretical
concepts as well as for solving many boundary value
and initial value problems of importance.

10



8¢  Experimental Methods in Biomechanics Nyl

2 |

Sample preparation and procedures

Various conditions influencing the results need to be
considered:

 Preparation and shape of the sample
 Clamping

 Tissue Integrity

» Time between death and test

e Liquid bath

e Temperature

 Biochemical equilibrium
 Preconditioning

11
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Sample preparation and procedures

Preparation and shape of the sample: e.g. abdominal aorta

a) Sample which was punched out of the intact abdominal aorta

b) Adventitial layer during peeling off — note some media attached to it
c) Removal of the intimal layer from the media

d) Sample of medial layer after preparation

12
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Sample preparation and procedures
Clamping

Different gripping methods for
biaxial testing (Sun et al 2005)
result in different boundary

conditions for the sample.

(b)
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Sample preparation and procedures

Clamping

Number of attachement points changes strain field inside the region
they define, as indicated by the color-plots.

6% 35% 52% 67%

(a) n=3 (b) n=4 (c)n=5 (d)n=6

E, /E,, I — -
1.00  1.05 1.10  1.15 1.20 1.25 1.30 1.35 140 145 >145

A. Eilaghi et al., Journal of biomechanical engineering, 2009.
14
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Sample preparation and procedures

Tissue Integrity

The specimen may not be damaged by

e pathological processes in the body (e.g. inflammations, tumors)
e autopsy (e.g. tear trauma during disembowelling)

e excision (e.g. superficial cuts)

e storage (e.g. to high temperatures, to long storage)

15
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Sample preparation and procedures

Time between Death and Test

It appears that active and passive behaviour are both relatively
insensitive to storage at 5°C for up to 48 hours (Cox 1978)

There is no universally prescribed method for storage.

In the literature there are also reports of storage for up to 5 days at
4°C (e.g., von Maltzahn et al 1984), or 1 month at -20°C (Carmines et
al 1991).
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Sample preparation and procedures
Liquid bath

Soft tissues are usually tested within a Physiologic Salt Solution (PSS),
also called Krebs-Ringer solution consisting of water with:

* NaCl

* Na,HCO;,

* NaH,PO,

« NaSO,

o KCI

« MgSO,

« CaCl

* dextrose

To ensure, that only the passive behavior of muscle tissue is measured,
metabolic poisons may be added.

17
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Sample preparation and procedures

Temperature

The body typically maintains its temperature within a narrow range
near 37°C.

If this normal range is exceeded, physiologic functions may cease, and
thermally induced cell death and tissue degradation may occur.

The rate at which the latter occurs depends strongly on small changes
in temperature above 41°C (Chen et al 1998).

For this reasons, measurement and control of temperature is
very important in biomechanical testing (Humphrey 2002).

18
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Sample preparation and procedures
Biochemical equilibrium

Related to the bath temperature and chemical composition is the time
required for an immersed artery to come to biochemical equilibrium.

Due to the lack of a rigorous analysis of ionic transport across soft
tissues as a function of temperature and bath composition, most
studies are based on empirical criteria.

Not surprisingly, there are variations in the literature, but about 1

hour of initial equilibration time appears to be preferred for arteries
(Humphrey 2002).

19
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Sample preparation and procedures

Preconditioning

Arterial behaviour depends on the strain history. Soft tissues tend to
soften in multiple cycles; this was observed before in rubber.

After a number of loading-unloading-cycles, the stress-strain results
become repeatable. This procedure is called preconditioning.

The mechanisms which cause this behaviour are unknown.

20



Uniaxial Tensile Test
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Uniaxial Tensile Test ﬂE
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Schematic experimental setup
(Holzapfel et al. 2005)
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Uniaxial Tensile Test




Uniaxial Tensile Test

Videoextensometer

25
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Preconditioning Behavior: Human LAD

« Weakening of material in the first few load cycles
» Converges to a preconditioned state

120

100

Cauchy Stress ¢ (kPa)
[ I I

[\
(=]
I

0 ey

1,00 1,05 1,10 1,15 1,20 1,25 1,30 1,35 140 145 1,50

Stretch A Holzapfel et al.,
2005, AJP
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Cauchy Stress [kPa]
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Planar Biaxial Tensile Test
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Biaxial Tensile Test

Sample preparation of flat specimens
(Haspinger 2013)

=
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Setup of specimen hooking and force distribution
(Lanir and Fung JBIO 1974)
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Biaxial Tensile Test

Schematic of mechanism and optical system
(Lanir and Fung JBIO 1974)
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Biaxial Tensile Test

Schematic of biaxial testing device
(Sacks JE 2000)
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Schematic of biaxial testing device
(Sacks JE 2000)

Consider homogeneous biaxial deformation

.l'|=)~|X]—|-K1X3. .l'|=)~3X3+K3X|. .\'3=).3X3.

e X and x are locations of material particles in reference and
deformed state, respectively

« A\ and k; are components of F (A, are stretch ratios, k; are
measures of in-plane shear

» )\;is calculated from incompressibility constrain
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Schematic of biaxial testing device

Consider homogeneous biaxial deformation

The output of the biaxial machine yields following quantities:
e Two stretch ratios
» Applied forces

The thickness of the tissue has to be measured optically prior
testing (reference configuration)

Specimen geometry (width and length) is known in
reference configuration

34
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Schematic of biaxial testing device

Consider homogeneous biaxial deformation

The Cauchy stress (actual, current force divided by current area)
can be defined as follows:

assuming incompressibility simplifies analysis, as thickness tis purely
dependent on changes in width and hight:

Using the definition of the stretches
The Cauchy stress can be then calculated as follows

35



Biaxial Tensile Test ﬂE_

Markers serve for stretch calculations

Crocodile clips are used to clamp the tissue
(Prendergast et al. ASME 2003)
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Biaxial Tensile Test ﬂE@.

Biaxial device of the Institute of Biomechanics
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Biaxial Tensile Test

Experimental setup in biaxial device
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Analysis of Results

Example: intraluminal thrombus (ILT) from

abdominal aortic aneurysm (AAA)
Work of J. Tong

39
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Layer separation of ILT

thrombus

luminal medial layer abluminal
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Biaxial Tensile Test

Luminal layer of ILT
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Biaxial Tensile Test U

Medial layer of ILT

medial layer (ruptured)
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Biaxial Tensile Test

Abluminal layer of ILT
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Tube Testing (Bi- and Triaxial)
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Schematic of experimental setup

(Hayashi 2000)
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Inflation-Extension Test U

Arterial tube testing in Graz
(Schulze-Bauer et al. AJP 2003)
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Inflation-Extension Test
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Common Carotid Artery: Evaluation

 The in vivo axial stretch is around 1.2
* No length change during cardiac cycle for CCA
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Shear Testing



©meen

Shear Test U

Schematic of shear testing apparatus — 2 axes
(Arbogast et al JBIO 1997)
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Schematic of shear testing apparatus — 3 axes
(Dokos et al. ASME 2000)

[ Brass Rings

Upper Shear Piatform :
\ & Pressure Transducer
' uremen
Tissue sample _\ :
@

Lower Shear Flatform

—— Flexible Steel Beams

== Strain Gauges

[ Tissue Platform

Translation Stage

X Motor Spindle

Base Stand
25 mm

50



H Shear Test U

Shear testing apparatus in Graz — 3 axes

, [z-cross head }

[Ioad cell J

:x-cross head ] [guide bolt ]

(y-cross head J
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Shear Test U

Shear testing apparatus in Graz — 3 axes
Close up of the sample chamber

Lower Platform
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Shear Test U

Possibilities of shear directions depending on fibers

and sheets Recall the anatomy of the myocardium!
(Dokos et al. 2002)
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Shear Test U

Example: shear testing of adipose tissue

Work of G. Sommer

Background: Radical total mastectomy and
Breast cancer reconstruction with abdominal fat

(Manas Informatics Pvt. Ltd). (Mentor Corporation)

Development of force-feedback applications (haptic modelling)

54
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Shear Test U

Example: shear testing of adipose tissue
Preparation of cube-shaped specimens with different orientations

Specimen glued to specimen-holder Specimen during shearing
55



Shear Test U

Example: shear testing of adipose tissue
Representative shear behavior

I ) | . | |
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Shear Test

Example: shear testing of adipose tissue

Representative relaxation behavior

Shear stress / kPa

0.8

0.7

0.6

0.4

0.3

0.2

0.1

0.0

0.5

Circumferential and axial direction

Time / sec

Cube I
50% Circ.
50% Axial
y ! " ! ; ! " | I
0 60 120 180 240 300

57



Other Testing Methods



Other Methods ﬂE_

Uniaxial compression test
Schematic Experimental apparatus

/

www.claisse.info/Soils%20tests.htm
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Uniaxial compression test
Experimental Apparatus
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Experimental Apparatus
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Tension-torsion test

Schematic Experimental apparatus

Plot

t=TplJ

G =1y

nees.buffalo.edu/seesl/a22.html
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Membrane inflation test
Schematic

Plot (rubber membrane)
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Experimental apparatus
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5 Other Methods

Three-point bending test: bone screws

« Human cortical bone
e Lowenherz thread
 3-point bending DIN 53457

Bone screw in the testing apparatus

Schematic | £

2/

Bachelor’s thesis of Lukas Peicha
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Shear testing on bone screws

e Shear test DIN 50141

Bone screw in the testing apparatus

Bachelor’s thesis of Lukas Peicha 65
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Torsion testing on bone screws

Bone screw in the testing apparatus

Bachelor’s thesis of Lukas Peicha 66



