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Abstract

This article presents foundations, original research and trends in the
field of object categorization by computer vision methods. The research
goals in object categorization are to detect objects in images and to
determine the object’s categories. Categorization aims for the recog-
nition of generic classes of objects, and thus has also been termed
‘generic object recognition’. This is in contrast to the recognition of
specific, individual objects. While humans are usually better in generic
than in specific recognition, categorization is much harder to achieve
for today’s computer architectures and algorithms. Major problems are
related to the concept of a ‘visual category’, where a successful recog-
nition algorithm has to manage large intra-class variabilities versus
sometimes marginal inter-class differences. It turns out that several
techniques which are useful for specific recognition can also be adapted
to categorization, but there are also a number of recent developments
in learning, representation and detection that are especially tailored to
categorization.

Recent results have established various categorization methods that
are based on local salient structures in the images. Some of these meth-
ods use just a ‘bag of keypoints’ model. Others include a certain amount
of geometric modeling of 2D spatial relations between parts, or ‘constel-
lations’ of parts. There is now a certain maturity in these approaches



and they achieve excellent recognition results on rather complex image
databases. Further work focused on the description of shape and object
contour for categorization is only just emerging. However, there remain
a number of important open questions, which also define current and
future research directions. These issues include localization abilities,
required supervision, the handling of many categories, online and incre-
mental learning, and the use of a ‘visual alphabet’, to name a few. These
aspects are illustrated by the discussion of several current approaches,
including our own patch-based system and our boundary fragment-
model. The article closes with a summary and a discussion of promising
future research directions.



1
Introduction

This article provides a review of existing representations, algorithms,
systems and databases for visual object categorization. It describes the
state of the art in this field, which has been a long standing goal, and is
still a mainly unsolved problem in computer vision research. The time
chosen for writing is motivated by recent success in recognition from
local, salient parts, which can be considered a significant step towards
object categorization.

Who are the supposed readers of this document, and what poten-
tial benefits are there for them? Students and graduate students in
computer vision will get a thorough review of the state of the art
in visual object categorization. Researchers in computer vision might
benefit from a more complete point of view, including a number of
approaches which they have not focused on within the scope of their
own research. Researchers in related fields should find this article a
valuable reference.

But the article goes beyond a pure review of the state of the art. It
includes original research in categorization, presents a prototype system
for categorization, discusses our databases and provides experimental
results on object categorization and localization in still images.
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1.1 Problem statement

We can define visual object categorization as the process of assign-
ing a specific object to a certain category. This process has also been
termed ‘generic object recognition’ (generic OR), and it is in contrast
to ‘specific OR’, which deals with the recognition of a specific, individ-
ual object. Examples of categories in generic OR are people, children,
dogs, cars, bikes or dishes, while specific OR might aim at recognizing
a certain individual, like Albert Einstein, or a specific object like my
car. An individual object might also be termed a specific instance of a
more generic category. Categories can also be organized in hierarchies
(child – human being – mammal), and categories might overlap – a tall
glass might be used as a vase. Throughout the remainder of this article,
we will use the terms ‘categorization’ for visual object categorization or
generic OR, and ‘specific OR’ for the recognition of individual objects.

Looking at humans, and comparing their recognition performance
with artificial systems, it turns out that humans are much better in
categorization than machines, but specific OR can often be handled
more efficiently, reliably or simply faster by an artificial vision sys-
tem. VanRullen and Thorpe [199] point out that humans can perform
ultra-rapid categorization tasks. They can decide whether a briefly
flashed image belongs to a certain category in less than 150ms, and
they provide experimental evidence for the two categories ‘animal’ and
‘means of transport’. On the other hand, there are numerous solutions
to industrial inspection, which recognize and localize specific objects
much faster and much more reliably than humans can do (see [31] for
an example of such an industrial product, and [76] for the underly-
ing theoretical foundations). A further aspect of categorization is the
sheer number of visual categories. There is evidence from cognitive
psychology that humans deal with about 30,000 different categories
(see Biederman [21]). This would require solving currently intractable
computational complexity.

This article sets out to answer the following questions: How can arti-
ficial systems perform categorization? What are the key building blocks
that are required to build a categorization system? What are the main
challenges? What are the bottlenecks and unsolved problems? This will
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also shed light on the more general question: Why is categorization sim-
pler for humans than for machines and why is specific OR simpler for
machines than for humans?

1.2 Historical development

In the following, I give a very brief sketch of some major landmarks in
the history of object recognition research. This is not meant to be a
complete review, but rather some useful information to pave the way for
later discussion. One of the major early landmarks is certainly the work
of David Marr [126], who proposed viewer-centered and object-centered
representational levels (image – primal sketch – 2-1/2D sketch – 3D
object model), as well as visual modules which can be used to generate
these descriptions (e.g. ‘shape from X’ to produce a 2-1/2D sketch).
Marr’s ideas influenced at least a decade of research, and have led to a
so-called ‘reconstruction school’ which advocates that 3D reconstruc-
tion and 3D modeling of a scene (and thus of the objects in the scene)
are necessary for further reasoning.

On the other hand, there is the ‘recognition school’ which favors
working in the 2D domain, with 2D images, features and descriptors
which are extracted from these images. Their pattern classification [43]
or pattern recognition [145] approach is fundamentally different from
the reconstructionist paradigm. Much of the content of this article
actually is in the spirit of a ‘recognition school’ approach. We will
discuss, for example, the ‘bag of keypoints’ approach, in which salient
points are extracted from images, and descriptors are calculated to form
feature vectors. These feature vectors can be used to learn a discrim-
inative model from training images, and to recognize (categorize) test
images. But we will also present the generative ‘constellation’ model,
which employs a ‘light’ 2D geometry in terms of spatial 2D relations
between key parts of the object model.

Only very recently have we seen efforts to combine discriminative
and generative approaches in categorization research. This confluence
of recognition and reconstruction schools has already been predicted
by Aloimonos and Shulman [4] in 1989.
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There are further milestones which should be mentioned. Biederman
[20, 21] proposed his ‘recognition by components’ (RBC) theory. Volu-
metric primitives, so-called ‘geons’ can be used to recognize objects in
a qualitative (and thus generic) way. While this theory is quite elegant,
its implementations (see [18, 39]) lacked due to low level vision prob-
lems, so that geon-based recognition has not been applied to real-world
categorization problems. Research in perceptual grouping proceeds in
a similar manner [167]. Low-level 2D primitives are grouped to build
object descriptions, either in a pure bottom-up (data driven) manner,
or top-down, including prior knowledge (models) about the expected
image content. At the other end of the spectrum of potential solutions
to OR, we find the idea of purely image- or ‘appearance’-based recogni-
tion, for instance in parametric eigenspace [143]. This idea has triggered
a vast number of extremely successful appearance-based approaches to
specific OR.

In general, there has been more research in specific OR than in
categorization in the past. Success in specific OR has influenced a
number of approaches to categorization, although most of the devel-
oped algorithms for specific OR are not directly applicable to cate-
gorization. There is a paradigm of specific OR by alignment, in which
spatial correspondence between groups of image features and model
features is found by searching for the geometric transformation that
aligns these features best. This includes affine transformations for pla-
nar objects [84] and 3D model to 2D image feature matching [121].
Another way to compare image and model features is to extract fea-
tures which are invariant against certain geometric [142] or radiometric
distortions [3]. Efficient indexing is needed, when a database of poten-
tially many object models has to be matched against features extracted
from a query image that contains a certain specific object. This can,
for instance, be done by geometric hashing [207], a technique which is
robust against partial occlusion and geometric transformations. Finally,
the success in global appearance-based recognition [143] has moti-
vated research in local appearance-based methods for specific OR [122].
At this point, we can observe that techniques for specific OR and for
categorization meet.
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In categorization, these various ideas have led to the development
of a number of recent approaches which try to:

• model appearance more locally,
• group simple geometric primitives, and
• use learning algorithms to find common patterns that can be

shared over many individuals of a category.

Within the past 5 years, we have seen a rapid development and rise in
the success of object categorization in increasingly difficult, cluttered,
and realistic scenes1. We can also observe a number of contributions
from related fields as machine learning, neurosciences and cognitive
psychology.

1.3 Potential applications

There are a number of obvious applications of categorization to image
database annotation, image retrieval and video annotation. But poten-
tial applications of categorization go far beyond that. Reliable cate-
gorization in real-time will open up applications in surveillance, driver
assistance, autonomous robots, interactive games, virtual and aug-
mented reality and telecommunications. A more general view might
include systems for ‘cognitive personal assistance’ with many potential
aspects, ranging from user support in complex environments to very
basic support capabilities for elderly or disabled people.

1.4 Outline of this review article

The article is structured in three major parts (Sections 2 – 4). I start
with an in-depth analysis of major issues related to solving the problem
of categorization mentioned in Section 2. This analysis provides at the
same time an introduction to the main topics, which are then discussed
in detail in Section 3 which presents the major building blocks for

1 This may partly be related to recent European research initiatives. There has been sub-
stantial funding of basic research in ‘Cognitive Vision’ within the 5th framework program
of the European Union, with an even broader perspective of ‘Cognitive Systems’ in the
current, 6th framework program. There has been strong support of categorization research
within these programs.
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categorization systems. Finally, Section 4 presents two major aspects
of our own research in categorization: a region-based approach, and
categorization with a boundary-fragment-model.

You will probably recognize that the subject is quite broad and
heterogeneous (ranging from the representation of scale in images, over
machine learning, to 2D spatial models for categorization). Thus, there
is no isolated section on the ‘state of the art’ and related work. I prefer,
rather, to cite relevant publications throughout the whole article, which
is hopefully more useful to you, the potential reader.

Finally, there is a common thread, which should provide some extra
value for those who manage to read the complete article sequentially.
However, many sections stand on their own and may also be consulted
individually.



2
Categorization as an Issue of . . .

What are the main problems to be faced (and solved) by an artifi-
cial categorization system? There are several obvious ones: Represen-
tation, recognition, and learning are the major topics which have been
addressed in numerous contributions to the field (see e.g. Perona’s pre-
sentation [161] or the tutorial by Fei-Fei, Fergus and Torralba at ICCV
2005 [48]). But in practice we encounter further, less obvious issues.
Many systems only categorize images, but they cannot localize and tell
us the exact position and delineation of the object in the image. Only
recently did the community become fully aware of a database problem,
because it turns out that often background (context) is learned rather
than object-specific information. This leads us to the issue of evalua-
tion: How to evaluate the output of a categorization system? To finish
with a more practical issue, system integration can get quite complex
when many components are required to interact smoothly. We proceed
by discussing all of these seven aspects of categorization below.

2.1 . . . classification

Any categorization system will have to deal with some sort of visual
input like color, monochrome, and thermal images, or image sequences.
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Often, the raw images are processed and features are extracted.
This reduces the amount of data, while it hopefully maintains the
important (salient, interesting, relevant, discriminative) visual infor-
mation. Examples include detection and description of points of inter-
est [35, 153], as well as the extraction of robust feature sets on a
fixed grid basis [36]. Some systems also try to represent object parts
and their spatial relationship [52, 204]. The goal is to extract and
to learn as much as possible from a number of examples, with as
little human supervision as needed. Issues of learning and represen-
tation will be discussed in detail later in Sections 2.2 and 2.3. For
the moment let us assume that images or image sequences have been
reduced to feature vectors, and that a category model has been learned
from these features. The classification or recognition problem can then
be formulated as follows: Given a number of learned categories, a
new image/sequence should be processed and a decision should be
drawn, whether a known category appears in the data or not. More
formally:

Let C denote the set of categories cm, and I the space of visual
‘input events’ In. Typically, In is an image, but it might also be a
sequence In,t1 , . . . , In,tk of images taken at discrete instances in time,
t1, . . . , tk. Next, fn = (fn,1, . . . ,fn,j)T denotes a feature vector extracted
from input event In. Let us for the moment assume fixed numbers of M

categories, N input events, with J dimensions of a feature vector, and K

describing the length of an image sequence. The task of classification
can then be formulated as follows: Given a new (previously unseen)
visual input event Iy, calculate the corresponding feature vector fy.
From fy, infer the corresponding category cx, or decide that visual event
Iy is not related to any previously learned category cm, m = 1 . . .M .

This is a common pattern recognition problem which is often
approached in a probabilistic manner: We look for P (cx|Iy), the prob-
ability that we detect category cx, given a certain input event Iy. One
possibility to decide on cx is to evaluate the modes of the discrete prob-
ability distribution P (cm|Iy), m = 1 . . .M and to choose m such that
P is maximum (Bayes decision rule):

cx : x = argmax
m

P (cm|Iy). (2.1)
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Parametric techniques will try to find a model, for instance, a prob-
abilistic model of the form P (fy|cx): Given a category cx, how likely
is a corresponding feature vector fy? Typically, such models will be
estimated from a number of training examples.

On the other hand, there also exist nonparametric techniques, which
work directly in the feature space. Such methods are needed when
we have to deal with highly overlapping parametric models or with
distributions in feature space that can hardly be modeled explicitly. To
pick a popular example, consider k-nearest-neighbor (k-nn) estimation:
Each training example It delivers a feature vector ft that can be mapped
to a point in feature space. A number of such points for each category
is collected during the training phase. For recognition, a test input Iy

is projected to a point in feature space. The k nearest neighbors of
this point are then voting for their respective category. Iy is decided to
belong to category cx which has the highest number of votes (majority
voting).

For further reading, there are several highly recommendable text-
books on pattern recognition and classification including [43]1 and
[145].

But categorization imposes a number of difficult constraints and
boundary conditions on established pattern recognition techniques. We
have to deal with large intra-class variability, and potentially small
inter-class differences. We would like to learn a category from a few
examples, but at the same time we extract many features, ending up
with high-dimensional but very sparsely occupied feature spaces. Learn-
ing of category models will require defining distances and finding
clusters in these feature spaces. In addition, we note that variability
(intra- as well as inter-class) might very much depend on the extracted
features themselves. It might be wise to develop sets of category-specific
features (e.g. a skin color detector for the category of human faces or
certain texture measures for vegetation).

1 See Chapter 2 of [43] for Bayes’ decision theory, Chapter 3 for maximum likelihood estima-
tion, and Chapter 4 for nonparametric techniques including k-nearest-neighbor estimation.
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2.2 . . . learning

A visual categorization system should learn from a number of examples
(training images or training sequences). Learning can be performed in a
supervised or in an unsupervised manner. In the supervised case, train-
ing data is comprised of visual input events I and the desired category
labels, and the parameters of a category or the boundaries between
categories in a feature space have to be learned. In the unsupervised
setting, just the visual input is presented, without providing the cor-
rect labels. Clusters in the feature space have to be found by the learn-
ing algorithm [90], and sometimes even the number of clusters is not
provided (see ‘the problem of validity’, [43], Section 10.10). A further
method, re-inforcement learning, provides only feedback that is posi-
tive for the correct actions (e.g. a decision for a correct category), and
negative otherwise, but does not explicitly state why (does not provide
the category label of the training image).

In categorization research, we also encounter the term weak super-
vision, which is related to object localization and discussed further
in Section 2.4. Strong supervision provides training images, category
labels and localization (delineation, segmentation or bounding box),
whereas ‘weak supervision’ is defined as not requiring localization of
the objects in the training images.

In pattern classification, the most common learning algorithms are
the maximum likelihood and the Bayesian parameter estimation (see
[43], Chapter 3). Both methods often produce nearly identical results,
but their concepts differ.

Maximum likelihood tries to estimate fixed but unknown parameter
values from the training examples, for example, the mean and covari-
ance values of fx for a specific category cx with respect to all other
categories cm, m �= x.

Bayesian estimation represents the parameters as random variables,
assumes known prior distributions, and calculates posterior densities
P (c|I) based on the given training examples. We call P (cm) the prior
probability that category m is being observed – for instance blue cars
might be more likely to be encountered than pink ones. Furthermore,
p(I|c) or p(f |c) denotes the category-conditional probability density
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function2. In this context, I and f are now represented as random
variables. If we search now for P (cx|I), we can use Bayes formula:

P (cx|I) =
p(I|cx)P (cx)

p(I)
, (2.2)

where p(I) is just a scaling factor that guarantees
∑M

m=1 P (cm|I) = 1:

p(I) =
M∑

m=1

p(I|cm)P (cm). (2.3)

Bayes decision rule can be used to choose cx : x = argmaxm P (cm|I)
(see Equation 2.1).

Most learning algorithms require a time-consuming, intensive offline
training phase and many training examples. Both may be prohibitive
for visual categorization, in which the goals may be to learn from few
or even one example, and to learn online, when a certain object is pre-
sented to the system. Another common difficulty is the re-training
behavior of many learning algorithms, in which a new example requires
a complete re-training of the whole system. Incremental learning algo-
rithms deal with these problems and try to extend existing classifiers
online when a new training example is presented.

The Expectation-Maximization (EM) algorithm is a popular vari-
ant of Maximum-Likelihood learning, which is well suited to visual
categorization because it can handle missing information. This occurs
quite often, for instance, when a part of an object is occluded or has
been missed by segmentation or feature extraction processes. Genera-
tive probabilistic object models have successfully been learned with the
EM algorithm by Weber et al. [204]. Extensions include the handling
of varying scales [53], and the learning of new categories from single
examples by integration of prior knowledge [46].

Several recent contributions explore the value of various learning
techniques for categorization. Lowe uses a nearest-neighbor method
[122], Agarwal and Roth [1, 2] use Winnow, and Dorko and Schmid [40]
compare EM with support vector machines (SVM, see [200]). In our

2 The exact notation would be pI(I|c) and pf (f |c) to specify that we address the density
for a specific random variable.
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own work [153], we learn a discriminative model and use Boosting as
a learning technique very different from EM. Further principles that
have been used in object recognition include PCA (principal component
analysis), LDA (linear discriminant analysis), MDL (minimum descrip-
tion length), neural networks and genetic algorithms. Bekel et al. [16]
present their compound ‘VPL’ approach that combines vector quanti-
zation (VQ), PCA and local linear maps (LLM). This is an attempt to
achieve online adaptation for specific OR by online tuning of the LLM
component.

I can recommend the following further reading on learning: Duda
et al. [43] review most of the above listed techniques in the context
of mostly statistical pattern classification. Hastie et al. [81] is a very
complete reference to all state-of-the-art elements of statistical learning,
while Vapnik’s book [200] focuses strongly on support vector machines
and related issues.

2.3 . . . representation

How can visual object categories be represented? How can descriptions
be extracted from a visual input event I? So far, we have discussed the
pattern classification approach, where the representation is a feature
vector f , and a description of I is generated by calculating the indi-
vidual features f1, . . . ,fj . This representation can cover many facets of
objects in images: color, texture, homogeneous regions, discontinuities
(edges, lines, corners). Even simple spatial relations may be modeled
this way when features are derived from image coordinates. There are
further, more complex parameters which can also be represented as
features, including shape, topology and function of an object.

However, information is inevitably lost when a scene is projected
to a 2D image because the observed world is 3-dimensional in space
(and 4-dimensional in space and time). Thus, even the simplest geo-
metrical features that can be measured in an image will change when
certain parameters of the image capturing process are changing, for
instance focal length or relative pose between camera and object. The
same is true for radiometric distortions. The perceived color of a surface
depends not only on its spectral albedo, but also on the color (spectral
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intensity distribution) of the illumination and on the spectral sensitiv-
ity of the sensor. These facts have motivated research into features that
are invariant against all these sources of potential geometric and radio-
metric distortions. Especially affine invariance plays an important role
in current categorization systems. When a surface can be assumed to
be locally planar, the general case of perspective distortion is reduced
to affine distortion, which is easier to model. Algorithms for extraction
of affine invariant features include affine invariant moments of regions
[61] and affine invariant salient points [134]. Color constancy algorithms
[9, 10] have been developed to provide a certain degree of invariance
to radiometric changes. Recent work discusses combined moment and
color invariance [139].

A representation which is based on ‘key features’ typically extracts
feature vectors by applying some ‘interest operator’ to the image.
Early work on ‘interest points’ and saliency includes Marr’s primal
sketch [126] and several corner detectors [13, 62, 80, 92]. Among those,
the Harris corner detector [80] is still quite popular and has recently
been extended to cope with scale invariance [133] and affine invari-
ance [12, 134, 196]. Other saliency detectors include the detection of
corner orientation [30], a morphological approach to corner detection
[99], saliency based on entropy [88] and the notion of ‘maximally stable
extremal regions (MSER)’ [129]. There are surveys and comparisons
for interest point detectors [171], scale and affine invariant detectors
[136], and for affine region detectors [138]. Such an operator may find
from several hundred up to several thousands of interest points per
image, depending on the saliency threshold and on the content of
the image. These operators deliver positions of corner-like or blob-like
visual tokens and often include a measure of saliency (e.g. ‘cornerness’)
and related parameters that are not sufficiently descriptive to produce
a useful feature vector. Thus, additional local descriptors have to be
extracted at the salient locations. Possible descriptors are calculated
from a local support region and can for instance be moments of vari-
ous order [98, 124] or intensity distributions [78]. The ‘scale invariant
feature transform’ (SIFT) plays a special role, because this algorithm
closely couples a difference of Gaussian (DoG) keypoint detector with
SIFT as a local description method [122, 123]. A comparison of local
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descriptors is given by [135]. Figure 2.1 shows two example images
(a bike and a person), with an overlay of detected key features, com-
paring scaled Harris, affine Harris, and DoG/SIFT detectors. We see
that local saliency is well represented, including the scale of the fea-
tures which is reflected by the size of the circles ellipses and arrows.
For affine Harris and DoG/SIFT, there is also a ‘directional’ component
that reflects the angle and orientation of a corner/key point (elongation
and orientation of the ellipse, direction of the arrow). These examples
also demonstrate that any salient patch will be detected, no matter if
it is located on an object of interest or in the ‘background’.

Local features have been used very successfully in the development
of current categorization systems. Categorization from local features
is one of the core topics and the various aspects of this approach are
discussed throughout this article. The reader may refer to research

(a) Harris-Laplace (b) Harris affine (c) DoG/SIFT

(d) Harris-Laplace (e) Harris affine (f) DoG/SIFT

Fig. 2.1 Examples of ‘key features’ that are detected by: The scale invariant Harris detec-
tor (‘Harris-Laplace’ [133]), the affine invariant Harris detector [134], and the DoG/SIFT
detector/descriptor [122]. It is evident from the examples, that these detectors respond to
any salient feature – the features are not necessarily located on the actual object of interest.
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that uses local features for specific OR [57, 105, 122, 133, 139, 175] and
for categorization [1, 2, 40, 46, 51, 52, 53, 54, 82, 106, 107, 110, 172,
203, 204].

Following the pattern classification paradigm up to this point leads
us to what has been called ‘discriminative paradigm’ in categoriza-
tion. Based on training examples, we learn to decide cx for a given
input event Iy, based on P (cm|Iy),m = 1 . . . M . A typical discrimina-
tive model might model cluster centers as mean feature values and
statistical dependence between features as covariance matrices that
shape multivariate normal distributions. Decision boundaries can then
be obtained using Bayes’ decision rule which will minimize the proba-
bility of error (see again [43], Chapter 2).

In the ‘generative paradigm’, a generative model that captures
P (Iy|cx) is searched. Generative models can be built using the same
interest points as described above for discriminative approaches. These
models are built per class cm. The ‘constellation model’ is the currently
most prominent representative of a generative model for categorization.
This model was initially presented by Burl et al. [26] and was extended
by [53, 204]. Categories are modeled as joint probability densities of
parts’ appearance (local salient patches as described above) and shape.
Shape is represented by the mutual position of parts. Other approaches
that model the geometry of salient parts include [52] and [106]. While
the constellation [204] and the k-fan model [52] represent only a few
particularly relevant parts, a codebook as used in [106, 107] can contain
many local patches.

Holub and Perona [82] discuss the benefits of both, discrimina-
tive and generative appoaches. Generative models provide a num-
ber of advantages. Prior knowledge can be integrated, new categories
can easily be added, many categories can be represented, and cor-
respondences between object parts can be handled. Thus, generative
approaches can deal with incomplete information (e.g. missing object
parts). But because each model is created specifically for each category,
discriminative techniques tend to achieve higher classification accura-
cies when similar categories have to be distinguished. Holub and Perona
[82] present a combined framework that extends the generative constel-
lation model, but uses a discriminative model to refine categorization
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results for classes with similar generative models. See also the work
of Bar-Hillel et al. [8], who learn a generative appearance model in a
discriminative manner. The discussion of discriminative vs. generative
models has only recently gained a lot of interest, but on a broader
and more historic scale, similar discussions have been carried out for
the past two decades. Discriminative models are strongly related to
‘bottom-up’, data-driven methods, while generative models are linked
to ‘top-down’ approaches. In the mid 1980s, the use of AI, especially
by expert systems was a research topic in image understanding, and
bottom-up vs. top-down as well as the integration of both paradigms
(‘bidirectional’) was then discussed [41, 130]. The formation of geons as
a qualitative representation using volumetric primitives [20, 39] can be
viewed as a bottom-up data-driven process (edges → boundary groups
→ faces → primitives) and thus, fits into the ‘discriminative model’
paradigm. The same is true for other perceptual grouping approaches
[120, 167]. Interestingly, Lowe’s SCERPO system [120] includes a top-
down verification step.

Of course, there are alternatives to an object representation by
local patches and their spatial constellation. Parametric eigenspace
has been proposed as another generative representation which is com-
pletely image-based [143, 193]. Training images of fixed size (e.g. n × n

pixels) are treated as input vectors x with n2 elements and sub-
jected to principal component analysis (PCA3). This leads to a sys-
tem y = A(x − mx), where mx is the mean of all input vectors x.
The n2 × n2 coefficients of A have to be chosen such that the transfor-
mation yields a diagonal covariance matrix Cy which holds just the n

eigenvalues of Cx in descending order. Now, a test image xt can be
projected into eigenspace, yielding yt = A(xt − mx). If we use only a
subspace of those k eigenvectors that correspond to the k largest eigen-
values, we have a k × n matrix Ak and we obtain a lossy reconstruction
x̂t = AT

k yt + mx. This means that we obtain a certain degree of gen-
eralization by reducing the dimensions of the eigenspace, while at the
same time the mean square error between x and x̂ is minimized. This
method has gained wide interest, and PCA has been used in numerous

3 see for instance [74], Section 11.4 ‘Use of Principal Components for Description’
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recognition applications over the past decade. Issues of poor robust-
ness, e.g. against partial occlusions, have also been addressed [109].
PCA is the most prominent representative of a number of global linear
subspace methods like independent component analysis (ICA [85]) and
linear discriminant analysis (LDA [128]), as well as nonlinear kernel
methods, for instance SVM [200]. However, these image-based meth-
ods in general require a successful object to background segmentation
and a proper brightness and scale normalization, which seems unrealis-
tic in most categorization tasks. Thus, PCA and related methods have
proven most effective for specific OR, and for well-controlled tasks of
object pose determination. In general, there will be too much variance
in appearance and shape of categories, so that model-based approaches
as discussed above seem to be superior to image-based representations.
But recent developments include also local applications of such meth-
ods to image patches [151] or local descriptors [91]. In terms of the
discussion of generative and discriminative methods, PCA and ICA
are generative methods, while LDA and SVM are discriminative.

Several further schemes for object representations have been pro-
posed. Aspect graphs4 are a generalized, view-based method. The main
idea is to combine slightly different viewing directions, in which the
object looks alike, to one aspect. The object is represented by a number
of aspects, a representation of these aspects and a graph that describes
the possible transitions between them. Aspect graphs were used in
the early 90s to recognize simple polyhedral objects [72], or objects
which could be decomposed into generalized cones or geons [39]. We
have proposed an extension of aspect graphs for object categorization
[163] that combines aspects, CAD prototypes and a view-sphere. One
advantage in using aspect graphs and related representations is that
with the recognition of an object we not only know the object, but
also its corresponding aspect. This aspect gives us an estimate of the
viewing direction i.e. the relative pose between object and camera. In
general, representations like aspect graphs require the successful seg-
mentation of the image. Closed contours or homogeneous regions are
needed to come up with contour-based (e.g. geons [39]) or region-based

4 see e.g. [63], Chapter 20
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[44] representations for categorization. Recently, this need for closed
contours has been relaxed to a ‘boundary-fragment-model’ (BFM) [156]
that represents a codebook of boundary fragments.

2.4 . . . localization

Under weak supervision, as introduced in Section 2.2, a categorization
system should learn to categorize objects from examples of the form
< I,l >, i.e. input images or sequences I, and corresponding labels l,
but not object locations in the images. The images contain the desired
objects, but not just the objects. Thus, the real degree of supervision in
weakly supervised categorization depends very much on the complexity
of the training examples. If the objects are shown prominently, without
occlusions, and if the background is uniform, there is a very high degree
of supervision. On the other hand, when the background is highly clut-
tered, and the objects are shown at smaller scales, in varying poses
and partially occluded, supervision is weak. Figure 2.2 shows exam-
ple images of both kinds taken from two image databases. The level
of supervision is significant for the Caltech images, but supervision

(a) Caltech airplane (b) Caltech face (c) Caltech motorbike

(d) GRAZ02 bike (e) GRAZ02 car (f) GRAZ02 person

Fig. 2.2 Examples of different levels of supervision depending on object size, occlusion and
background clutter. There is more supervision in the Caltech images than in the GRAZ02
images.
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should be regarded as much weaker for the GRAZ02 images (see also
the discussion on databases in Section 2.5 below).

There are many contributions to weakly supervised categorization
using representations that are based on local descriptors, and the train-
ing and test datasets are becoming increasingly difficult. Important
questions are:

(1) Which local features are learned as category specific, discrim-
inative features?

(2) Are the features actually located on the object or in the
background?

One might even ask the question whether such systems really perform
‘object categorization’, or rather ‘image categorization’, because a high
percentage of relevant patches is located in the background. An image
of a car might, for instance be categorized based on a few ‘car-features’
(license plate, lights, wheels, etc.) but many visual ‘background’ clues
(pavement, street signs, and signals). Figure 2.3 illustrates these aspects
for the categorization of bike images vs. ‘background’ images (contain-
ing no bike).

There has been less research on localization abilities than on recog-
nition rates. Several approaches deal with a tradeoff between cate-
gorization with low supervision and localization performance with
higher supervision (e.g. [29, 54, 191]). Other approaches are very good
in localization, but just for specific OR (e.g. [105, 166]). We presented
a weakly supervised categorization system [153] that can handle rather
complex images. To evaluate its localization abilities, we set up a new
database and proposed new localization measures [154]. In this sys-
tematic evaluation of localization, we discuss requirements for datasets
(see Section 2.5) and give experimental results on localization abili-
ties. We find that many descriptors are located in the background,
even when a balanced dataset is used. Furthermore, localization per-
formance is class-dependent. Localization on our own database is, for
instance, better for bikes than for cars or persons.

One can conclude that many systems which just use local fea-
tures and do not account for their spatial relationship mostly cate-
gorize images rather than objects. They cannot reliably tell us where
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(a) Correctly classified as bike image (b) Correctly classified as background

(c) Correctly classified as bike image (d) Correctly classified as background

(e) Incorrectly classified as background (f) Incorrectly classified as bike image

Fig. 2.3 These images show all significant local descriptors that were detected while trying
to categorize bike images. Those descriptors that are above a threshold for bike detection
are shown in green, descriptors below a threshold in red. We observe a number of typical
aspects of weakly supervised ‘image’ categorization which is based on local features and
does not account for their spatial relationship: for bike images, some features are on the
object, others are in the background; for background images, some ‘bike’ features are found;
a sufficient amount of ‘bike’ features can result in a false positive (f).
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the object is (in space and time). Thus, approaches are required that
also model geometric and spatio-temporal relations in addition to local
features. Such approaches have been successfully used with strong
supervision (constellation [204], k-fan [52], and boundary fragment
models [156], codebooks [106, 107]). There is room for challenging
future research that will combine local features, spatio-temporal rela-
tions and weak supervision. First attempts towards completely unsu-
pervised categorization have even been reported [184].

2.5 . . . datasets

It is obvious that common datasets are required for the comparison
and evaluation of categorization algorithms. We have already discussed
several aspects of datasets for categorization. Such datasets should pro-
vide many images per category. They should cover the high intra-class
variability within a category. They should contain examples of low
inter-class variability between visually similar categories. Ground truth
should be provided in terms of category labels l per input event I, but
also for the localization of the object within the image. Localization
ground truth could be a bitmap, a coordinate (e.g. center of gravity)
and an approximate extension (e.g. radius) of the object, a contour or
a bounding box. Certain approaches (e.g. [1, 2, 204]) benefit from a
number of ‘simple’ training examples, in which the object of interest
is shown prominently, with no occlusion and with homogeneous back-
ground. Weakly supervised approaches (e.g. [153]) call for more com-
plex examples that contain the objects of interest on smaller scales,
partially occluded, in unfamiliar poses, with varying illumination and
with strong variations in background and clutter.

Several databases have been widely used to compare research results
in specific OR, and in categorization. Popular databases for specific
OR are the FERET database5 for face recognition [162] and the COIL
database6 for simple everyday objects that are placed on a turntable
and shown in many poses. A number of challenging databases for

5 http : //www.itl.nist.gov/iad/humanid/feret/feret master.html
6 http : //www1.cs.columbia.edu/CAV E/research/softlib/coil − 100.html
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categorization have been made available by the PASCAL project7.
Well-known databases used for categorization experiments include:

• The ETH-80 database8, introduced by Leibe and Schiele
[108], showing 8 different categories in a controlled setting.
The objects are placed on a turntable with homogeneous
background, and images are taken from 41 equally spaced
viewpoints of the upper viewing hemisphere.

• The Caltech database9, used e.g. by Fergus et al. [53] show-
ing cars (rear views), airplanes and motorbikes (side views),
human faces (frontal views), and leaves. In general, the
objects of interest are shown prominently and in very similar
poses, with little or no background clutter.

• The UIUC ‘cars side’ database10 containing side views of cars
and background images [1, 2].

• The TU Darmstadt (formerly the ETH Zurich) database11,
showing side views of cows, cars and motorbikes, used by
Leibe et al. [106].

• Our own databases12 GRAZ01 (people, bicycles, counterex-
amples) and GRAZ02 (people, cars, bicycles, counterexam-
ples) used in [153, 154].

Figure 2.4 shows a few example images from these image databases for
categorization.

The discussion in Section 2.4 showed that recognition is often based
on many local features, some of them located on the object, others
in the background. If the goal is to recognize objects, independent of
background and context, it would be desirable to have a high percentage
of local descriptors on the object. It may, however, make sense to use
context information. Context may help to estimate prior probabilities
P (c). It is, for instance, more likely to find cars on roads, and flowers in

7 http : //www.pascal − network.org/challenges/V OC/
8 http : //www.vision.ethz.ch/projects/categorization/eth80 − db.html
9 http : //www.vision.caltech.edu/html − files/archive.html or
http : //www.robots.ox.ac.uk/ vgg/data3.html

10 http : //l2r.cs.uiuc.edu/ cogcomp/Data/Car/
11 http : //www.pascal − network.org/challenges/V OC/databases.html
12 http : //www.emt.tugraz.at/ ∼ pinz/data
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(a) ETH-80 car (b) ETH-80 dog (c) ETH-80 horse

(d) Caltech airplane (e) Caltech face (f) Caltech car rear

(g) UIUC car side training image (h) UIUC car side test image

(i) TUD car side (j) TUD cow side (k) TUD motorbike side

(l) GRAZ01 bike (m) GRAZ02 person (n) GRAZ02 car

Fig. 2.4 Example images from the ETH-80, Caltech, UIUC, TU Darmstadt (TUD), and
TU Graz (GRAZ01 and GRAZ02) databases.
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a meadow, than vice versa [144]. Careful database design is required.
Either certain backgrounds are strongly linked with a certain category
(e.g GRAZ01), or the database needs to be balanced with respect to
background, so that similar context is shared by several categories in
the database (e.g. GRAZ02).

The repeatability of experiments is another very important aspect in
the transparent design and use of databases. It should be made explicit
which images were used during training and tests to achieve a certain
categorization performance.

It will be very difficult to come up with an image database for
many categories that can really cover all of the above requirements.
There are algorithmic workarounds, e.g. algorithms that try to learn
from very few examples [46]13. And there are recent proposals to use the
overwhelming amount of images that are available online, e.g. within
Google’s image search [54]. While this is a very appealing idea, the
results of such a search contain many outliers, and careful training
procedures are required [55].

2.6 . . . evaluation

How should the performance of a categorization system be evaluated?
There are several aspects that should be covered. First of all, one is
interested in recognition rates: Presenting a number of test inputs I,
what is the percentage of correctly categorized images? But there are
other, more subtle evaluations. What are the rates of false positives –
images that are classified to belong to a certain category, but do not
show this kind of object – and false negatives – images that show a
certain object, but are not recognized to belong to this category. There
are several ways to evaluate this aspect of recognition performance.
When a complete categorization system is available that can cope with
any input I and decide on its category cm, m = 1 . . .M , one can build
a confusion matrix. This matrix represents in each of its rows j, how
many examples of cj were categorized to belong to c1, c2, . . . , cm. Cate-
gorization is perfect when there are only entries in the main diagonal.

13 see http : //www.vision.caltech.edu/feifeili/101 ObjectCategories/ for the database of
101 objects that was used for these experiments
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Significant numbers in entries other than the main diagonal point out
that a certain category tends to be confused with an other one. To give
an example: High values in row j, columns j and k tell us, that while
category cj is often recognized correctly, it is also hard to distinguish
from category ck. In recent categorization research, Fergus et al. [53]
present a confusion matrix for the categories motorbikes, faces, air-
planes and spotted cats using their own constellation model.

In many cases it will be difficult to obtain a complete evaluation
in terms of a confusion matrix, because individual classifiers have been
trained for each category, using examples showing objects which belong
to this category, and counterexamples that do not contain any object
of the category in question. The individual classifiers are then trained
to distinguish between exactly two categories: object c1 and counter-
class c2. Then, the following four cases can occur during the process of
categorizing an input I to belong either to c1 or c2: hit (true positive),
false positive, miss (false rejection) and correct rejection. Rates are
required to normalize these quantities:

p(true positive) ∼ positive detection rate

=
number of true positives

total number of positives in the dataset
(2.4)

p(false positive) ∼ false detection rate

=
number of false positives

total number of negatives in the dataset
(2.5)

The receiver-operator-characteristic (ROC) is a common way to model
the discriminability of c1 and c2 (see e.g. [43], Section 2.8.3) for a given
classifier. An ‘ROC curve’ plots positive detection rates against false
detection rates and is obtained by varying a parameter that changes
the relation between true and false positives. Many recent publications
use ROC curves (e.g. [26]), the area under the ROC curve (e.g. [204])
and ROC equal error rates (e.g. [53]) to present their categorization
results. ROC equal error rate is defined as the point on the ROC curve,
where p(true positive) = 1 − p(false positive).

While the receiver operator characteristic is a good tool for describ-
ing discriminability in recognition tasks, recall precision curves (RPC)
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are better suited to characterize localization, especially for object detec-
tion systems that use local patches. This situation is well described in
[1, 2]. Here the task is no longer to categorize an image, but to decide,
whether a certain local patch belongs to an object or not. Usually, there
will be many salient patches found in an image, and often the majority
of the patches will be located in the background. Recall and precision
are defined as follows:

recall = positive detection rate (2.6)

precision

=
number of correct positives

number of correct positives + number of false positives
(2.7)

The RPC curve plots recall against (1 − precision):

1 − precision

=
number of false positives

number of correct positives + number of false positives
(2.8)

Thus, RPC can be used to evaluate performance with respect to local-
ization of individual patches. Agarwal and Roth [1, 2] also discuss
the difficulties of evaluating and comparing object localization results.
They propose a method of manually collecting ground truth (rectan-
gular 100 × 40 windows around a car viewed from the side) and they
compare the results of their car detector with this ground truth (in
terms of positional displacement and overlapping area thresholds). We
adopted a similar approach in [154], but a general method for the
comparison of localization abilities of a certain categorization system
depends on many aspects and is hard to define. This includes the ques-
tion of ground truth representation (bit map/bounding box/contour),
as well as category-specific issues (should the background that can be
seen through the wheel of a bicycle be counted to belong to the object
or not?).

Further methods have been proposed to quantify localization per-
formance. Dalal and Triggs [36] detect humans and use detection error
tradeoff (DET) curves, where they plot miss rates (1 − recall) versus
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FPPW. FPPW stands for ‘false positives per window’, which is a well-
suited measure for methods which use a sliding detection window. Leibe
et al. [108] also work on pedestrians and apply three evaluation criteria:
relative distance, aerial coverage and overlap of bounding boxes.

2.7 . . . system integration

Having discussed these numerous issues of categorization in Sections
2.1–2.6, it is quite obvious, that building a categorization system will
require many different components: Image or video acquisition and
databases, image processing, feature detection and extraction, learning,
pattern recognition and classification. Of course it has been a substan-
tial effort in software engineering to make all these components work
together to be able to conduct significant categorization experiments.
But this section on issues of system integration should point out other,
less obvious aspects.

There is a strong argument in favor of embodiment of cognitive sys-
tems. This starts with Brooks’ ‘building brains for bodies’ paradigm [25]
and has also been advocated within more recent research in the Euro-
pean ‘Cognitive Vision’ and ‘Cognitive Systems’ program of the 5th and
6th framework program [75, 202]. When it is possible to close the cycle
of perception and cognition by action, actions can be used to verify the
cognitive abilities of a system. Recent research programs aim, for exam-
ple, at the embodiment of cognitive vision in autonomous robotic plat-
forms14. This goal of embodiment is very ambitious and will definitely
not be reached within the next few years of research, although there
are several interesting research platforms, even of humanoid robots15,
that suggest humanlike behavior. Current cognitive performance is
very limited. As an example, the European cognitive vision project
‘Actipret’16 resulted in an integrated system that understood scenes in
which human operators were loading a CD into a CD player.

The role of context has already been mentioned above. In terms of
system integration, spatial and temporal context should influence the

14 e.g. the European project CoSy, see http : //www.cognitivesystems.org/
15 e.g. Honda’s Asimo http : //world.honda.com/ASIMO/
16 http : //actipret.infa.tuwien.ac.at/
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behavior of an integrated cognitive vision system. Which sequence of
actions has led to the current situation? How has a certain strategy
been used to solve a certain problem in the past? There is a trade-
off between short- and long-term visual memory. Which information
is required at which level of abstraction? At which point in time can
certain levels of visual detail be forgotten? Humans learn from exam-
ples. What is the role of visual episodes? Is there a kind of episodic
memory? These and similar questions have been researched under the
term ‘Visual Active Memory Processes’ within the European Cognitive
Vision Project ‘Vampire’17, and a prototype of visual active memory
that can hold information about visual events and episodes at different
levels of abstraction has been built [77].

As a final remark, analysis of visual structure is related to anal-
ysis of motion. There is experimental evidence for joint activations of
primary visual areas (V1,V2,V3,V4) and other areas that are respon-
sible for disparity, speed, direction of motion (MT), e.g. in functional
MRI of monkeys [119]. There are action-related representations, and
motion analysis plays an important role. Experimental evidence has
also been found in the recognition of 3D objects, indicating that three-
dimensional shape representation couples 3D structure from motion
with stationary visual cues [176]. This leads us to the idea that an arti-
ficial categorization system might benefit from integration of image-
related (2D) information with 3D spatial and 4D spatio-temporal
relations.

17 http : //www.vampire − project.org/



3
Building Blocks for Categorization

This section discusses a number of topics in detail. While these topics
are quite different and only loosely coupled, they have to be considered
the most important building blocks for visual categorization systems.
Each of the sections may be consulted individually, and not all compo-
nents are required to build a working categorization system.

3.1 Scale in space and time

The ability to deal with spatial scale will undoubtedly be required by
any visual categorization system. In addition, temporal scale can be
important, when categorization is performed not only for still images,
but also for image sequences. As a first step, we have to relate the
size of the pixels of the digital image to spatial extents in the scene.
While this is rather easy for approximately planar scenes observed
from a perpendicular viewing direction (e.g. in remote sensing or in
microscopy images), this task is much harder for three-dimensional
scenes and general perspective projection. The notion of scale in vision
has been researched from several directions and in detail. It is related
to the concept of spatial resolution of an image and temporal resolution

285
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of a sequence. Both are well grounded in digital signal processing and
the sampling theorem1 tells us the smallest spatial/temporal detail that
can be reliably resolved with respect to the image plane/frame rate of
the camera.

The image itself represents the maximum spatial resolution that
can be achieved for a given constellation of camera and scene. Based on
this maximum resolution, several kinds of multiscale or multiresolution
representations of an image have been proposed.

3.1.1 Image Pyramids

Using common language, an image pyramid [164] can be seen as a hier-
archical pictorial representation (a stack of image layers) of a certain
visual content at different spatial resolutions. The architecture of a
regular image pyramid can be specified by three properties. The reduc-
tion factor denotes the change in image size between two successive
layers of the pyramid. The reduction window specifies how many chil-
dren in a layer contribute to the calculation of one parent pixel in the
next layer. The reduction function specifies the algorithm that should
be applied to the reduction window. This can be the average, a convo-
lution with a Gaussian, a minimum, maximum or median operator, to
give a few examples. Using this terminology, the architecture of the reg-
ular pyramid can be specified by ‘reduction window/reduction factor’,
for instance a ‘2 × 2/4’ pyramid, and the construction algorithm for the
pyramid is defined by the reduction function. Many applications of reg-
ular image pyramids were proposed in the 1980s. For instance, Gaussian
and Laplacian (a bank of bandpass filters) pyramids have been widely
used in image encoding, event detection and object tracking [6, 27].

Are image pyramids a well-suited representation for categorization?
At fist glance, the answer might be yes. Since the scale of an object –
its size in terms of image pixels – will depend on focal length, resolu-
tion of the imaging sensor and distance between camera and object, a
pyramid could be used to select the appropriate layer that shows the

1 The maximum frequency f0 that can be reliably detected requires more than the double
temporal sampling ∆t of the according signal [178]. The same applies to the smallest
spatial detail ∆x and the according maximum spatial frequency µ0.
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object at a specific, preferred, ‘dominant’ or ‘canonical’ scale. How-
ever, a closer examination reveals, that a representation in a pyramid
as in the earlier description (e.g. 2 × 2/4, averaging) is not invariant
with respect to rotation and translation. Especially the shift-variance
has been critically examined (see Bister et al. [22]). Overlapping reduc-
tion windows can be used as a remedy against shift-variance (e.g. in
a 4 × 4/4 architecture), so that every child pixel contributes to the
information of more than one parent in the next layer. In a reduc-
tion window, it might also be possible to compute features which are
invariant with respect to rotation, and even to affine distortion (see
Section 3.2).

Still, the representation in any of the pyramid layers is pixels, not
objects. But so far, we have considered only regular pyramids. Pio-
neered by the work of Meer [131] and Montanvert et al. [140], the idea
of irregular pyramids has been researched. The original goal was to
represent homogeneous regions as one node in a planar graph struc-
ture. The nodes would correspond with an irregular tessellation of the
pixels of the original image. Several layers of planar graphs could be
connected to form an irregular pyramid. While this approach was orig-
inally targeted at new segmentation algorithms, an irregular pyramid
could also be viewed as a proper representation for categorization, in
which one node might represent an object and the neighboring nodes
the background/context of the object. Details about the object could
be found in the children of this node (traversing down through the
irregular pyramid to obtain more level of detail for an object).

3.1.2 Scale Space

In image pyramids, there are discrete layers which correspond to spe-
cific, discrete spatial resolutions or spatial scales. The notion of a con-
tinuous scale parameter t has been approached in a general manner in
‘scale space theory in computer vision’. The idea of scale in signals and
scale-space filtering of one-dimensional signals dates back to Witkins
work in 1983 [206] and was further investigated by Koenderink [93], and
by Yuille and Poggio [209]. The scale space is represented as a family
L of signals which are derived from the original signal f at scale σ = 0.
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We can define a scale-space family L : R
N × R+ → R for

N -dimensional signals f : R
N → R:

L(·;σ) = g(·;σ) ∗ f(·), (3.1)

where · denotes an N -dimensional vector x = (x1, . . . ,xN )T , and the
N -dimensional Gaussian kernel g : R

N × R+ → R is defined as

g(x;σ) =
1

(2πσ2)N/2 exp−x2
1 + . . . + x2

N

2σ2 . (3.2)

Babaud et al. [7] proved that the Gaussian kernel is unique for
scale-space filtering. It is the only kernel which guarantees a ‘mono-
tonic’ smoothing of the original signal f . This means that the number
of extrema of f is monotonically increasing/decreasing when moving
to lower/higher scales. Furthermore, they show, that when moving
from higher to lower scales σ, new extrema may emerge, while exist-
ing extrema will be preserved (although their position x can vary with
changing σ).

For spatial scale in images, we face a 2-dimensional scale space
with N = 2. Of course, we have to drop the idea of a continuous
2-dimensional signal f and of a continuous scale σ when it comes to
discrete digital images, and when tractable computations of scale-space
call for discrete scales. But the notion of L(·;σ) allows to select and to
compute any desired scale σ, which is a major difference to the pre-
viously discussed pyramid structure which represents only a very lim-
ited number of fixed scales. In [111], Lindeberg developed the discrete
scale-space representation which uses a discrete analogue of Gaussian
for smoothing and preserves all the convenient properties of continu-
ous Gaussian scale-space. For further reading, scale space theory has
been discussed in detail by Lindeberg [112], by Florack et al. [60], and
in [189].

Let us now focus on aspects of scale-space theory that are relevant
for categorization. In general, objects will appear in images at varying
scales. It would be very desirable to be able to calculate a ‘character-
istic scale’ for any kind of image event, covering edges, corners, blobs,
and objects. At this scale, the required amount of smoothing should
cancel superfluous level of detail but preserve the significant visual
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information about the object (its shape, color, texture, connectivity
and topology). If it were possible to extract any object at its character-
istic scale, and if the spatial resolution of the image could be adapted
to this scale (e.g. by subsampling as for pyramids), we would obtain
a scale normalization for the pixel matrix representing the object2. In
general, it will be necessary to detect and to track salient image events
over several scales to establish relations between salient structures of
different scales. This concept has been researched under the term deep
structure of images by Koenderink [93] and by Lindeberg [112], and it
has led to the idea of extracting image features using scale selection.
Since this feature detection with automated scale selection [115] turns
out to be a crucial technique used in current categorization systems,
we shall discuss it here in some detail, closely following [115].

Blobs are probably the most obvious features to be usefully rep-
resented in Gaussian scale-space. A ‘blob’ is defined as a compact,
homogeneous region in an image. With increasing smoothing, smaller
blobs will disappear or merge with neighboring structures to represent
a larger blob. Imagine for example the individual keys of a phone or of
a pocket calculator (individual, small blobs at lower scales), that might
merge into one larger blob representing the keypad at a higher scale.

Other features like edges, lines and corners are related to spatial
derivatives. In general, we denote the scale-space derivative by

Lxα(·;σ) =
∂α

∂xα1
1 . . .∂xαN

N

L(·;σ) = (
∂α

∂xα1
1 . . .∂xαN

N

g(·;σ)) ∗ f(·), (3.3)

where α =
∑N

i=1 αi. We can simplify this notation for 2 dimensions
(x,y) of an image, and give some examples: Lx and Ly denote the
gradients of L in x and y direction, and Lxx denotes the second order
partial derivative of L in x direction. Blobs can also be detected by
scale-space derivatives because a blob will essentially degenerate into a

2 The characteristic scale might vary for several objects in one image, and so might the
scale/subsampling of individual image portions containing these objects at their respective
characteristic scales. This again is a major difference to regular image pyramids that
contain layers of images at certain, but fixed, scales and subsampling factors.
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point-like structure at high scale, so that it can be detected as a local
extremum of the 2-dimensional Laplacian:

∇2L = Lxx + Lyy. (3.4)

Smoothing with Gaussian kernels guarantees that with increasing
scale no new extrema will be generated, and that existing extrema will
not be amplified. From this property follows directly, that the ampli-
tude of scale-space derivatives must decrease with increasing scale. The
goal of automatic scale-selection, however, is to find a specific scale σ0

for a certain feature that characterizes this feature best. How can a
significant scale for a certain feature be detected? The solution is to
introduce normalized coordinates ξ = x/σ. It can be shown, that for
these normalized coordinates, the scale-space derivatives will assume
local maxima. According to Lindeberg [115]:

“Principle for automatic scale selection: In the absence of other
evidence, assume that a scale level, at which some (possibly non-
linear) combination of normalized derivatives assumes a local max-
imum over scales, can be treated as reflecting a characteristic
length of a corresponding structure in data.”

Following this principle, automatic scale selection is possible and leads
to a certain location (x0,y0) and scale σ0 that characterizes a specific,
salient image event. Lindeberg has discussed this and similar scale selec-
tion principles for blobs [115, 118], interest points and corners [115], and
edges and ridges [114, 115]. His experimental results are quite impres-
sive and strongly suggest that feature detection by scale selection in
scale-space is a powerful tool for many cognitive aspects in computer
vision3, including attention, object representation, recognition and cat-
egorization. As a clear consequence, the detection and analysis of scale
and affine invariant interest points has become a research topic in cat-
egorization ([12, 88, 123, 129, 133, 134, 136, 171, 196], see Section 3.2
for a detailed discussion).

3 Lindeberg [115] also points out neurophysiological evidence for receptive fields in retina
and visual cortex of mammals whose response can be modeled by Gaussian derivatives
[208].
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When we consider categorization from image sequences instead of
still images, it is a quite natural idea to try to extend spatial scale-space
towards a spatio-temporal scale-space representation. This idea has been
pioneered by Koederink [94] and has drawn recent attention with signif-
icant contributions by Lindeberg [113, 116], and with the development
of spatio-temporal interest points [100, 101, 103, 117]. A straightfor-
ward extension of the above notation of L(·;σ), following [101] models
a spatio-temporal image sequence4 as a function f(x,y, t) : R

2 × R → R

and constructs its linear scale-space representation L(x,y, t;σ,τ) : R
2 ×

R × R
2
+ → R by convolution with an anisotropic Gaussian kernel with

spatial variance σ2 (spatial scale parameter σ) and temporal variance
τ2 (temporal scale parameter τ):

L(x,y, t;σ,τ) = g(x,y, t;σ,τ) ∗ f(x,y, t), (3.5)

where the spatio-temporal Gaussian kernel is defined as [101]

g(x,y, t;σ,τ) =
1√

(2π)3σ4τ2
exp(−x2 + y2

2σ2 − t2

2τ2 ). (3.6)

While this extension seems straightforward, it assumes symmetry not
only in the spatial, but also in the temporal domain, which is not true
for online processing of image sequences (the future can not be accessed
to smooth symmetrically in temporal dimension). But the assumption
will hold for reasonably long video sequences that are processed offline.
It has been found that significant scales and events can be detected in
spatio-temporal data in a very similar manner as for spatial scale-space.
As an example, Laptev and Lindeberg showed that space-time interest
points do characterize significant events in image sequences and can
be efficiently used to model human motion patterns [100, 101] and to
recognize human actions [102].

3.1.3 Discussion

The previous subsections have stressed the importance of dealing with
scale in space and time to represent salient structures for categoriza-
tion. Such structures might be whole objects (if they can be perceived as

4 with spatial parameters (x,y), and temporal parameter t.



292 Building Blocks for Categorization

homogeneous blobs with sufficient contrast to the background), object
parts, or ‘interest points’ which describe a very local but salient fea-
ture at its significant scale. There are of course further ways to look at
scale in spatial and temporal signals, Fourier analysis probably being
the most obvious one. Let us just state that in comparison to pyramids
and scale space, the Fourier spectrum can reveal which significant fre-
quencies occur in a signal, but it will not tell us where they are located
in the image, which is a drawback when objects should not only be
categorized but also localized. The same is true for banks of Gabor
filters, which also operate on the Fourier spectrum. In comparison, the
Wavelet transform offers localization similar to pyramids, but it also
lacks continuous scales.

3.2 Saliency, key-features, points and regions of interest

In Section 2.3, we already briefly discussed the need for detectors of
salient points (‘interest operators’). Learning and classification algo-
rithms require rich descriptions of such points and their surrounding
regions in terms of feature vectors. The following two subsections pro-
vide an overview of existing methods for detection and description of
saliency, key-features, points and regions of interest. While many detec-
tion and description methods have been used for decades, object cate-
gorization has shed a new light on these algorithms, and there has been
a significant number of new contributions and of review articles in the
past few years. For summaries, comparison and evaluation we refer the
reader to [171] (evaluation of interest point detectors), [138] (compar-
ison of affine region detectors), and [137] (performance evaluation of
local descriptors).

3.2.1 Detectors

Detectors can help to reduce the amount of data to be processed, focus-
ing attention on salient image events as salient points, lines/edges, and
regions of homogeneity. Figure 3.1 shows two examples of segment,
edge and point detection for a bike and a car image. We see that quite
different aspects may be emphasized by the three methods.
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(a) bike image (b) segmentation

(c) Canny edges (d) Harris affine

(e) car image (f) segmentation

(g) Canny edges (h) Harris affine

Fig. 3.1 Saliency can be extracted from images by segmentation of regions, edge/line detec-
tion, and by salient point (corner or blob) detectors. For these illustrations, we used the
graph based segmentation method by Felzenszwalb and Huttenlocher [50], Canny edges,
and the Harris affine corner detector by Mikolajczyk and Schmid [134].
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Region detectors: In general, some kind of homogeneity criterion,
or ‘segmentation cue’ is required to find homogeneous regions by seg-
mentation algorithms. Basic segmentation algorithms that can be found
in any textbook on image processing will typically range from simple
thresholding to region growing and split-and-merge algorithms. More
advanced, ‘high level segmentation’ techniques have been developed,
including mean-shift [32], normalized cuts (n-cut [179]), and level-
set segmentation [158]. Of course, one can switch between segmented
regions and their closed boundaries, as is done, for instance, with the
boundaries of the level set function to obtain geodesic contours [160].
For example, the results of normalized cuts segmentation have been
used as tokens for the categorization approach by Duygulu et al. [44].

Edge/line detectors: Edges can be detected as locations in the
images with a significant gradient in one direction. More formally, we
can search for local extrema of the image gradient ∇I, or for zero cross-
ings of the second derivative ∆I. Lines can be seen as ridges or val-
leys in the greyvalue image, and represent already local extrema (with
respect to a gradient profile direction p perpendicular to the line). They
can be detected as zero crossings of the first derivative ∂I/∂p. Numer-
ous approaches to edge detection have been proposed, including Sobel,
Canny, and LoG/DoG edge detection. In most cases, edge detectors
will not provide closed contours around an object of interest. Thus,
contour-based categorization algorithms will have to deal with contour
or boundary fragments (see e.g. [156, 181]).

Salient point detectors: Salient points can be defined as loca-
tions in the images with significant change in more than one direction.
In [171], Schmid et al. distinguish between contour based methods
(maximum curvature, junctions, crossings), intensity based methods
(e.g. significant gradients in two directions), and parametric model
based methods (e.g. analytic junction models, deformable templates).
Salient points might be sharp corners where two straight edges meet,
isolated pixels in a homogeneous background, but also smoother cor-
ners (a circular arc connecting two straight edges), circular discs, or
blobs, depending on the ‘dominant scale’ of the salient structure.
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Subsequently, we present a variety of saliency detectors and briefly
discuss their properties. Where derivatives of the input image are
required, directional derivatives in x and y direction are denoted by
Ix, and Iy, respectively. I2

x denotes the matrix product IxIx, whereas
second derivatives are denoted by Ixx, Ixy, and Iyy. Figure 3.2 at the
end of Section 3.2.1 compares the results of nine of the subsequently
mentioned saliency detectors applied to a car image.

3.2.1.1 Using first derivatives

Autocorrelation: Several corner detectors have been proposed that
are related to autocorrelation of the 2D image signal. M denotes
the autocorrelation matrix (sometimes also called second moment
matrix µ):

M = µ =

( ∑
(xw,yw)∈W I2

x

∑
(xw,yw)∈W IxIy∑

(xw,yw)∈W IxIy
∑

(xw,yw)∈W I2
y

)
(3.7)

If the rank of M is two (i.e. both eigenvalues are large), then there are
gradients in more than one direction within the local neighborhood W .
For edges (significant gradient in one direction), the rank of M will
be one, and zero for homogeneous regions. Several variants of corner
detectors have been proposed that are based on these observations. The
KLT tracker5 tracks points of interest which are detected as locations
with two large eigenvalues of M [180]. Förstner has presented several
variants of an interest point detector that uses M (see [62], and also
Chapter 16.4 of [79]).

Harris corners: Harris and Stephens [80] have published the prob-
ably most popular variant of a corner detector based on the second
moment matrix. They enhance the approach described above in sev-
eral ways. Instead of using the sum

∑
(xw,yw)∈W , they convolve the local

derivatives Ix and Iy with a Gaussian G. They introduce two scales,
the integration scale σI , and the derivation scale σD, and they obtain
a 2 × 2 matrix MHarris for each point x in the image I (again, this

5 Kanade-Lucas-Tomasi, see http://www.ces.clemson.edu/∼stb/klt/
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matrix captures the gradient distribution in a local neighborhood of
x, where the size of the neighborhood depends on σI and σD, see also
[138]):

MHarris(x,σI ,σD) = µ(x,σI ,σD)

= σ2
DG(σI) ∗

(
I2
x(x,σD) IxIy(x,σD)

IxIy(x,σD) I2
y (x,σD)

) (3.8)

Harris and Stevens define a measure of cornerness cHarris that does not
require computing the eigenvalues of M:

cHarris = detM − αtrace2M (3.9)

A corner is detected at x, if CHarris is above a threshold tHarris.

3.2.1.2 Using second derivatives

Corner detectors based on the Hessian determinant: In gen-
eral, these detectors are related to curvature and are invariant to rota-
tion. The first detector of this kind was published by Beaudet [13].
Corners are defined as local maxima of the determinant of the Hessian
matrix H.

detH = det
(

Ixx Ixy

Ixy Iyy

)
= IxxIyy − I2

xy (3.10)

Variants of this detector include the detectors of Kitchen and Rosenfeld
[92] and of Dreschler and Nagel [42].

DoG/LoG: We refer to Section 3.1.2, and Eq. 3.4, where we already
discussed the use of a Laplacian to detect edges, corners, and points
(blobs) in a smoothed image. The first detector of this kind was pro-
posed by Marr and Hildreth [127] as an edge detector. The image is
first smoothed with a Gaussian to reduce noise, and edges are located
at zero-crossings of the Laplacian:

L = ∆(G ∗ I) = (∆G) ∗ I = 0. (3.11)

This ∆G kernel, the ‘Laplacian of Gaussian’, or LoG operator can be
closely approximated by the ‘Difference of Gaussian’, or DoG operator,
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by taking the difference of two images that are smoothed with two
Gaussians G1 and G2, with σ1 and σ2. The DoG operator searches for
zero-crossings of

D = G1 ∗ I − G2 ∗ I = 0. (3.12)

Yuille and Poggio analyzed a scale space of zero-crossings. They dis-
cussed the change in position and the vanishing of zero-crossings with
increasing scales, and they showed that Gaussian smoothing guarantees
that no new zero-crossings can emerge [209].

Lowe’s keypoints: For a greyvalue profile perpendicular to an edge,
it is easy to see that the DoG operator will have a zero-crossing at
the edge, with a local extremum (one maximum and one minimum)
at each side of the edge. For a blob at a corresponding scale, the
DoG will deliver one local maximum (or minimum, depending on
foreground/background greyvalues). This has led to Lowe’s idea of a
keypoint detector that searches for local maxima and minima of D

[122, 123]. To suppress corners with low contrast, Lowe applies a thresh-
old, and to distinguish between edges and corners, he also assesses local
curvature, based on the Hessian matrix of D.

HD =
(

Dxx Dxy

Dxy Dyy

)
(3.13)

A keypoint is detected when

trace2HD

detHD
< th. (3.14)

3.2.1.3 Saliency without derivatives

A number of saliency detectors has been proposed which work directly
on the images without using derivatives at all. In the following we
briefly describe four detectors of this kind. The detectors by Kadir
and Brady [88] and by Matas et al. [129] have been used in object
recognition approaches. While the morphological detector [99] and the
SUSAN detector [186] deliver quite impressive results, they have not
been used in recognition, probably because they are not straightforward
enough to extend to handling varying scales.
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Morphological corner detector: This detector is based on mathe-
matical morphology and was proposed by Laganière [99]. The detector
uses four different structuring elements and applies them by performing
an assymetrical closing. It is rather invariant against arbitrary corner
rotations and insensitive to small image structures.

SUSAN corners: Smith and Brady [186] presented an approach to
low level image processing that can be used for edge and corner detec-
tion and for structure preserving noise reduction. They use local circu-
lar windows and observe the area within the mask that is sufficiently
similar in brightness to the center pixel of the mask. In a sliding window
approach, this area will attain local minima at edges and corners. Their
algorithm is very robust when degraded by noise, can deal with low con-
trast, and is computationally efficient (about 10 times faster than the
Harris corner detector).

Kadir/Brady saliency: This detector builds on an idea of Gilles
[73], who observed grayvalue histograms for image patches Rx around
an image location x, and found Shannon entropy to be a good measure
of local saliency. The histograms can be interpreted as probability dis-
tributions (probability PRx(di) that a pixel in the patch has a certain
grayvalue di), and the local entropy

HRx = −
∑

i

PRx(di) logPRx(di) (3.15)

will be higher for patches of high signal complexity (for salient regions
with flat distributions). Kadir and Brady [88] extend this idea towards
an automatic selection of the optimal scale, where the entropy is a
maximum with respect to the selected diameter of a circular patch Rx.
This detector has been successfully used by Fergus et al. [53] in their
seminal categorization work.

MSER – maximally stable extremal regions: MSERs can be
computed by successively thresholding an image. For the illustration
of the method, let us assume images with grayvalues ranging from
0 to 255. Applying successive thresholds t = 1 . . .256 will lead to 256
binary images – homogeneous white for t = 1 and homogeneous black
for t = 256, with a number of connected regions emerging, merging, and
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disappearing for the thresholds in between. These regions are already
‘extremal regions’ because they represent regions R in the original
image, where all pixels belonging to R are brighter than all neighbor-
ing pixels of R. To obtain ‘maximally stable’ extremal regions, specific
threshold values are selected with respect to stability. Regions that
don’t change their shape for a wide range of thresholds are regarded as
salient, and the most appropriate threshold is selected for such regions.
This is a brief qualitative description of the algorithm. For a detailed
mathematical formulation see [129]. Further explanations can also be
found in [138].

3.2.1.4 Affine covariant detectors

We have seen already in Section 2.3, that affine invariance plays an
important role in categorization from local features. Especially when
categorization is based on a ‘bag of keypoints’ model (see Section 3.3.1),
it is very interesting to detect salient points under significantly varying
scales and for various poses of the object. When salient points are
located on the surface of the object, and when the region of support of a
point is sufficiently small, perspective distortion can be modeled locally
by an affine transformation (treating each keypoint separately with its
own, specific affine transformation). When we can assume that the pose
does not vary significantly, it is sufficient to observe local features at
varying spatial scales. These ideas have been very common over the
past years, which has led to a number of extensions of existing interest
point detectors. In general, the goal is to detect a characteristic scale
for each interest point and to recover an affine deformation that fits the
local image data best. Common variants include scale [133] and affine
‘invariant’ [134, 169] Harris corners, and extensions of the Hessian [134]
and of the Kadir/Brady detector [89] towards affine invariance. The
original DoG/LoG and the Kadir/Brady detector can already handle
changes in scale, and MSERs can cope with affine distortions.

3.2.1.5 Performance of detectors

There are performance evaluations for interest point detectors [136],
and for scale and affine invariant detectors [171]. The most recent and
complete summary can be found in [138], where the authors also discuss
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the term ‘affine invariant’ and conclude that these detectors should,
in fact, be termed affine covariant, because the corresponding regions
change covariantly with the transformation.

The survey [138] also proposes comparative measures (repeatabil-
ity, overlap) and compares the various detectors on several datasets
with varying changes in viewpoint, scale, illumination and blur. The
conclusion is that there is not a single detector that performs best, but
in many cases the MSER detector obtains high scores, followed by the
Hessian-Affine. But there are further considerations, e.g. the required
number of points, where Hessian-Affine and Harris-Affine deliver more
points than the other detectors. Figure 3.2 provides a qualitative com-
parison of the saliency detectors that were discussed in Section 3.2.1.

(a) Harris corners (b) Harris affine (c) Harris Laplace

(d) Hessian affine (e) Hessian Laplace (f) Kadir/Brady

(g) morphological (h) MSER (i) SUSAN corners

Fig. 3.2 This figure gives a qualitative comparison of nine popular saliency detectors. All
detectors are described in Section 3.2.1 and are applied to the same image showing the front
of a car.
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3.2.2 Descriptors

When salient regions or points with their supporting regions have been
detected, the obvious way to proceed is to try to come up with a rep-
resentation of such salient regions in terms of descriptive features. Fea-
tures are required for a feasible correspondence analysis (a matching
of two sets of feature points that is purely based on their respective
image coordinates is highly ambiguous, and of prohibitive complexity).
Typically, a descriptor of a salient region will be comprised of a num-
ber of different features, often represented as a feature vector. Many
such features have been proposed in the pattern recognition literature,
some of them related to pixel intensities and color, some to information
extracted from boundaries, others using transformations to other coor-
dinate spaces (most popular: features extracted from the Fourier spec-
trum). In this section, we focus on descriptors for local salient regions,
which are useful for categorization. A number of such descriptors have
been proposed and were used for categorization and for specific OR
approaches, and the performance of such descriptors has been evalu-
ated (see [132] for categorization, and also [137], but more in terms of
recall for specific recognition than for categorization).

There are several possibilities to obtain descriptors which are invari-
ant or at least robust in response to certain distortions. For example,
affine invariant description can be obtained by using affine covariant
detectors (see Section 3.2.1.4) to detect a salient region and to normal-
ize it to a canonical patch so that any kind of descriptor can be used.
Another possibility is to use descriptors which themselves are invari-
ant against distortions and can be used on arbitrary patches which are
extracted by any saliency detector. Thus, normalization and/or invari-
ance can occur in both of the processes of detection and/or description.
The resulting combination of detector and descriptor can be invari-
ant to scaling, rotation, affine deformation and change in illumination,
depending on the amount of geometric and radiometric distortion that
should be compensated in the application.

Our own work [155] showed that in categorization, the performance
of certain combinations of descriptors and detectors may be category-
specific. This is also supported by Zhang et al. [210]. In general, good
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descriptors for categorization may differ from good descriptors for other
applications like specific recognition, image retrieval, or wide baseline
matching. They should exhibit sufficient descriptive power, but at the
same time not over-emphasize specificity related to a specific individual.
There certainly remains research to be done into the utility of certain
descriptors for categorization. The remainder of this section presents a
number of popular descriptors that have been successfully applied in
categorization systems.

Grayvalues: The simplest way to describe a patch is by its raw pixel
values (grayvalue or color). Often this leads to very high-dimensional
yet redundant feature vectors, so that subsampled grayvalues are
used instead. Two descriptors can be compared by normalized cross-
correlation. This descriptor is not robust against any (radiometric or
geometric) distortions.

Obdržálek and Matas define ‘local affine frames’ (LAFs [147]) for
MSER regions and use grayvalue profiles on this affine invariant repre-
sentation for specific OR under strong viewpoint variation.

Moments: Moments have been used as descriptors for a long time
(see e.g. [74], p.672 ff). When we restrict ourselves to greyvalue images,
the moments mpq for a patch P are calculated from the grayvalues
I(x,y) as follows:

mpq =
∑
x∈P

∑
y∈P

xpyqI(x,y) (3.16)

Here the mpq are general moments of patch P of (p + q)th order. Many
extensions and generalizations have been proposed towards moment
invariants.

Moment invariants: Let x̄ = m10
m00

, ȳ = m01
m00

, then central moments
µpq of order (p + q) are defined as:

µpq =
∑
x∈P

∑
y∈P

(x − x̄)p(y − ȳ)qI(x,y) (3.17)

Central moments are invariant with respect to translation.
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Hu [83] has derived a set of seven invariant moments Φ1 . . .Φ7, which
was extended by Maitra [124]. These Φi are based on the notation
of normalized central moments ηpq = µpq

µγ
00

, with γ = 1 + (p + q)/2. For
example:

Φ1 = η20 + η02 (3.18)

Φ2 = (η20 − η02)2 + 4η2
11 (3.19)

Φ1 . . .Φ7 are invariant to translation, rotation, and scale (see [74],
p.674). Based on this idea, Flusser [61] defines a number of affine invari-
ant moments I1 . . . I4.

These concepts have been extended to geometric/photometric
invariants by van Gool et al. [98]. Their invariants include shape and
intensity moments up to the order of two for grayvalue images. These
moment invariants have been used as descriptors for registration and
recognition [194], image retrieval [195], categorization [153, 155], and
for wide baseline matching [197]. Their work was further generalized to
moment invariants for color images [139].

Filters: There is a large number of possible features that can be
calculated based on local filter operations, e.g. by convolution with
a kernel (high-pass, low-pass, directional derivatives). Local geometry
has been extracted by Koenderink and van Doorn using banks of ori-
ented filters that are claimed to model receptive fields of the human
visual system [95]. These “local jets” were used as descriptors for image
retrieval by Schmid and Mohr [170]. Other examples include differen-
tial invariants [183], Gabor filter banks [45] and steerable filters [64].
Obdržálek and Matas [148] generate discrete cosine transform (DCT)
representations for normalized local patches and use these descriptors
for image retrieval.

SIFTs: SIFT descriptors were originally proposed by Lowe [122]
in tight coupling with the DoG/LoG keypoint detectors (see
Section 3.2.1.2). However, the descriptors can be used as well on any
normalized patch. In summary, scale-space extrema are detected, and
DoG/LoG keypoints are localized. Next, local gradient directions are
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calculated to obtain one or more orientations for each keypoint loca-
tion, and image data is transformed with respect to location, scale, and
orientation. This leads to a normalized local window, which is invariant
to translation, scaling, and rotation of a keypoint. The term “SIFT” is
an abbreviation for “scale invariant feature transform”.

SIFT descriptors are calculated for local patches (called ‘sample
arrays’ by Lowe), typically of size 8 × 8 or 16 × 16 pixels. A patch is
subdivided into 4 × 4 sample regions, where a weighted histogram of
gradient directions is computed per sample region. Lowe uses a his-
togram binning of 8 different gradient directions (covering 360◦). For
a 16 × 16 patch, this leads to 16 sample regions, and a SIFT descrip-
tor vector of dimension 128 (16 regions × 8 orientations). For the most
up-to-date and complete presentation of SIFT descriptors see [123]. The
SIFT representation has been further improved by applying principal
component analysis to the gradient patches, resulting in PCA-SIFT
descriptors [91].

3.2.3 The role of detectors/descriptors for categorization

Descriptors are required as the basic building blocks of most of the
representations described in Section 3.3 below. Only global appear-
ance based representations (e.g. parametric eigenspace) work directly
on the grayvalues of the pixels of an input image, but are more suited
for specific OR than for categorization. The role of saliency detectors
may be questioned, however. While the past years have seen a tremen-
dous success of detectors, which focus the extraction of descriptors on
‘salient’ regions, this may be due to the use of too simple training data6.
When training images show category examples at prominent scale, well-
structured and with high contrast to rather homogeneous background,
one can expect to detect many salient points on the objects. With
increasingly complex training data, we can observe a paradigm shift.
People start to calculate descriptors at every pixel in the image, or at a
rather dense grid. Deselaers et al. [38] pioneered this idea, using a grid in
conjunction with salient point detectors. They found that salient points

6 See also the discussion on the degree of supervision in Section 2.4.
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work well in the foreground (on the objects of the Caltech database),
but the grid-based descriptors deliver useful information about homo-
geneous regions and in the background. Now, there are many results
on more complex data, relying just on a grid, e.g. Bosch et al. [23] who
calculate overlapping descriptors at every 3rd or 7th pixel, or Winn
et al. [205] who convolve the images with a filter bank to obtain a
dense set of local descriptors. Nowak et al. [146] compare randomly
sampled points to interest points and find that interest points work
well for a small number of points per image. In general, however, the
performance improves with the number of points, and is best for many,
randomly sampled points.

These results show that both, sparse descriptors (sampled at
‘salient’ points) and dense descriptors (sampled randomly or at a dense
grid) have their advantages and disadvantages. Performance charac-
teristics are closely related to training and test datasets. For promi-
nent objects and little background clutter, saliency detectors are rec-
ommended as an efficient means to reduce the amount of data to be
processed. Grid based methods may be preferable when information
about homogeneous regions is essential (sky, grass, water, foliage) and
when the objects appear at smaller scales in cluttered images.

3.3 Object models

To the expert in categorization, this section may give rise to contro-
versial discussion. What is the best presentation? There are definitely
several, probably equally justified ways. One could for instance try
to structure the section as follows: appearance-based; keypoint-based;
contour/shape-based; graph-based (including qualitative spatial mod-
els); 3D reconstruction-based. Which models should be considered most
important? The field has seen considerable success for bags of keypoints
and for constellations of local salient features over the past few years.
But it might well be the case that the limits of these approaches have
already been reached. This is suggested by a number of recent contour-
and shape-based models.

With this in mind, I have decided to constrain the models which are
presented below to 2D. But I include a very brief discussion of potential



306 Building Blocks for Categorization

benefits that can be expected from 3D reconstructionist approaches at
the end of this section.

3.3.1 Bags of keypoints

The simplest possible object model is to use no model at all. This
approach has also been termed ‘model-free’ or ‘geometry-free’. The
basic idea is to extract salient points (keypoints) from images, and to
represent an image as a set of such keypoints including some descrip-
tor. The basic techniques which are required to extract keypoints and
descriptors for this approach are presented in the previous Section 3.2.

In the first step, a set of keypoints and their descriptors (feature vec-
tors) can be extracted from all images that are presented to a ‘bags of
keypoints’ categorization system. Next, classifiers have to be found that
can discriminate between the various categories. A number of successful
categorization systems of this type have been presented over the past
years. These systems include the one by Csurka et al. [35] (who branded
the term ‘bag of keypoints’), our own system ([153, 155]), recent work
by Sivic et al. [184] and several others ([8, 40, 87, 177, 191, 203]).
Figure 3.3 shows an example from our own work [155], in which a
bag of 100 keypoints is learned to represent the bike images from the
GRAZ02 database.

The various approaches differ mainly in the types of keypoints and
their descriptors, in the learning algorithms that are used to obtain
classifiers (popular methods are Boosting, SVM, and EM), and in the
amount of supervision that is required. Boosting in particular, has
gained wide interest as a well suited learning approach, because Boost-
ing selects a collection of very diverse features (weak classifiers) that are
combined to form a diverse final (strong) classifier. What do we mean
by ‘amount of supervision’? The ‘bags of keypoints’ approach requires
a number of training images per category to learn a classifier for each
category. Typically, there will be category specific images, and negative
(counter-) examples, i.e. images that do not contain objects of the cate-
gory in question. Aspects of supervision in the learning stage include the
number of training images that are required to learn a classifier and the
way in which objects are presented (i.e. How prominent are the objects
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(a) example bike image (b) Harris Laplace keypoints

(c) ‘bag of 100 keypoints’ model for bikes learned from the GRAZ02 database

Fig. 3.3 A ‘bag of keypoints’ of 100 salient points for bike images has been learned from
the GRAZ02 image database. This figure shows an example bike image, all keypoints that
were detected in this image (some of these keypoints were learned to belong to the ‘bag
of keypoint’ bike model), and the bag of 100 keypoints. The red circles denote the exact
location and scale of each keypoint.
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shown? Is a bounding box or some other hint on object localization
provided? How homogeneous/cluttered is the background?).

There is a further important issue which should be explicitly dis-
cussed. This approach will usually lead to a huge number of individual
keypoints that have to be processed. One can expect from hundreds
to several thousands of keypoints per image, depending on the image
content and also on the selectivity of a keypoint detector, which is typ-
ically tuned, for instance, by a threshold. Accepting only a low number
of keypoints by setting high detection thresholds may lead to problems
when category-specific keypoints are neglected. Permitting very high
numbers of keypoints, on the other hand, will significantly decrease the
efficiency of learning a representative ‘bag of keypoints’. An obvious
solution to this problem is to allow a sufficient number of keypoints,
but to cluster them in the feature space. Most of the ‘bag of keypoint’
models mentioned above require such a clustering step. For each key-
point, its corresponding description vector is extracted, and clusters
are formed by vector quantization (VQ) based on a distance measure
between description vectors (e.g. using the Mahalanobis distance). Typ-
ical clustering algorithms which have been used for this purpose include
k-means clustering and agglomerative clustering. Still, the number of
cluster centers needs to be rather high (e.g. k = 1000 in [35]) to capture
high intra-class variability. Cluster centers which are obtained by such a
procedure have also been termed ‘visual words’ [185], and can be used
for image representations that go beyond a pure ‘bag of keypoints’,
for instance, when histograms of visual words are used to evaluate the
frequency and co-occurance of visual words in images.

Once a ‘bag of keypoints’ has been learned for each category, it
can be applied to categorize new, previously unseen test images. State
of the art systems achieve very high recognition rates for rather com-
plex images, and with a fair amount of required supervision. When
affine covariant detectors and/or affine invariant descriptors are used,
this model can cope with even huge variations in object pose, without
modeling the aspect of the object explicitly. When the task is to catego-
rize an image, this approach is probably state of the art, and it will be
successfully applicable for categorization, annotation and retrieval of
images, as long as the number of different categories is kept reasonably
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low. One can envision categorization systems that might be capable of
handling several hundred categories, including some hierarchy of clas-
sifiers to keep the complexity tractable.

However, there is one major drawback inherent to this approach:
When the training images are not restricted to a pure presentation of
the objects themselves (cropped out from the background, or in front
of a prepared, homogeneous background), object localization will gen-
erally be poor. In [154], we have investigated this drawback based on
experiments using our own categorization system [153], and also devised
potential extensions to improve its object localization capabilities. The
reason is that a classifier will typically contain features on the objects of
interest, as well as features that are learned from keypoints that belong
to background clutter. As long as the goal is image categorization, this
will not matter much. It can even be an advantage to also learn some
contextual information that describes the preferred surrounding, con-
text or background for a certain category. Other models will be required
when good object localization is required as well, especially when multi-
ple instances of several different categories may occur in one test image.
Such models should be able to represent compactness, spatial relation-
ship between parts/contours/segments, etc. Some models of this kind
are discussed below.

3.3.2 Contours, boundary fragments

Object contours can provide a very powerful cue about object identity,
and a human observer can also generalize very well using contours,
silhouettes, line- or edge drawings for visual categorization. There are
a number of machine vision techniques that can be successfully used
for contour-based detection and recognition, including, for instance,
many variants of the Hough transform [86], geometric hashing (which
was originally developed for contours, but can be used for constel-
lations of any type of features, see [207]), and perceptual grouping
[120, 167]. However, these techniques have mostly been used for the
description of shape of specific objects, or for general bottom-up group-
ing and recognition processes. There are also many efforts to describe
complete objects based on their contour, but they require a clean
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object-background segmentation, which can not be assumed in a real-
istic categorization application.

In general, boundaries provide information about object shape,
which requires proper description in terms of shape features. An exam-
ple of successful generalization for handwritten digit recognition is
‘shape context’ [17]. In the same paper, Belongie et al. [17] demon-
strated the use of shape context to the recognition of specific objects
(external and internal contours of COIL-20 objects), and to catego-
rization of silhouettes (from the MPEG-7 silhouette database [104]).
Ghosh and Petkov applied shape context also to robust recognition
from broken contours of the same silhouette database [70]. At present,
there is no ‘bags of boundary fragments’ categorization approach sim-
ilar to the ‘bags of keypoints’ described above. But we see a number
of promising categorization results when geometric relations between
boundary fragments are modeled. These approaches are summarized in
Section 3.3.4.

3.3.3 Segments

Image segments can be used in a similar way as was done for key-
points. Any existing segmentation algorithm can be applied to obtain
a segmentation of an input image I into segments Si. A description by
segments is less local than for keypoints and their support regions, but
many of the descriptors from Section 3.2.2 can be used. For instance,
affine invariant moments can be expected to yield good results for pla-
nar segments.

Duygulu et al. [44] have presented an interesting approach to cate-
gorize segments. Images are segmented using the normalized cuts algo-
rithm [179], and segments are described by a vector of 33 features (color,
texture, size, moments, etc.). Segment categorization is modeled as a
process of machine translation (from segments to words), and learned
by EM based on a database of annotated images.

In our own categorization system [153, 155], we have implemented a
‘bags of segments’ approach together with ‘bags of keypoints’. We, thus,
can compare the categorization performances for various combinations
of detectors and descriptors and we find that the performance depends
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on the categories as well as on the databases used for training and tests.
There are categories that are better modeled by keypoints, and others
that are better modeled by segments. In general, we found that ‘bags
of segments’ tend to model more context than keypoints, i.e. there
is a higher percentage of segments located in the background than
keypoints. For direct comparison with Figure 3.4, we show the same
bike image, and a bag of 100 segments model for bikes, obtained from
the GRAZ02 database, in Figure 3.4.

3.3.4 Constellations, codebooks

When we observe the merits and drawbacks of a pure ‘bags of keypoints’
approach, it seems quite obvious to try to extend this idea to a model
that captures local saliency, but also represents spatial relationship
between parts. This is now a very popular approach, and much of the
recent success in categorization is due to such models of ‘constellations
of parts’.

Research on part-based representation can be traced down to
Fischler and Elschlager’s pictorial structure model [59]. They propose
a model of parts that are spatially, but flexibly related to each other.
Such a model can be deformed to a certain degree (one can imagine the
various parts being connected by springs). This idea has been picked
up by several researchers. For recent work in this direction, including
a review of related work, see Felzenszwalb and Huttenlocher’s article
on ‘pictorial structures for object recognition’ [51], where such models
are built for the recognition of faces and human bodies. Hand-labeled
images are required to train the model.

The ‘constellation’ model has gained a lot of interest and proba-
bly is the most popular part-based model today. It gradually devel-
oped through a number of publications ([26, 53, 110, 204]). Objects are
modeled as random constellations of parts, explicitly representing the
mutual spatial relationship between parts (in a spring-like manner).
Parts are detected as local salient points. In [53], the saliency detector
by Kadir and Brady [88] is used. The support regions are normalized to
a patch of fixed size which describes the appearance of the part. A com-
plete probabilistic formulation of the recognition problem is obtained,
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(a) example bike image (b) segmentation

(c) ‘bag of 100 segments’ model for bikes learned from the GRAZ02 database

Fig. 3.4 A ‘bag of segments’ of 100 salient regions for bike images has been learned from
the GRAZ02 image database. This figure shows an example bike image, all segments that
were detected in this image, and the bag of 100 segments. Note that we use our ‘similarity
measure’ segmentation algorithm described in [69]. This algorithm tolerates regions (shown
in red in (c)) which are not connected, but may consist of closely neighbored parts.
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based on position X, scale S, and appearance A of salient parts (in the
most recent contributions by this group [54, 56], D is used as a more
general acronym for any kind of local descriptor instead of A, but in
the subsequent discussion, we stick to the notation from [53], which is
the reference for the constellation model).

A generative model is learned from training images. Typically, N

(about 30) salient parts are selected per image, and a model consists
of P (about 6) parts and a set of parameters θ. Recognition of a model
in a test image is assumed, when a Bayesian decision R is above the
threshold.

R =
p(Obj|X,S,A)

p(noObj|X,S,A)
≈ p(X,S,A|θObj)

p(X,S,A|θnoObj)
(3.20)

A factorization of

p(X,S,A|θ) =
∑
h∈H

p(X,S,A,h|θ)

=
∑
h∈H

p(A|X,S,h,θ)p(X|S,h,θ)p(S|h,θ)p(h|θ) (3.21)

is used, and models of appearance p(A|X,S,h,θ), shape p(X|S,h,θ),
and scale p(S,h|θ) can be learned. The vector h describes a ‘model
hypothesis’ of P parts that are drawn from the total number of N

available parts. H is the set of all valid hypotheses. Since |H| = NP ,
these constellation models are limited in the affordable number P of
parts of a model, and they have to be quite restrictive in the appli-
cation of the saliency detector to keep N tractable. Figure 3.5 from
[53] shows a typical motorbike model with six parts and a number of
correct recognitions on images from the Caltech database.

In summary, the main limitations of the constellation approach as
published in [53] lie in the relatively low number of parts (learning mod-
els with many parts is of prohibitive complexity), and in the amount of
required supervision. The objects have to be shown very prominently
so that a sufficient number of salient parts, that are located on the
objects, can be shared in many training images. When these conditions
hold, categorization results are excellent for various categories of the
Caltech database (motorbikes, faces, airplanes, cars(side)), as reported
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Fig. 3.5 Example of a typical motorbike constellation model with six parts ( c©2003 IEEE,
from Fergus et al. [53], “Object class recognition by unsupervised, scale-invariant learning”,
Proc. CVPR, 2003, p. II-270, reprinted with permission from the IEEE Computer Society).
The top left shows the model with the ellipses representing the variances of each of the six
parts. The top right shows ten patches for each of the six parts and for the background. The
bottom row shows five correctly recognized motorbikes from the Caltech image database.

in [53]. Research on the constellation model has led to a number of fur-
ther significant results from the group around P. Perona. This includes
one-shot learning [46], incremental learning of many (101) categories
[47], a common reference frame instead of a landmark [141], and the
combination discriminative learning with a generative model [82].

Shape deserves further discussion at this point. In [53], shape is
represented by a joint Gaussian density of the locations X of a hypo-
thesis h. This joint density is certainly a good model because all parts
are treated equally. In terms of a graph structure, the model cor-
responds to a fully connected graph (equivalently, all parts can be
considered as fully connected by springs), and thus models most flexi-
bly the spatial constellation of its parts. In terms of its complexity of
O(NP ), other models would be preferable. This has been discussed in
[56], where a star-shaped model (HSM – ‘heterogeneous star-shaped
model’) is derived. However, such a model requires the selection of
a landmark part, that forms the root of the star (which can also be
considered a tree of depth one). This landmark is difficult to choose
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in the learning process. But the complexity of the star model is just
O(N2P ), so that models with more parts, and the extraction of more
salient points become feasible. A similar approach towards a hierar-
chical model has been presented by Bouchard and Triggs [24]. Here,
the object is modeled by a tree of depth 2 (object, parts, local feature
classes), and good results for many categories have been reported.

The required degree of spatial structure of a model has also been dis-
cussed by Crandall et al. [33]. They presented their k−fan model, where
essentially k models the number of landmarks that are fully connected
to each other, while each landmark may be connected to further parts
in a star-shaped manner. The parameter k can range from 0 (modeling
no spatial dependencies, similar to a ‘bag of keypoints’), 1 (star-shaped
model like HSM), to P − 1 (fully connected graph, e.g. joint Gaussian
model). Crandall et al. show that a rather limited amount of geometric
structure is sufficient to successfully categorize images from the Cal-
tech database. Essentially, a 1-fan is sufficient for the categorization
of the images, with minor improvements for 2-fans. However, localiza-
tion abilities for parts may be considerably improved by adding more
structure (i.e. increasing k). In an extension of their own work, Cran-
dall and Huttenlocher [34] show that k-fan models can also be learned
under weak supervision (just providing image labels) and on complex
databases (GRAZ01).

The previously discussed methods try to learn and to model shape
explicitly in terms of constellations, star-, tree- or k-fan graphical mod-
els. In practice, all these explicit models exhibit advantages (representa-
tion of salient parts of an object) and disadvantages (limited number of
parts, computational complexity of learning the model). Alternatively,
Leibe et al. [106] proposed a codebook of local appearance that is used
together with an implicit shape model as it collects a potentially large
number of salient patches and maps the location of the patches rela-
tive to the object center by a probabilistic voting scheme. This implicit
shape model has gained much interest. It was significantly enhanced to
deal with varying object scale [107], and applied to the task of pedes-
trian detection [108, 174].

In most of the previous work, the models were built from local
salient features (as described in Section 3.2.1), mostly from interest
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points and local descriptors extracted from the interest point’s sup-
port region. Some recent models use also local edge information
([33, 34, 174]). Building on what we explained on the use of bound-
aries to model shape in Section 3.3.2, there are now initial research
efforts into the direction of boundary models for categorization. Such
a model must be able to cope with cluttered scenes, broken contours,
many contours in the background, and also ‘internal contours’ which
originate from edges or texture on the object of interest. Jurie and
Schmid present scale-invariant shape features that can model local
support for circles and arcs [87]. Crandall et al. [33, 34] build their
explicit model from local edge support, using oriented edge appear-
ance templates. Seemann et al. [174] extend the implicit model of Leibe
et al. [106, 107] with a local chamfer descriptor on edge structure which
is derived from a Canny edge detector. Bernstein and Amit [19] build
a model from oriented edges. Kumar et al. [96] present an explicit
shape model that extends the model of [51] and combines the outline
and the enclosed texture of parts. This idea, in combination with the
implicit shape model from [106], has led to new implicit models of shape
based on boundary-fragments (termed ‘contour fragments’ by Shotton
et al. [181], or ‘boundary-fragment-model’, BFM in our own work [156]).
While these implicit models are learned from training (and sometimes
also validation) images, Ferrari et al. [58] propose a method that learns
the boundary from one single hand-drawn prototype and can deal with
cluttered images and broken contours for detection. Figure 3.6 gives an
overview of our BFM approach which learns a strong detector from a
codebook of boundary fragments. While it may be too early to judge
the relevance of these recent contributions to contour fragment based
categorization, I definitely think that this is an important direction of
research that should be further explored in the future.

3.3.5 Modeling objects in more than two dimensions

Some of the models in the previous section do already go beyond
pure 2D object models. Aspect graphs model the spatial relationship
between camera and object to a certain extent. From a more general
point of view, it might be useful to model three-dimensional objects in
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(a) The strong detector is learned in two major stages. First, a discriminant codebook is
learned from training and validation images. Then a strong detector is obtained from the
codebook by Boosting certain codebook entries based on localization information from the
validation images. The training images include the bounding boxes to delineate the objects,
and the validation images just provide a label (indicating whether the object is present or
not) and the object’s centroid (for the positive validation images).

(b) Detection of an object in a test image ( c©2006 Springer, from Opelt et al. [156],
“A Boundary-fragment-model for object detection”, Proc. ECCV, 2006, p. II-576, with
kind permission from Springer Science and Business Media). Those boundary fragments
that vote consistently for an object centroid define the segmentation matte of the object.

Fig. 3.6 Overview of our ‘boundary-fragment-model’ (BFM) approach to detect and
segment objects (see [152, 156]).
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three dimensions. Also a transition from ‘viewer-centered’ to ‘object
centered’ coordinates might be of interest. Other possibilities to
increase the number of dimensions include 2D space and time to model
typical motion patterns (see e.g. [150] for dances of honey-bees), 3D
space and time to model structure and motion for recognition [173].
This kind of modeling may be considered a reconstructionists approach
to the recognition problem, and is certainly not very popular nowadays.
From my own perspectives and research interest, I believe that knowl-
edge and control of camera-to-object pose can open up a new perspec-
tive to categorization, and should probably become a future direction
of research.

3.4 Learning and recognition

We have seen a number of introductory comments, mostly on proba-
bilistic approaches, in Sections 2.1 and 2.2. This section briefly presents
those methods which have been successfully applied to categorization.
In general, we have to search for learning techniques that can cope with
high intra-class variability. This means that we cannot rely on com-
plete representations in our training data. Thus, successful learning
algorithms for categorization must cope with incomplete, inhomoge-
neous, and partly missing training data. Since learning and recognition
(training and test) are quite interwoven, these two aspects are discussed
jointly for the various approaches below.

3.4.1 Expectation maximization EM

Expectation maximization (EM) is a well established method which can
be used to produce maximum likelihood estimates in cases of missing or
hidden features. Therefore, it is well suited to learn probabilistic models
for categorization from examples. A general discussion of EM, as it can
be found for instance in [43] (Section 3.2 for maximum likelihood and
Section 3.9 for EM), presents the learning problem as a problem of
estimating a vector of model parameters θ.

Adhering to the notation introduced in Section 2, feature vectors
fy are extracted from images Iy. We want to learn generative models
that represent P (fy|cx) and are built per class cm. We assume that the
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category-conditional densities p(f |cx) have a known parametric form so
that they can be modeled by a set of category-specific model param-
eters θx. Thus, p(f |cx) depends on θx and we can make this explicit
by writing p(f |cx,θx). However, we do constrain our further discussion
to the learning of one specific model for one specific category c which
simplifies the problem of learning p(f |θ). The optimal parameter val-
ues θ̂ can be learned from a set of training examples D = {f1, . . . , fn}.
In maximum likelihood estimation, θ̂ is found as

θ̂ = argmax
θ

l(θ), (3.22)

where the log-likelihood

l(θ) = logp(D|θ) =
n∑

k=1

logp(fk|θ) (3.23)

is maximized with respect to θ. Representing the set of parameters θ as
a vector of p parameters θ = (θ1, . . . ,θp)T , extrema of l(θ) can be found
by setting ∇θ l = 0, with ∇θ = (∂/∂θ1, . . . ,∂/∂θp)T .

In the standard formulation of expectation maximization, this
maximum-likelihood formulation is extended to cases where the train-
ing data D is incomplete. This can be formulated as feature vectors fy
that contain ‘known’ features fyk and ‘unknown’ ones fyu, so that the
training data can be split into sets of known and unknown features,
with D = Dk ∪ Du. Now EM finds an approximation of θ̂ by iterat-
ing a sequence of expectation (E) and maximization (M) steps using a
function q(θ;θi) which models the goodness of parameter fit.

q(θ;θi) = E(logp(Dk,Du;θ)|Dk;θi) (3.24)

This notation assumes that i enumerates the iteration, and θi is fixed
(q is a function of θ only). E is the expectation for the log-likelihood,
including the unknown features Du marginalized with respect to the
current best distribution that is modeled by the current parameter
estimation θi. The EM algorithm starts at i = 0 with initial param-
eter values θ0, and continues to expect (E-step, calculate q), and to
maximize (M-step, select those θi+1 that result from argmaxθ q(θ;θi)).
The process terminates when the gain in quality of fit is below a given
threshold q(θi+1;θi) − q(θi;θi−1) < th.
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Now how can this formulation of ‘known’ and ‘unknown’ features be
translated into representations used in categorization? We will illustrate
this using the constellation model ([53], see also Section 3.3.4). We refer
to Equation 3.21, and its models of appearance, shape and scale that
are learned from training images Iy. Local salient patches are extracted,
forming a feature vector fy for each training image. While it is known,
that the object of interest (an exemplar of a certain category, e.g. a
motorbike) is present in the training image, there is no supervision
in terms of parts. This means, that there are ‘good’ features Dk that
would correspond to parts (e.g. the front wheel) and ‘bad’ features.
Furthermore, the mapping from fy to Dk which would select the relevant
parts of the model is not given. The solution is, to introduce hidden
(‘unknown’) features that would map good features to part labels, and
bad features to background. The values for both, part features and
mappings are represented as the model parameters θ and are learned
using EM.

Once that generative models have been learned for each class cm,
recognition of a previously unseen image Ix is straightforward. The
feature vector fx is extracted, and p(fx|ci), i = 1 . . .m are calculated.
If some ci are above threshold, the class with maximum p(fx|ci) is
assigned, otherwise Ix is regarded to contain no known category7.

Similar situations as explained above for the constellation model
occur quite often in categorization. Examples of successful categoriza-
tion systems that use EM as their underlying learning technique include
[44, 168, 188, 204].

3.4.2 Boosting

Boosting was introduced by Freund in 1995 [65]. Boosting is a very pow-
erful learning algorithm that combines a number of ‘weak’ classifiers to
form a final ‘strong’ classifier which can handle very diverse individual
‘clues’. Only those weak classifiers that contribute to the strong classi-
fier actually have to be found, so that the learning phase can be kept
computationally feasible, if the training data is efficiently organized.

7 In [53], Fergus et al. discuss the distinction between a single category c, and background
bg, and demand that the ratio R = p(fx|c)

p(f |bg) is above a threshold.
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The most popular extension of Boosting is probably AdaBoost [66].
This ‘adaptive Boosting’ algorithm uses weighted training samples. At
each of its iterations, it finds a weak classifier that performs just better
than guessing8. After each iteration, the weights of the training samples
are adapted such that the performance of the previously selected weak
classifier would decrease. This technique supports the selection of very
diverse weak classifiers.

To translate these very general remarks to the domain of catego-
rization, I will give a brief example (adapted from [155]) that demon-
strates how AdaBoost can be used to learn a discriminative model from
training data. We want to learn a strong classifier which can discrim-
inate between ‘positive’ images that show objects of a category and
‘negative’ images that do not contain such objects. m labelled images
(Ik, lk),k = 1 . . .m are provided as training data, with li = +1 for a ‘pos-
itive’ example Ii, and lj = −1 for a negative example Ij . The learning
algorithm is expected to deliver a function H : Itest �→ ltest. This predic-
tion of a label ltest for the test image Itest constitutes the discriminative
recognition of Itest using a strong classifier H.

AdaBoost finds a number of weak classifiers ht, t = 1 . . .T in the
following way. A weight wk is associated with each training image.
Initially, wk = 1,k = 1 . . .m. A weak hypothesis ht just has to fulfill the
requirement

cc =
m∑

k=1

wk|ht(Ik)=lk >

m∑
k=1

wk|ht(Ik) �=lk = mc, (3.25)

with cc denoting the number of correctly classified, and mc the number
of misclassified images. This means that ht classifies a majority of the
training images correctly.

After each round t = 1 . . .T , the weights wk are adapted by a factor
βt, such that in round t + 1 less emphasis will be put on images that
are correctly classified in round t. In fact, AdaBoost sets the weights

8 When we assume a situation, in which a weak classifier has to be selected based on training
data that contain examples and counterexamples for one category, ‘better than guessing’
means that just more than 50% of the training examples need to be correctly classified.
This is really a very weak requirement.
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such, that ht is not discriminative with respect to the new weights in
round t + 1.

After T iterations, T weak hypotheses have been selected, and the
strong classifier H can be built from these ht by

H(I) =

{
+1 if

∑T
t=1 ht(I) lnβt ≥ 0,

−1 else.
(3.26)

The implementation of this learning technique for categorization
faces two problems. First, weak hypotheses ht with cc 
 mc (see
Eq. 3.25) should be preferred. The selection of a well-suited weak
hypothesis ht in round t of the algorithm is difficult, because it requires
the proper representation of features (‘description vectors’) and the cal-
culation of distances (‘similarity’ of features). Second, the exhaustive
search of all distances for all features is computationally expensive.
Exhaustive search for the best weak hypothesis ht would require test-
ing all description vectors that have been extracted from all training
images, with respect to the current weights wk.

In summary, Boosting is a valuable learning technique which is
well suited to learning discriminative models for categorization. For
the interested reader, Hastie et al. ([81], Chapter 10) provide a sound
general description of Boosting. Starting with the seminal face detec-
tion work by Viola and Jones [203] in 2001, Boosting has only recently
(2003–2006) gained wide interest as a powerful learning method in
object categorization (see e.g. [8, 153, 191, 192]). In its standard imple-
mentation, AdaBoost is computationally quite expensive, and cur-
rent research on learning for categorization is thus focused on various
improvements. Major issues are the reduction of computational com-
plexity, the joint learning of many categories, and the online, incremen-
tal learning of new categories/from new training images. Algorithmic
advances include GentleBoost [67], LPBoost [37], and joint Boosting
[191].

3.4.3 Decision trees

In their seminal work, Beis and Lowe [15] discuss the drawbacks of exist-
ing hashing techniques for the recognition of 3D objects. They claim
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that there exist no invariants for general 3D point sets, and introduce
their kd-tree algorithm for the efficient recognition of 3D shape. In
general, kd-trees were introduced by Friedman et al. [68] as an efficient
data structure to decide nearest neighbor problems in a k-dimensional
space. The basic idea of Beis and Lowe is to learn such a data struc-
ture from training images, which can be used for the recognition of
a test image by extracting a feature vector and finding a set of near-
est neighbors in a binary decision tree. While [15] apply kd-trees to the
recognition of specific objects from 3D models, Lowe [123] extended this
approach to the recognition of specific objects from clusters of SIFT
descriptors. However, the dimension k of his SIFT descriptors is 128,
and kd-trees are known to provide no speedup compared to exhaustive
nearest neighbor search for high-dimensional spaces. Thus, they resort
to using the ‘best-bin-first’ (BBF [14]) algorithm, which delivers an
approximate solution.

There is an excellent recent source on the use of decision trees
for specific OR by Obdržálek and Matas [149]. They present a novel
approach called LAF-tree (local affine frame tree), where they use
their maximally stable extremal regions (MSERs, see Section 3.2.1.3)
as salient features. In comparison to Lowe [123], they overcome the
limitations of fixed size feature vectors by interleaving the process of
recognition and extraction. They report close to real-time recognition
rates for hundreds of specific objects.

It should be expected from this success in specific recognition from
local features, that decision trees might also be well applicable to cate-
gorization. Indeed, Marée et al. [125] present a method which is based
on ensembles of randomized decision trees and report good results for
image categorization. Further contributions on decision trees for cate-
gorization can be expected in the future.

3.4.4 Discussion of categorization specific topics

Although we have already discussed a number of categorization related
problems throughout this paper, there are several topics that deserve
specific discussion with respect to learning and recognition. When
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appropriate, I give references to previous work, but in general I think
that these topics still constitute promising future research directions.

We wish to learn models that can cope with large intra-class vari-
ability. Boosting has been presented as a learning method that extracts
very diverse weak hypotheses. Category specific combinations of detec-
tors and descriptors can be learned. Shotton et al. [182] combine clues
about appearance, shape, and context in a Boosting framework which
is based on textons that jointly model shape and texture.

We are still far from learning and recognizing Biederman’s 30,000
different categories [21]. In many cases, individual discriminative clas-
sifiers or individual generative models are learned per category. There
are a few approaches towards multiclass recognition, including the joint
Boosting of common features that can be shared between classes [191],
the incremental learning of generative models for 101 categories from
few examples [47], and cross-generalization by adapting features that
proved useful for previously learned categories to new classes [11].

Both, generative and discriminative models have their specific mer-
its. A discriminative approach may best learn category-specific infor-
mation in a bottom-up, data driven manner, such that discriminative
systems yield superior recognition rates. On the other hand, generative
models are learned to provide top-down reasoning and these approaches
are often better in object localization. These aspects have recently been
discussed by a number of authors (e.g. [166, 192]), and led to the con-
clusion that neither approach alone can suffice for large scale object
recognition [198]. Currently, there are a number of emerging approaches
that combine discriminative and generative approaches to categoriza-
tion [8, 82, 97, 165].

Finally, generative models and shape- (contour-) based approaches
generally provide better localization of the objects. This is highly rele-
vant not only for object localization and segmentation, but also in cases,
when objects from more than one category occur in one image. These
observations might favor approaches that learn salient features on the
objects of interest. On the other hand, context can play an important
role as an additional clue that might, for instance, influence the prior
probability for a certain category to appear in an image [144]. In this
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sense, it may be useful to first categorize the scene [49] and only then
categorize the objects in the scene.

Object localization should also be discussed from the point of view
of implementation. There are detectors of instances of categories in
images which simply perform category recognition (and not localiza-
tion) in a sliding window. The face detector of Viola and Jones [203] is
a typical example of this kind. Other approaches, including the detec-
tor of Leibe et al. [106] and our own BFM [156], can be considered
implicit shape models, which also provide a voting for potential object
centroids. These object models can perform the direct localization of
category instances, e.g. by detecting local maxima in a Hough voting
space. Both approaches, the sliding window and the direct localization,
have their specific advantages and disadvantages. A sliding window
might use very category-specific features, while the direct localization
approach will require less specific features to contribute to a sufficiently
significant local maximum. On the other hand, direct localization is
computationally efficient and more appealing in terms of a category
model that can be detected at a larger scale than a sliding window,
which allows the efficient implementation of scale-invariant detection
[107].



4
A Prototype System for Categorization

In this section, I give a summary of our own original research work1.
This summary is presented from my current perspective and accumu-
lated experience within a number of research projects and research
collaborations.

Over the past years, we have researched categorization from still
images, starting with a weakly supervised approach following the
‘bags of keypoints’ paradigm. The resulting region-based categoriza-
tion system is discussed in Section 4.1. While this system has shown
excellent image categorization capabilities, the localization and detec-
tion of objects in the images can be considerably improved by mod-
eling object shape. This was done in our ‘boundary-fragment-model’
approach which is described in Section 4.2. Finally, we are currently
exploring a number of further directions, including the combination
of contour and patches, the online incremental learning of many cate-
gories, as well as the formation of spatio-temporal representations and

1 The content of this section is related to the following key publications: [69, 153, 154, 155,
156, 173]. The following people have contributed to this research: Peter Auer, Michael
Fussenegger, Andreas Opelt, Andrew Zisserman. I gratefully acknowledge the support by
the following projects: Austrian Science Fund national research network ‘Cognitive Vision’
S9103-N04, and the European projects LAVA, ECVision, and Pascal network of excellence.
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3D category models from structure and motion analysis. These future
trends are briefly discussed in Section 4.3.

4.1 Region-based image categorization

Figure 4.1 gives an overview of our region-based image categorization
system. This approach to categorization has been termed weakly super-
vised, because just a number of training images, together with their cat-
egory labels is provided to train the system. No information is required
about the object localization (e.g. object centroid) and the extent of
the objects in the images (e.g. bounding box). There may still be a
considerable amount of supervision in training such a system when
the training images show the objects very prominently. This is, for
instance, the case for many of the images in the Caltech database.
Furthermore, our approach is geometry-free, because it learns a ‘bag of
keypoints’ model for each category. A final, strong hypothesis is learned
as a collection of weak hypotheses using a slightly modified variant of

Fig. 4.1 Overview of our region-based categorization framework ( c©2006 IEEE, from Opelt
et al. [155], “Generic object recognition with Boosting”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 28(3). p. 418, reprinted with permission from the
IEEE Computer Society). ‘Bags of keypoints’ are learned from training images using a
variant of AdaBoost. A number of detectors of discontinuities and homogeneous regions
can be used and the resulting patches can be described with a variety of local descriptors.
The performance of individual detector/descriptor combinations, as well as the combination
of several detectors and descriptors can be experimentally evaluated.
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AdaBoost. Weak hypotheses are drawn from a potentially very diverse
combination of local salient features and descriptors. The framework
is quite general and it allows the combination of various detectors of
discontinuities and of homogeneous patches with a number of descrip-
tion methods. The most complete description of this system is given
by Opelt et al. [155] and by Opelt [152].

Figure 4.2 illustrates an example, in which a patch-based strong
classifier is learned for the category bikes. As described in Section 3.4.2,
Boosting selects weak hypotheses which are ‘typical’ for bike images
(highlighted in green in Fig. 4.2), and do not occur in the counter-
examples. As a further example, we refer to Fig. 3.3, which shows all
100 weak hypotheses that were learned for a specific constellation of our
system: The keypoints were detected with the affine invariant Harris
detector, the local patches were described by moment invariants, and
the GRAZ02 bike and counterexample images were used to train the
strong classifier. A different constellation of the system was used to
produce Fig. 3.4: The regions were detected by similarity measure seg-
mentation [69] and described by intensity moments, again on GRAZ02
bikes and counterexamples.

Fig. 4.2 Learning a strong classifier for the category bike. The classifier is learned from
examples and counterexamples. The description consists of local patches that are extracted
around interest points. The final strong classifier is a collection of 100 weak hypotheses that
model the category bike.
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We obtained several interesting results in our various experiments
with this system. Our categorization results were excellent on available
databases, and in comparison with the state of the art in 2004. This
led to the need for further, more complex image databases to evalu-
ate all aspects of our approach. We set up our GRAZ01 and GRAZ02
databases, as explained in Section 2.5. Tables 4.1 and 4.2 give quan-
titative results on these two datasets. To illustrate the performance
of our system, Fig. 4.3 shows correctly categorized images from these
datasets, while Fig. 4.4 shows some of the errors. Several of our results
are quite obvious, while others require further investigation and expla-
nation. These aspects are discussed below.

Recognition rates are category-specific, but also the best individual
detector/descriptor as well as the best combinations of various detec-
tors and descriptors depend on the category. This may be expected,
because features that model a bike may obviously differ from good fea-
tures for modeling people or cars. It also stands to reason that some
categories are harder to recognize than others, but there are many
potential explanations for this fact. Recognition performance might

Table 4.1 Comparison of ROC-equal error rates on the GRAZ01 dataset, achieved with
three specific combinations: Affine invariant interest point detection with description by
Moment Invariants, DoG keypoint detection combined with SIFT as description method,
and Similarity-Measure-Segmentation (SM, [69]) described by intensity distributions.

Dataset Moment Invariants SIFTs SM

Bikes 26.5 22.0 16.5
Persons 37.0 23.5 43.5

Table 4.2 ROC-equal-error rates of various specific combinations of region extractions and
description methods on the three categories of the GRAZ02 dataset. The first and the sec-
ond column are obtained with the affine invariant interest point detection and Moment
Invariants or basic intensity moments as local descriptor. The third column was achieved
using DoG keypoint detection and SIFTs as description method. The last column shows the
results of experiments performed using Similarity-Measure-Segmentation (SM) and descrip-
tion via intensity distributions.

Dataset Moment Invariants Basic Moments SIFTs SM

Bikes 27.5 23.5 23.6 26.0
Persons 19.0 22.8 30.0 25.9
Cars 33.0 29.8 31.1 43.5
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(a) GRAZ01 bikes, persons, counterclass (‘background’)

(b) GRAZ02 bikes, persons, cars, counterclass (‘background’)

Fig. 4.3 Examples of images from our GRAZ01 and GRAZ02 databases that were catego-
rized correctly by our region-based system.

depend on the training (e.g. ‘better’ training images for certain cate-
gories or counterexamples that favor a certain category), on a different
amount of intra-class and inter-class variation, but also on the category
itself. A region-based approach will be better suited for solid objects
with sufficient texture on the surface than for partly transparent or
even fragmented objects. For instance, there is a lot of background
visible within the outline of a bike. When this background is often
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(a) Some GRAZ01 categorization errors

(b) Some GRAZ02 categorization errors

Fig. 4.4 These images from our GRAZ01 and GRAZ02 databases were categorized incor-
rectly. All instances of objects (bikes, persons, cars) were incorrectly categorized as coun-
tercless (‘background’). The counterclass images were categorized as bikes.

pavement, a facade or foliage in the training images, the performance
of the bike detector will strongly depend on the balance of the image
database (does pavement/facade/foliage also occur in the counterex-
amples and/or in images of other categories of interest?).

Localization performance of such a geometry-free approach is in
general poor, as has to be expected. The algorithm learns a bag of
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Table 4.3 This table shows the percentage of the weak hypotheses that are not located on
the object. Here we used the same combinations of detectors / descriptors as in Table 4.2
on the GRAZ02 dataset.

Dataset Moment Invariants Basic Moments SIFTs SM

Bikes 21 30 39 55
Persons 23 45 54 74
Cars 56 63 52 84

keypoints, but these keypoints may be located anywhere in the images.
Table 4.3 shows that the percentage of patches in the background varies
between 21 and 84 percent, depending on the category, and also on the
detector/descriptor combination. There are several potential remedies
for this poor localization capabilities, but in general they will require
an increased amount of supervision (see e.g. [154]), and also benefit
from modeling of geometric relations (e.g. the constellation model of
Fergus et al. [53]).

4.2 Detection and localization with a
Boundary-Fragment-Model (BFM)

Our second approach to categorization builds on shape information
which is extracted from edges that belong to the (external or ‘inter-
nal’) contour of the object. We do not require complete boundaries,
but use a codebook of ‘boundary-fragments’ that vote for potential
object centroid locations. An overview of the learning and detection
components of this BFM system has already been presented in Fig. 3.6
as an example for a shape-based codebook approach in Section 3.3.4. In
the first stage of learning, a codebook of boundary fragments together
with their centroid votes is learned from training images that show
the objects of interest. This learning step requires also a bounding
box around the objects in the training images and an additional set
of validation images. This validation set contains examples, includ-
ing the object’s centroid position, and counterexamples. The learning
is thus more supervised than the region-based approach described in
Section 4.1. In the second stage of learning, a strong detector is learned
from weak detectors that are selected from the codebook of bound-
ary fragments. Since one boundary-fragment is often not sufficiently
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discriminative (its shape may be too general, or it may match with
background clutter of similar shape), a weak detector consists of k dif-
ferent boundary fragments, where all fragments are required to vote for
a common centroid position of the object (see Fig. 3.6). We use k = 2 or
3 boundary fragments to build such weak detectors (the complexity of
the approach increases dramatically with increasing values of k). The
formation of these weak hypotheses, and the Boosting of a final strong
classifier also requires the set of validation images. Again, there is a bit
more supervision needed than for our region-based approach.

Figure 4.5 depicts a number of detection results obtained with a
multiclass extension of this BFM approach (see [157]) for various cate-
gories from the Caltech and GRAZ image databases. With this model,
we obtain excellent localization of the objects of interest, and also very
good recognition rates. Tables 4.4 and 4.5 show that the boundary

Fig. 4.5 This figure shows a number of detection results obtained with our BFM approach.
For each edge image (left), the extracted Canny edges are shown in grey, and those boundary
fragments that led to a detection are shown in red. Each original greyvalue image (right)
is shown together with the detection result, a bounding box around the object. Examples
include airplanes, cars rear, motorbikes, and faces from the Caltech database, and GRAZ
bikes.
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Table 4.4 Comparison of the BFM detector to other published results on the Caltech
dataset, part a: We compare the actual object detection error (RPC-equal-error) of our
BFM (BFM-D) with the results of Leibe et al. [106].

Category BFM-D [106]

Cars-rear (C) 2.25 6.1
Airplanes (A) 7.4 –
Motorbikes (M) 4.4 6.0
Faces (F) 3.6 –

Table 4.5 Comparison of the BFM detector to other published results on the Caltech
dataset, part b: We compare the categorization errors (ROC-equal-error rates) of our
BFM (BFM-C) with a number of other results. The Caltech categories are the same as
in Table 4.4: Cars-rear (C), Airplanes (A), Motorbikes (M), and Faces (F).

BFM-C [53] [153] [184] [5] [8] [56] [190] [210] [28]

C 0.05 9.7 8.9 21.4 3.1 2.3 0.7 9.8 – 2.2
A 2.6 7.0 11.1 3.4 4.5 10.3 4.7 17.1 5.6 –
M 3.2 6.7 7.8 15.4 5.0 6.7 6.2 6.8 5.0 –
F 1.9 3.6 6.5 5.3 10.5 7.9 17.0 16.9 0.3 7.6

alone is sufficiently discriminative to outperform most state of the art
patch-based categorization approaches. A detailed description of the
BFM is given by Opelt et al. [156, 157] and by Opelt [152].

What is the price of this increase in performance compared to a ‘bag
of keypoints’? First of all, more supervision is required in the training
phase. Bounding boxes have to be provided for the training images and
object centroids for the validation images. Furthermore, edge-based
approaches need a higher spatial resolution than patch-based ones. For
instance, the spatial resolution of the UIUC cars side data is too low
to achieve a high performance. There are further limitations to scale,
which are more stringent than for patches. We succeed in scaling a
boundary fragment approximately in a range of 0.5 to 2 of its original
size while maintaining the performance of the system. For scales < 0.5
or > 2, the performance drops rapidly.

There is one major advantage of a patch-based approach: When the
patch is located on the object and can be assumed to be locally planar,
affine covariant detectors and affine invariant descriptors will yield good
results over a wide variety of object-to-camera poses. In contrast, object
shape (and thus object contour) will vary significantly with changes of
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object pose. This means that patch-based models (especially bags of
keypoints) can be built per category, but contour-based models have
to be built per significant aspect, so that one category might require
many different contour-based models. In practice, it turns out that for
the external contour, the BFM models the visual rim of the object. The
general shape of the visual rim may be approximately the same, even
over a wide range of poses, so that the necessary number of different
BFMs per category can be reduced to a handful (< 10 for reasonably
complex categories, e.g. horses or cows).

4.3 Discussion

With our two quite complementary approaches (patch-based,
Section 4.1 and boundary-based, Section 4.2), we have developed a
solid basis to perform further categorization research in a number of
relevant directions. Below, I discuss briefly several aspects that have
already been tackled, as well as potential future trends.

Combination of contour and patches: Such a combination con-
stitutes the obvious next step, given the complementary nature of the
two approaches. Potential goals include the further improvement of
recognition rates, improved localization (when adding contour to the
patch-based approach), and reduced numbers of false positives (when
adding patches to the contour-based approach). However, there are
several quite different possibilities to perform a useful fusion. One pos-
sibility is to treat patches in a similar way as boundary fragments.
Patches might vote for the object centroid, and a combination of sev-
eral patches might form a star-shaped weak hypothesis. This idea has
been tried out in Opelt’s thesis [152], and has led to a certain improve-
ment of recognition rates compared to the BFM-based approach. The
approach is quite elegant, because it requires just the fusion of the
two Hough voting spaces (one for boundary fragments, the other one
for patches). But the complexity of this model is prohibitive, when
trying to model k > 3 patches per weak hypothesis, which would prob-
ably be required given the lower indexing power of patches as com-
pared to boundary fragments. Another possibility is to use a BFM to
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constrain the selected patches to be located within the segmentation
matte obtained from the BFM. This could either result in a patch-based
system that could distinguish between patches in the background and
patches on the object of interest, or in a contour-based system, that
uses the patches as additional source of information. Related recent
work on the use of complementary features includes [174, 210].

Online incremental learning of many categories: Previous
approaches are limited in a number of ways. Learning is complex and
slow. Experiments are performed only for a few categories (3 to 20,
with exceptions of up to 101 categories [47]). Adding a new category
requires the re-training of the whole system. Similarities between cate-
gories might be represented by similar features, but usually are learned
on a per-category basis.

A potential remedy is to share common features between classes, as
proposed by Torralba et al. [191]. A similar idea is cross-generalization
[11], in which features that proved useful for a previously learned class,
are selected to learn a novel class. In our own recent contribution to this
topic [157], we introduce the idea of a visual shape alphabet that can
be learned incrementally. AdaBoost is adapted to learn BFMs jointly,
for many categories. New categories can be added incrementally, and
category similarities can be predicted from the resulting alphabet. We
achieve excellent recognition rates, and a sublinearly growing number
of alphabet entries with respect to the number of trained categories.
However, learning is still a time-consuming task, and a future possibility
might be to improve the system using online Boosting [159].

Beyond still image categorization: This is currently one of my
favorite topics. At the same time it is the most speculative one in this
article. Up to this point, we have mostly discussed image or object
categorization from still images. Only in the introduction (Section 1.2)
did we briefly mention the various tradeoffs between a ‘recognition
school’ (as advocated in the remainder of this article) and a ‘recon-
struction school’ that aims at building 3D models and scene descrip-
tions. I think that time is now ripe to use the large momentum that
has been gained in still image based categorization, and to potentially
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improve existing approaches by adding some flavor of 3D reconstruc-
tion. There are already a number of efforts going on in this direction,
which are discussed in a broader sense below (Section 5, confluence
of recognition and reconstruction). A straightforward idea is to com-
bine existing (e.g. patch-based) image categorization with structure and
motion analysis. Such a combination may lead, for instance, to a 3D
point cloud of salient points that is extracted from a video with a rele-
vant amount of change in object-to-camera pose. Another possibility is
to model spatio-temporal relationships (e.g. typical object trajectories
or motion patterns).

We have reported first results towards the use of 3D point clouds
for categorization in [173], but there remains plenty of work to be done.
In the lucky event, that a separation between object and background
is possible, and when there is sufficient texture on the object’s surface,
a dense point cloud can be generated for a specific object. But when
we assume that during a (very expensive) training phase, there are a
number of point clouds generated for each category, how should we
generalize towards a 3D category model? How do we robustly find an
object centered coordinate system so that these point clouds can be
directly compared and potentially be fused? Are point clouds a well-
suited representation for categories at all? These are just a few of the
open questions related to this idea, which will hopefully be researched
more in depth in the near future.



5
Final Remarks

Perhaps the rapid development of research in categorization is also
well documented by the sheer number of relevant publications. When
I agreed to write this review article (at ECCV in 2004), the speed and
amount of progress was actually hard to foresee. Now that I have come
close to finishing this work, I find that roughly 30% of the references in
this article refer to work that was published only after ECCV 2004. This
implies, of course, that the content of this article, in some parts even
the line of argument, had to change significantly from the originally
planned outline. However, my hopes are that I could present the major
foundations of categorization, and that some of the future trends which
I discussed here will actually come true in the near future.

So, what are useful ‘final’ remarks on a field that is currently in
such a rapid development? Appearance- and patch-based approaches
to categorization have already reached a certain maturity. This is not
yet the case for aspects of geometry and shape (although there seems
to be some consensus about the use of 2D ‘constellations’ of significant
parts). In terms of comparison with human categorization capabilities,
I do not believe that any of the approaches presented here can really
cope with many (thousands of) categories. But on the other hand, I
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am quite confident that many of these techniques and algorithms will
find their way into useful components of ‘smart’ products in the near
future.

What are the most likely directions of future research in catego-
rization? I have already discussed a number of specific points that are
quite related to our own research in Section 4.3. In a broader sense, I
hope to see some of the following topics emerge in the near future:

Confluence of recognition and reconstruction: It might be a
good time for recognition and reconstruction schools to meet. There
has been recent success in online structure and motion analysis which
might provide additional clues about object shape. A 2D constella-
tion of parts will always be restricted to certain aspects of an object.
Reconstructing 3D spatial relations between parts, it would be possible
to build 3D constellation models. Furthermore, when the pose of the
object is known, it would also be possible to reason about currently vis-
ible parts and about self-occlusion. Reconstructionist approaches might
also help to extract useful information from videos. This includes object
and camera trajectories, as well as higher-level information that can
be generated from the 4D spatio-temporal representation of a scene
(e.g. typical motion patterns, interactions between objects, occlusions).

Fusion of sensory modes: Humans often do not only rely on
vision to categorize correctly. There are other important clues like
weight, temperature or sound. A combination of complementary sen-
sory modalities might be a very powerful instrument to solve other-
wise ill-posed problems. For example, small visual inter-class differences
might be disambiguated by adding sound as a second source of infor-
mation: a cat does not bark; in comparison to a motorbike, a bicycle
has no engine, etc.

Reasoning about object function: Now that some close to real
time functionality is available, one can watch a scene and extract use-
ful information about the function of an object. Both a glass and a
vase may be filled with water, but the recognition of a certain action,
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like drinking, will provide essential clues. This ‘functional object recog-
nition’ has roots in the works of Gibson [71], who branded the term
‘affordance properties’ of an object, and there has also been pioneering
work by Stark and Bowyer [187] in this direction. With the emerging
possibilities of online learning and reconstruction mentioned above, it
will be possible to integrate perceptual reasoning about object function
into a categorization system [201].

Embodiments: There are many interesting future embodiments of a
cognitive vision system with categorization capabilities. This includes
not only active (pan-tilt-zoom) cameras, mobile robots and autonomous
vehicles, but also smart mobile devices that are controlled by a human
user. The major advantage of such platforms is their ability to move.
They can change their position, pose, and several other parameters
(including e.g. zoom and aperture) to gather further information in the
sense of the active vision paradigm. This might lead to future active
categorization systems, which actively collect the necessary amount of
information to successfully perform a certain categorization task.
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