General schedule (as presented Oct. 10th)

• Team up – groups of 2 students ✓

• Choose your topic: → Oct. 10th, refine til next week ✓
 → Discuss with us, Oct. 17th, 15:30 ✓

• Write a 1-page topic description:
 • Topic, data
 • Problem(s)
 • Model(s)
 • Envisioned solution(s)
 • Expected results → mail to axel.pinz@tugraz.at and feichtenhofer@tugraz.at by Oct. 31st ✓
 → brief individual feedback Nov. 7th ✓

• Mid-term presentation → Nov. 28th, in class

• Final presentation → Jan. 30th, in class
 • Slides
 • Data + code
 • Written report
<table>
<thead>
<tr>
<th>Team</th>
<th>Students</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ronacher, Kmeid</td>
<td>Video recognition (flow) ADAs (driver assistance)</td>
</tr>
<tr>
<td>2</td>
<td>Hussain , Tähtinen</td>
<td>Printed text recognition</td>
</tr>
<tr>
<td>3</td>
<td>Leopold, Steger</td>
<td>Equation solver</td>
</tr>
<tr>
<td>4</td>
<td>Feldhofer, Ruby</td>
<td>Emotion recognition from facial images</td>
</tr>
<tr>
<td>5</td>
<td>Zach, Mahmoud</td>
<td>Rubik’s cube</td>
</tr>
<tr>
<td>6</td>
<td>Salhofer, Warmer</td>
<td>Motion prediction</td>
</tr>
<tr>
<td>7</td>
<td>Strasser, Micorek</td>
<td>Sudoku solver</td>
</tr>
<tr>
<td>8</td>
<td>Ainetter, Jantscher</td>
<td>Traffic signs (either from one image or from video)</td>
</tr>
<tr>
<td>9</td>
<td>Kulmer, Samec</td>
<td>Video segmentation: comparison of several approaches</td>
</tr>
<tr>
<td>10</td>
<td>Kopp, Komposch</td>
<td>Semantic segmentation</td>
</tr>
</tbody>
</table>

11

12

13
Mid-term Presentations (Nov. 28th)

• Data: collect some of your data, show them, do some experiments towards your goals
• Robustness: more than just one demo image/video, variation in appearance, level of difficulty, occlusions, noise, …
• Start implementing first algorithmic steps → gain confidence in your approach / redesign (adapt the problem, data, representations, algorithms)
• Brief presentation (mail us a pdf by Nov. 27th)
Mid-term Presentations (Nov. 28th)

• Show your data, discuss pros, cons, problems
• Explicitly talk about representations and algorithms:
 • How to model your objects?
 • How to find them in your data?
 • Alternative solutions
 • Pros, cons, problems

• Approx 5 slides
• Approx. 5 minutes of presentation
• Time per team max.10 minutes, including feedback+discussion