

Material Matters

Steve Constantinides, Director of Technology Arnold Magnetic Technologies Corporation July 12, 2012

Arnold – What We Manufacture

- Magnet Production, Vertically Integrated
 - SmCo RECOMA® (Lupfig, Switzerland; Rochester, NY; Ganzhou, China)
 - Alnico (Marengo, IL)
 - Ferrite (Bonded) (Marietta, OH; Norfolk, NE)
 - Injection Molded (Bonded) (Shenzhen, China)
 - Electrical Steels ARNON ® (Marengo, IL)
 - Electromagnets (Ogallala, NE)
- Fabricated Magnets
 - Slice, grind, EDM
- Assemblies / Value Added Production
 - Precision assembly
 - Complex magnet and assembled shapes
 - Magnetized / unmagnetized assembly
 - High temperature and specialized adhesives
 - Rotor Balancing
 - Encapsulation / sleeving
 - Precision Machining Centers for Magnets **AND Components**

Arnold Material Knowledge Base

1940 1950 1960 1970 1980 1990 2000 **Mfg Location** 2010 2020 **ALNICO** Cast & Sintered alnico Marengo, IL **FERRITE** Ferrite (ceramic) magnets Marengo, IL; Sevierville, TN **Bonded Ferrite** Marietta, OH Norfolk, NE **RARE EARTH MAGNETS** SmCo 1:5 and 2:17 Lupfig, Switzerland Ganzhou, China Rochester, NY NdFeB **TBD** Lab Samples, Patents **SOFT MAGNETICS** Si-Fe Marengo, IL Powder Core Products (Iron, Marengo, IL Shenzhen, PRC Ferrite, Sendust, Hi-Flux, MPP) **ELECTROMAGNETS** Beam focusing coils Ogallala, NE

Agenda

- Setting the Picture
 - Energy & Electricity Production and Consumption
- Alternative Energy Production Wind
- Energy Consumption in Motors
 - PM versus Induction versus Synchronous
 - Motor efficiency
- Motor Materials
 - The Rare Earth Dilemma
 - Prices
 - Availability
 - Alternative Materials and Research

Entropy

Energy

Effective Production Efficient Use

There are no simple choices - - only intelligent decisions.

Series of articles submitted by Caterpillar to National Geographic Magazine – 1970's.

Sources of Energy for Electricity Production

Non-renewable

- Oil
- Gas
- Coal / Peat
- Nuclear

Renewable

- Hydro
- Wind
- Bio Fuels and Waste
- Solar

Energy Source Material Issues

- Efficiency of fuel extraction & production
 - Net energy balance
 - Example: Ethanol production
- Use of toxic or hazardous materials during exploration and production
 - Environmental impact
 - · Example: use of toxic or carcinogenic ingredients in high volume hydro-fracking
- Disposal or storage of end-use by-products (waste)
 - Example: Storage of radioactive waste from nuclear plants
- "Side effects"
 - Affect on cost of other essential products
 - Example: use of corn for bio-fuel increases price of food and animal stocks dependent upon corn for feed
- Byproducts of use
 - Example: carbon dioxide or other noxious gases

Global Warming

Clean Vehicles

Clean Energy

Clean Energy 101

Our Energy Choices

- » Renewable Energy
- » Coal and Other Fossil Fuels
- Energy and Water Use

Smart Energy Solutions

- » Increase Renewables
- » Decrease Coal
- » Improve Efficiency
- » Strengthen Policy

nearly zero pollution.

Clean energy creates electricity by tapping into natural cycles and systems, turning the ever-present energy around us into usable forms while producing little or no pollution or global warming emissions

The movement of wind and water, the heat and light of the sun, warmth in the ground. carbohydrates in plants—all are natural energy sources that can supply electricity in a sustainable way.

Why clean energy? It slows global warming, improves air and water quality, and creates jobs.

Manmade emissions are driving up the planet's temperature. Our air, water, and environment are harmed by pollutants like mercury, arsenic, and sulfur dioxide. And electricity production is a big reason why.

Power generation from coal and other fossil fuels produces more than a third of U.S. global warming emissions, contributes significantly to air pollution, and has costly and adverse effects on public health.

Renewable energy technologies generate electricity with almost no pollution or carbon emissions and have the potential to significantly reduce our reliance on coal and other fossil fuels. By expanding renewable energy, we can improve air quality, reduce global warming emissions, create new industries and jobs, and move America toward a cleaner, safer, and affordable energy future.

energy from renewable sources-increasing our energy independence and creating new jobs.

MORE WAYS TO GIVE ▶

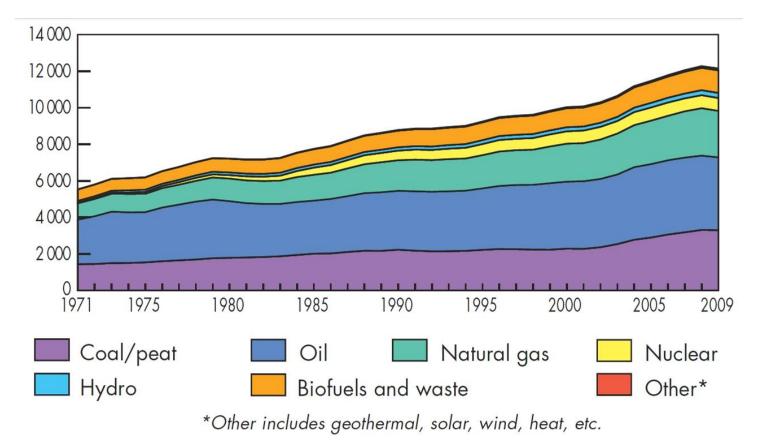
Get Email Updates

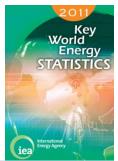
Enter Email Address

Much information about clean energy

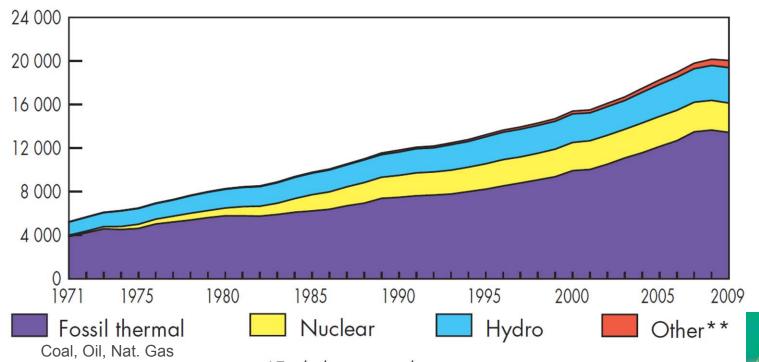
http://www.ucsusa.org/clean_energy/clean_energy_101/

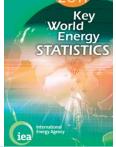
IEA - - The International Energy Agency


The International Energy Agency is a Paris-based autonomous intergovernmental organization established in the framework of the **Organization for Economic Cooperation and Development (OECD)** in 1974 in the wake of the 1973 oil crisis. The IEA was initially dedicated to responding to physical disruptions in the supply of oil, as well as serving as an information source on statistics about the international oil market and other energy sectors.


The IEA acts as a policy adviser to its member states, but also works with non-member countries, especially China, India and Russia. The Agency's mandate has broadened to focus on the "3Es" of sound energy policy: energy security, economic development, and environmental protection.[1] The latter has focused on mitigating climate change.[2] The IEA has a broad role in promoting alternate energy sources (including renewable energy), rational energy policies, and multinational energy technology co-operation.

World Total Primary Energy Supply by Fuel



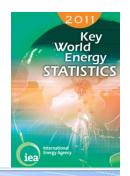


World Electric Generation

World electricity generation* from 1971 to 2009 by fuel (TWh)

*Excludes pumped storage.

^{**}Other includes geothermal, solar, wind, biofuels and waste, and heat.

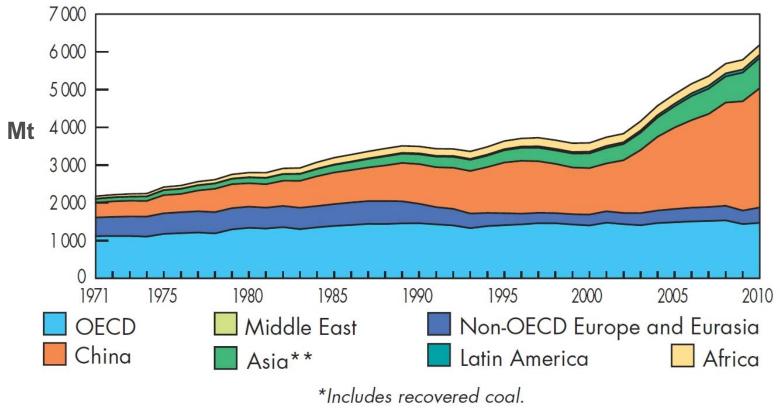


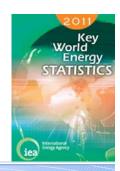
Fuel Used for Production of Electricity 2009

Coal/peat TWh People's Rep. of China 2 913 United States 1 893 617 India 279 Japan Germany 257 South Africa 232 3 313 209 Korea 203 Australia Russian Federation 164 135 Poland Rest of the world 1 217 World 8 119

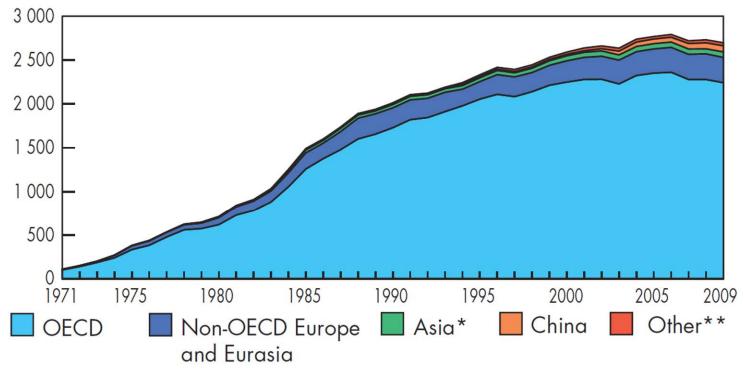
Oil	T₩h		
Saudi Arabia	120		
Japan	92		
Islamic Rep. of Iran	52		
United States	50		
Mexico	46		
Iraq	43		
Kuwait	38		
Pakistan	36		
Indonesia	35		
Egypt	30		
Rest of the world	485		
World	1 027		

Natural gas	TWh		
United States	950		
Russian Federation	469		
Japan	285		
United Kingdom	165		
Italy	147		
Islamic Rep. of Iran	143		
Mexico	138		
India	111		
Spain	107		
Thailand	105		
Rest of the world	1 681		
World	4 301		

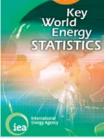



We use the fuels which are available to us

Hard Coal Production by Region

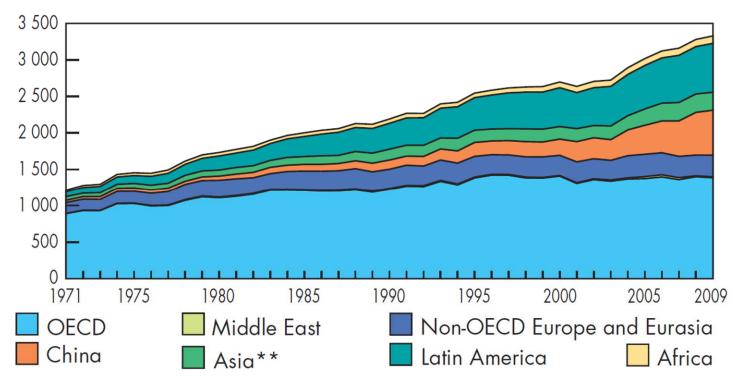


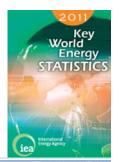
^{**}Asia excludes China.



Nuclear Production of Electric Energy

*Asia excludes China.


**Other includes Africa, Latin America and the Middle East.



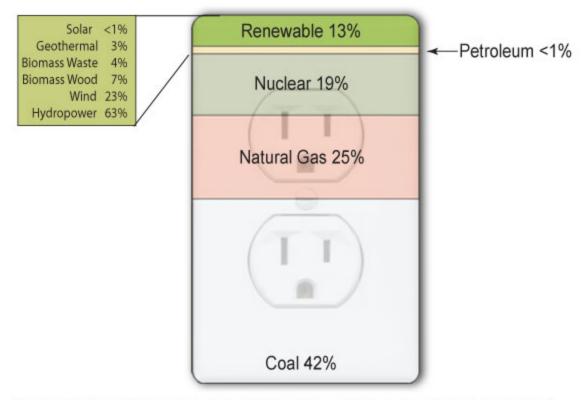
Hydro Production

Hydro* production from 1971 to 2009 by region (TWh)

^{*}Includes pumped storage. **Asia excludes China.

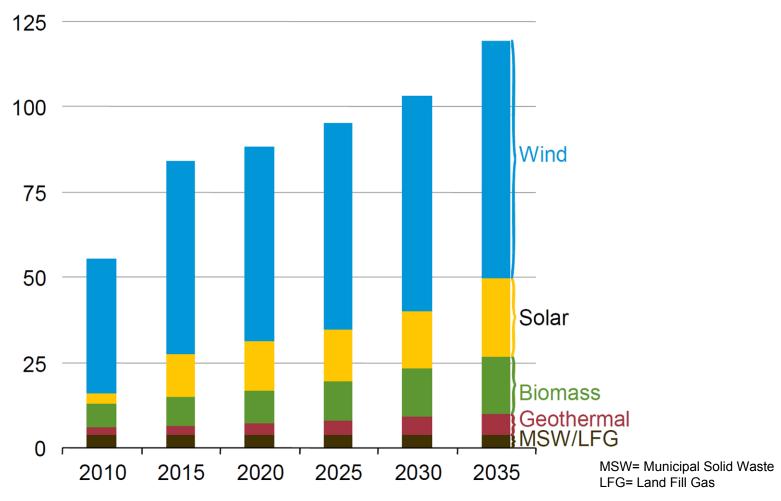
Energy Information Administration

The U.S. Energy Information Administration (**EIA**) is the statistical and analytical agency within the U.S. Department of Energy (**DOE**). EIA collects, analyzes, and disseminates independent and impartial energy information to promote sound policymaking, efficient markets, and public understanding of energy and its interaction with the economy and the environment.


EIA is the Nation's premier source of energy information and, by law, its data, analyses, and forecasts are independent of approval by any other officer or employee of the United States government.

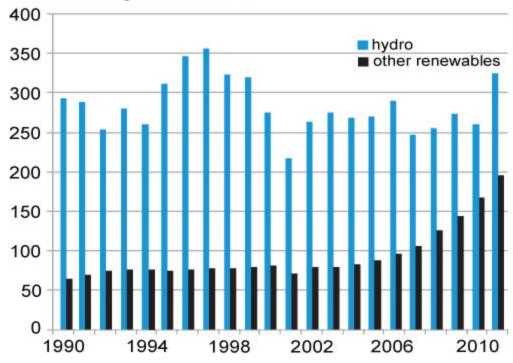
The Department of Energy Organization Act of 1977 established EIA as the primary federal government authority on energy statistics and analysis, building upon systems and organizations first established in 1974 following the oil market disruption of 1973.

U.S. Sources of Electricity Generation, 2011


Note: Includes utility-scale generation only. Excludes most customer-sited generation, for example, residential and commercial rooftop solar installations

Source: U.S. Energy Information Administration, *Electric Power Monthly* (March 2012). Percentages based on Table 1.1, preliminary 2011 data.

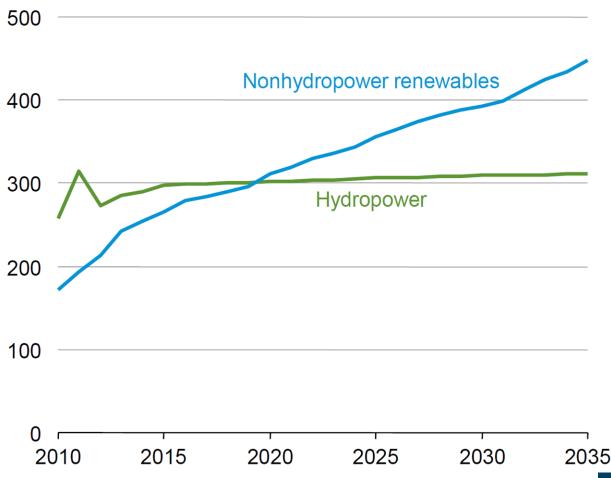
U.S. Non-hydropower renewable electricity generating capacity by energy source, including end-use capacity, 2010-2035 (gigawatts)



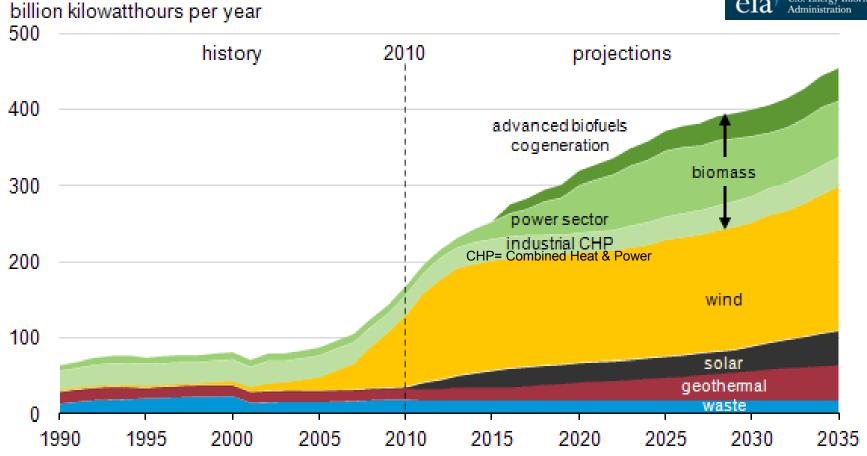
U.S. Energy Information Administration, Annual Energy Outlook 2012, page 90

U.S. Hydropower and Other Renewable Electricity Generation, 1990-2011

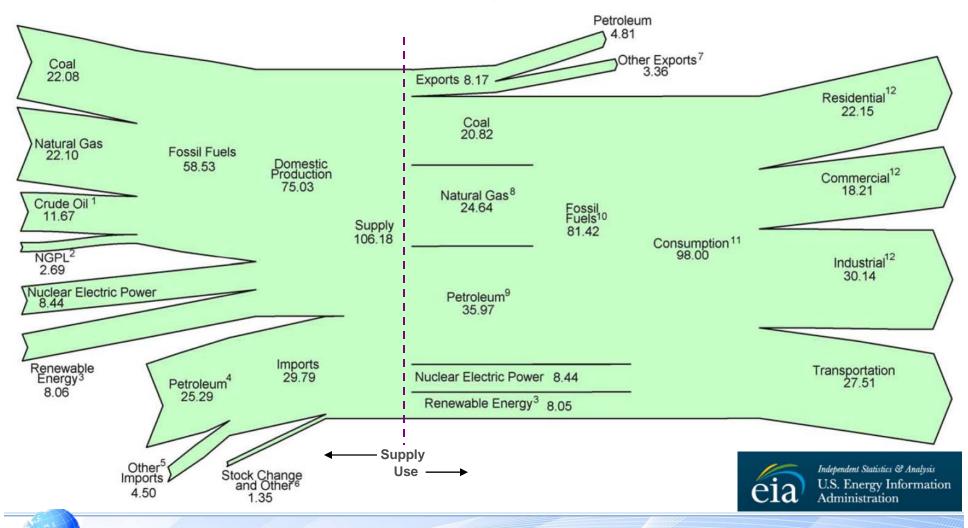
million megawatthours


Source: U.S. Energy Information Administration, *Electric Power Annual and Electric Power Monthly* (March 2012) based on preliminary 2011 data.

Hydropower and other renewable electricity generation, including end-use generation, 2010-2035 (billion kilowatt-hours)


U.S. Energy Information Administration, Annual Energy Outlook 2012, page 90

U.S. Projected non-hydropower renewable electricity generation, 2010-2035



http://205.254.135.7/todayinenergy/detail.cfm?id=5170

Energy Flow, 2010 (quadrillion btu)

Sankey Diagram

Notes to chart: Energy Flow

- ¹ Includes lease condensate.
- ² Natural gas plant liquids.
- ³ Conventional hydroelectric power, biomass, geothermal, solar/photovoltaic, and wind.
- ⁴ Crude oil and petroleum products. Includes imports into the Strategic Petroleum Reserve.
- ⁵ Natural gas, coal, coal coke, biofuels, and electricity.
- ⁶ Adjustments, losses, and unaccounted for.
- ⁷ Coal, natural gas, coal coke, electricity, and biofuels.
- ⁸ Natural gas only; excludes supplemental gaseous fuels.
- ⁹ Petroleum products, including natural gas plant liquids, and crude oil burned as fuel.
- ¹⁰ Includes 0.01 quadrillion Btu of coal coke net exports.
- ¹¹ Includes 0.09 quadrillion Btu of electricity net imports.
- ¹² Total energy consumption, which is the sum of primary energy consumption, electricity retail sales, and electrical system energy losses. Losses are allocated to the end-use sectors in proportion to each sector's share of total electricity retail sales. See Note, "Electrical Systems Energy Losses," at end of Section 2.

Notes: • Data are preliminary. • Values are derived from source data prior to rounding for publication. • Totals may not equal sum of components due to independent rounding.

Sources: Tables 1.1, 1.2, 1.3, 1.4, and 2.1a.

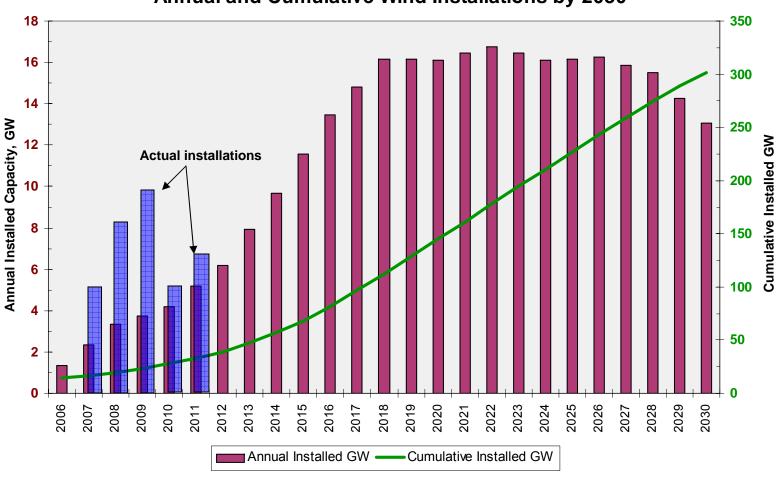
U.S. Energy Information Administration / Annual Energy Review 2010

Agenda

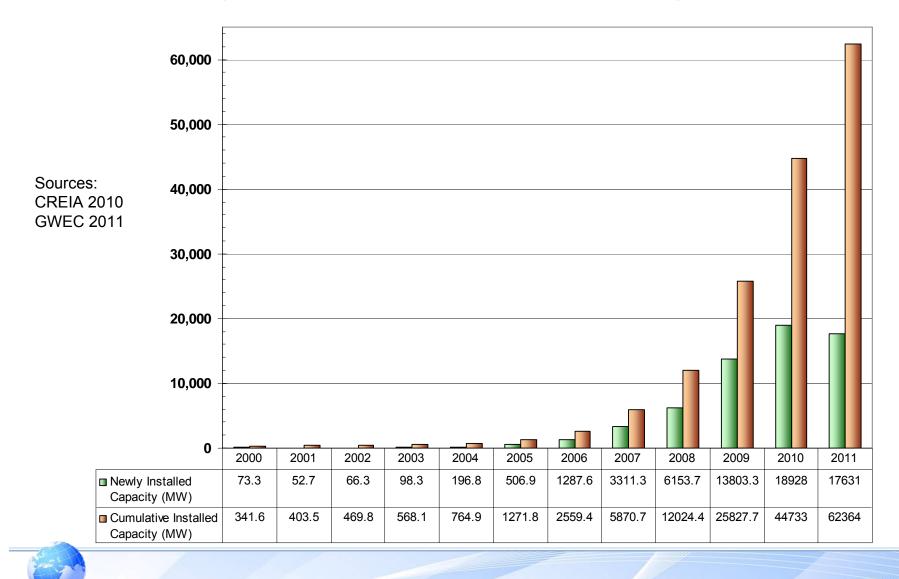
- Setting the Picture
 - Energy & Electricity Production and Consumption
- Alternative Energy Production Wind
- Energy Consumption in Motors
 - PM versus Induction versus Synchronous
 - Motor efficiency
- Motor Materials
 - The Rare Earth Dilemma
 - Prices
 - Availability
 - Alternative Materials and Research

Major Developing Uses for Permanent Magnets competing for limited resources

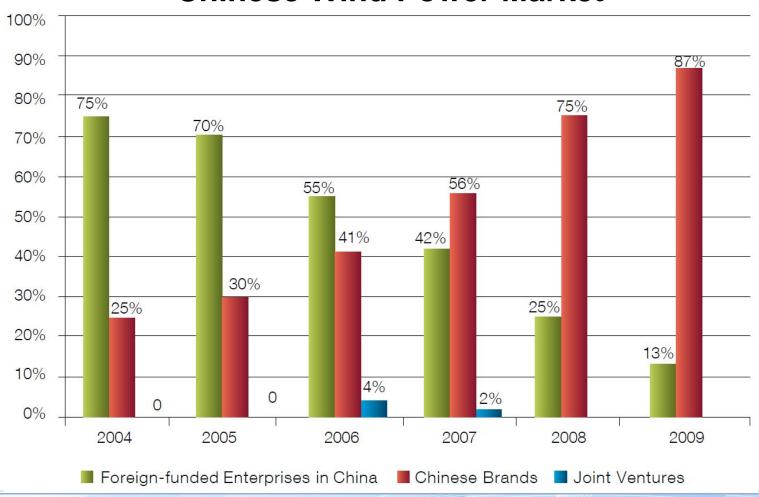
- Wind energy
- Transportation
 - Mild hybrids
 - HEV, PHEV
 - EV
 - Electric Bikes
- Consumer goods
 - Air conditioning
 - High efficiency heating (fan motors)
 - Portable hand tools
- Aerospace and military
 - "Drive-by-wire"
 - In wheel traction drives


Wind Power

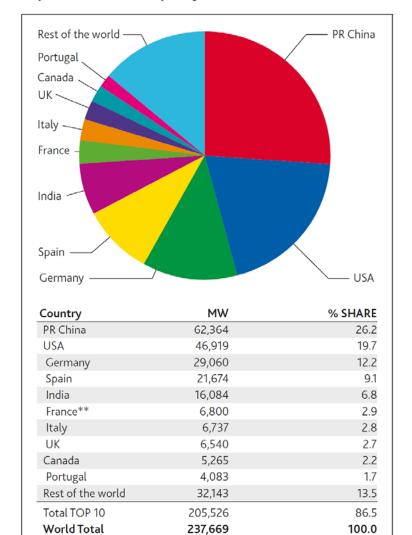
Wind Power Installation - USA


Annual and Cumulative Wind Installations by 2030

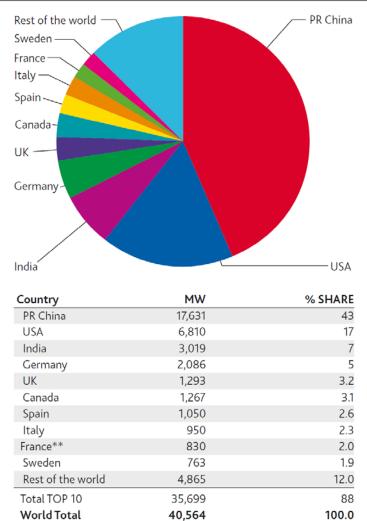
20% Wind Energy by 2030, Increasing Wind Energy's Contribution to U.S. Electricity Supply, AWEA, May 2008



Growth of Wind Power in China



Newly Installed Capacity Market Share between Domestic and Foreign Companies in the Chinese Wind Power Market



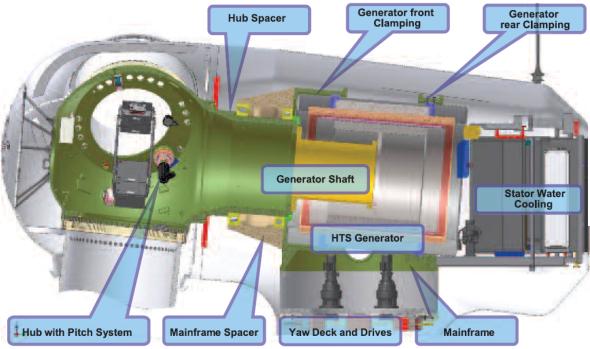
Top 10 cumulative capacity Dec 2011

Top 10 new installed capacity Jan-Dec 2011

Wind **Power Production** Source: **GWEC 2012**

Source: GWEC

^{**} Provisional Figure


^{**} Provisional Figure

Source: GWEC

Wind Technology

The SeaTitan™ Turbine

Technical Data	(Preliminary)
Rated Power:	10 MW
Rotor Diameter:	190m
Number of blades:	3
Tower height:	125m
Type Class:	TC IB Offshore according to GL Offshore rules
Cut in wind speed:	4m/s
Rated wind speed:	11.5m/s
Cut out wind speed:	30m/s
Ambient survival temp.:	-20 to 50°C
Ambient temp in operation:	-10 to 40°C
Rated speed:	10 RPM
Power control method:	Blade pitching
Position relative to tower:	Upwind

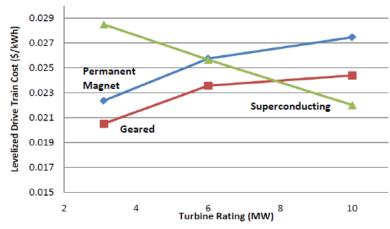
American Superconductor, Sea Titan, superconducting 10 MW generator

Superconducting Wind Power Generation

40.00
35.00

30.00
25.00

Superconducting


Geared

10.00

2 4 6 8 10

Turbine Rating (MW)

Figure 4a: Wind turbine generator mass for various generator technologies

REACT: Rare Earth Alternatives for Critical Technologies Mark Johnson, January 10, 2012

Wind Technology Focus

Large Scale Commercial Wind Power

Generator Output in megawatts

< 1.5 MW

10 MW >

Generator Design

Generator rpm

Induction

1800+ rpm

No permanent magnets

Land-based Older Technology China, US, Europe

Half-speed ~800 rpm

165 - 225 kg neo magnets per MW

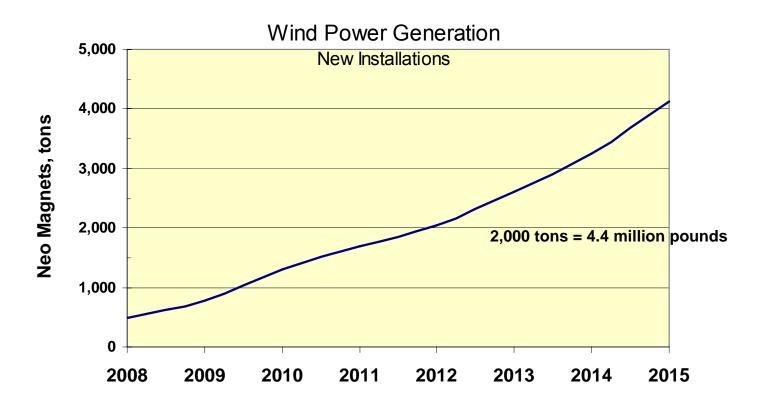
Direct Drive 10-12 rpm

500 - 650 kg neo magnets per MW

Land or Offshore Newest Technology US and Europe

> Mostly Offshore Newer Technology US, Europe

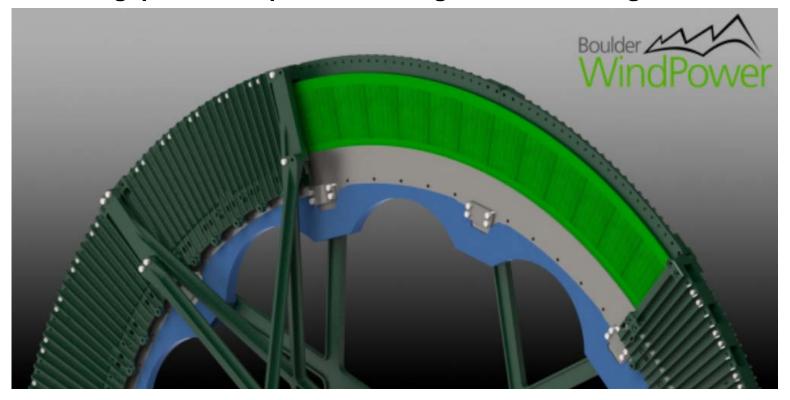
> > Superconducting Generators ??


Wind Power Requirements for Rare Earths

	2010				2020			
			Average	Tons Neo			Average	Tons Neo
	Installed	% PM	kg neo	Magnets	Installed	% PM	kg neo	Magnets
Country	MW	Generators	per MW	required	MW	Generators	per MW	required
China	18,928	25%	600	2,839	10,000	50%	400	2,000
USA	5,115	5%	600	153	15,000	50%	400	3,000
India	2,139	3%	600	39	5,000	10%	400	200
Spain	1,516	3%	600	27	3,000	20%	400	240
Germany	1,493	3%	600	27	1,500	20%	400	120
France	1,086	3%	600	20	1,500	15%	400	90
UK	962	3%	600	17	1,000	15%	400	60
Italy	948	3%	600	17	800	15%	400	48
Canada	690	3%	600	12	800	20%	400	64
Sweden	604	5%	600	18	500	20%	400	40
Rest of World	4,785	3%	600	86	15,000	15%	400	900
Total	38,265			3,255	54,100			6,760
Dysprosium requirement at 4.1 weight %			133				277	
Neodymium requirement at 27.5 weight % 895				895				1,859

Data sources include: GWEC and China Wind Power 2010

Neo Magnets Required for Wind Power


Data represents a combination of direct and hybrid drives and reflects slower market penetration due to uncertainty about the availability of neo magnets.

Boulder Wind Power

Axial gap, air core, permanent magnet direct drive generator

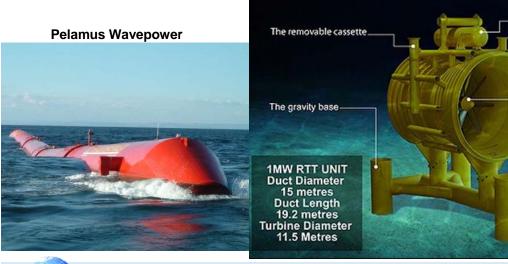
www.boulderwindpower.com/the-bwp-generator/overview/

Wind Power - Summary

- Use of wind power is continuing to grow
 - Somewhat slowed due to expiration of government stimulus funding
- Gen-4 designs use permanent magnets to avoid gear box issues
 - Lower cost and weight
 - Less frequent maintenance
 - Reduced noise
 - Reduced incidence of catastrophic failure
- Gen-4 designs are being widely implemented in China
 - Implementation in the ROW is constrained by pricing and availability of Neo magnets
- Alternative technologies are being developed
 - Hybrid (half speed)
 - Superconducting generators
 - Direct drive without steel laminations (e.g., Boulder Wind Power)

It's Not Just Wind...

AK-1000 Tidal Turbine 1 and 2 MW, United Kingdom

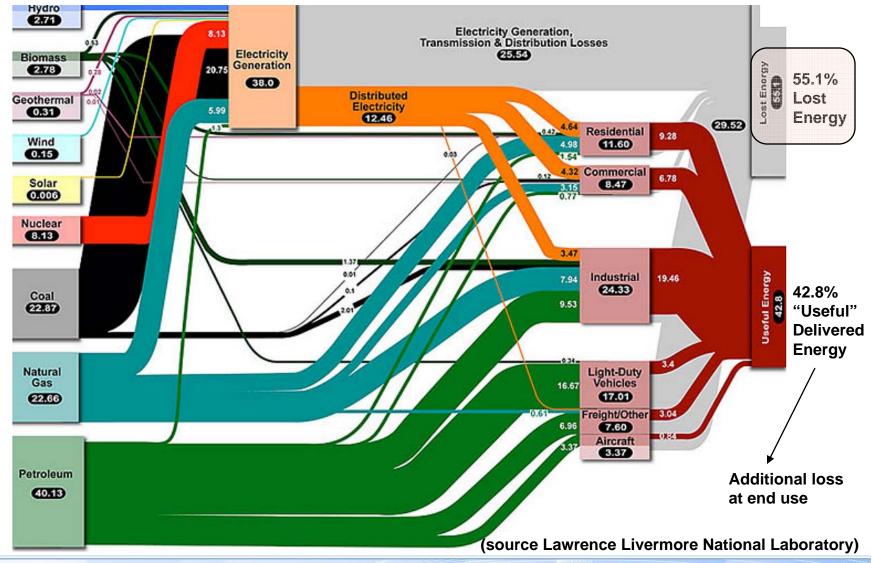



Other sources of renewable electric energy generation

www.Keetsa.com

The generator module

The turbine

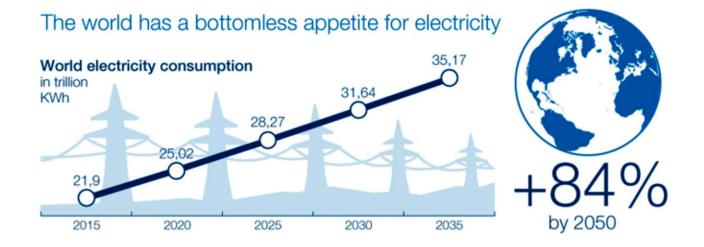


Agenda

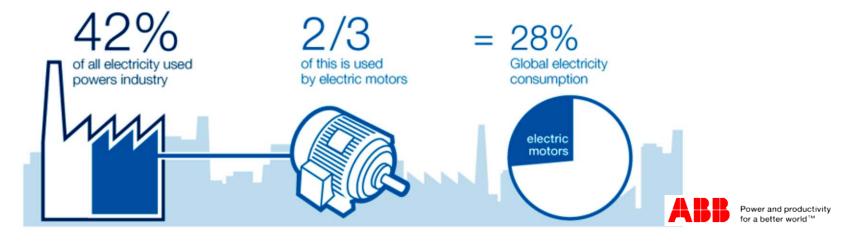
- Setting the Picture
 - Energy & Electricity Production and Consumption
- Alternative Energy Production Wind
- Energy Consumption in Motors
 - PM versus Induction versus Synchronous
 - Motor efficiency
- Motor Materials
 - The Rare Earth Dilemma
 - Prices
 - Availability
 - Alternative Materials and Research

US energy flow in 2006 in Exajoules

This Sankey diagram shows the sources and use of energy in the United States in 2006 in Exajoules. Electricity generation was mainly done using coal and nuclear. Out of 38 Exajoules of primary energy used to produce electricity, 25.54 Exajoules were wasted in losses, that is 69% of losses, mainly in heat energy. More than half of the energy used in the USA goes into useless losses. That figure is similar across all industrialized countries.



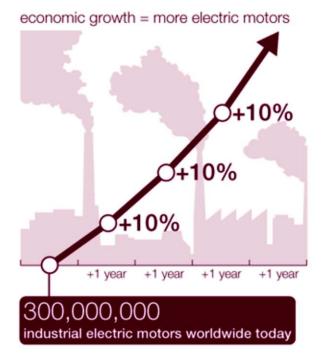
www.abb.com/product/ap/db0003db004052/ced766241e316af5c12578b00051d2d9.aspx/www.abb.com/energyefficiency



Much of this electricity is used to power industrial electric motors

"...~57% of the generated electric energy in the United States is utilized [consumed] by electric motors powering industrial equipment. In addition, more than 95% of an electric motor's life-cycle cost is the energy cost."

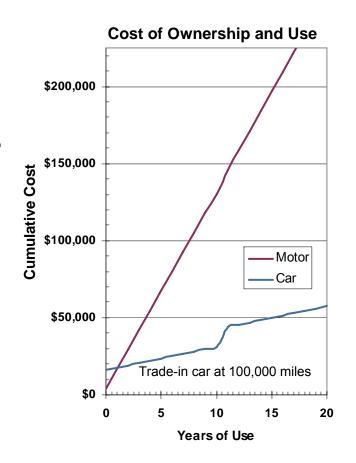
The Next Generation Motor, IEEE Industry Applications, January / February 2008, p.37


The industrial energy challenge

300'000'000 industrial electric motors are currently installed worldwide. This figure increases by 10% each year. Approximately 50% of these motors are installed in the US, EU and China.

50%

of all electric motors are installed in:



Electric Motor Operating Cost

	Automobile	60 HP* Motor
Purchase price	\$16,000	\$4,000
Annual use	12000 miles	4000 hours
Efficiency	30 mpg	89.20%
Fuel/energy cost	\$3.50 \$/gal	\$0.056 \$/kwh
Annual oper. cost	\$1,400	\$12,601
Operating Cost as a % of Purchase Price	9%	315%

First Cost is not the Last Cost

*60 HP; equivalent to 50.18 kW capacity

From AEC (North Carolina Alternative Energy Corporation), updated with current gas prices, www.p2pays.org/ref/17/16897.pdf

^{**}Based on 2-shift operation

Low Voltage* Motor Market

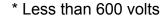
Products Covered:

- IE1 (Standard Efficiency)
 Eff2 and below; Below EPAct
- IE2 (High Efficiency)
 Eff1: EPAct
- IE3 (Premium Efficiency)
 Above Eff1; NEMA Premium
- IE4 (Super Premium Efficiency)
 Much higher than Eff1; Above NEMA Premium
- Other Non-classified

8 / 10 / 12 pole motors

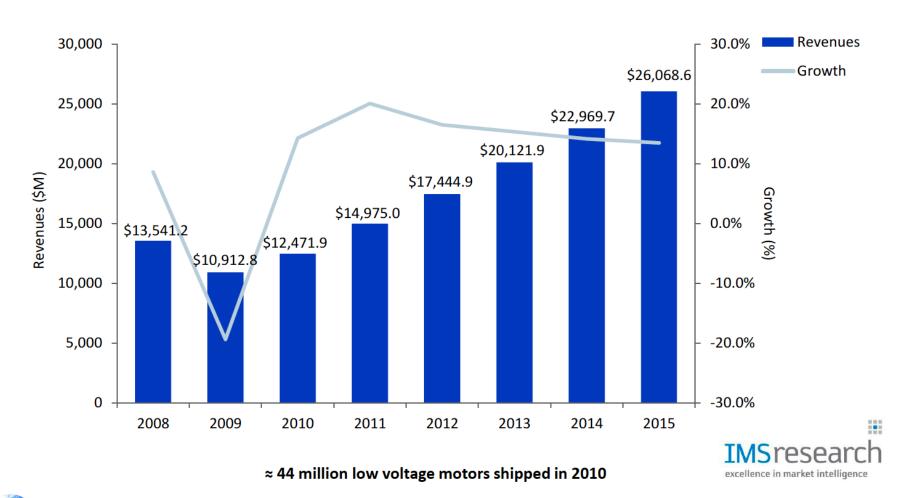
>375kW

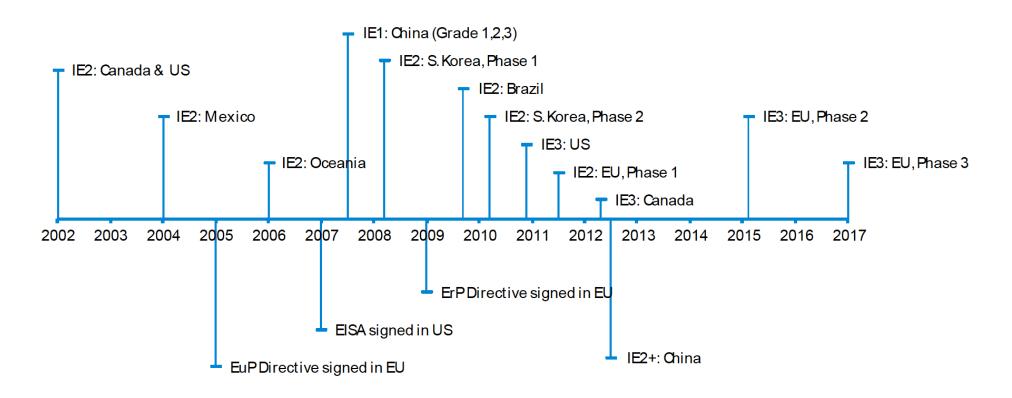
Submersible motors


Fire pump motors

All motors that fall outside NEMA and/or IEC

DC Motors

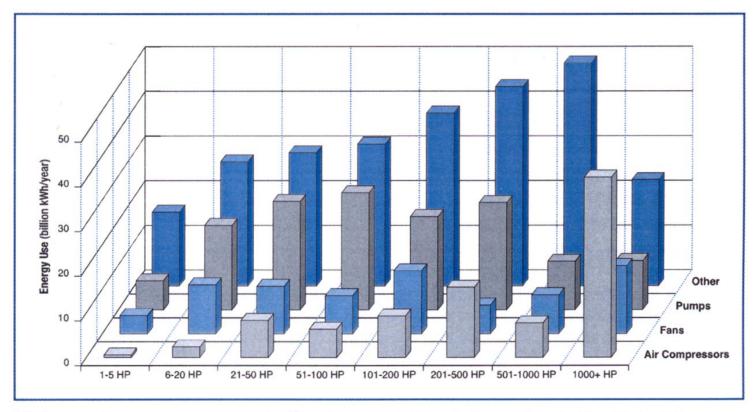



Low Voltage Motors Market

Market Size (\$M) and Growth

Motor Efficiency Class Transition Timeline

Loss Distribution

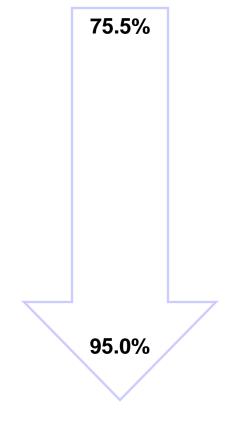

COMPARISON OF LOSS DISTRIBUTION BY PERCENT FOR MOTORS TESTED IN THE EASA/AEMT STUDY [12].

Losses Core losses (W _c)	Two-Pole Average 19%	Four-Pole Average 21%	Design Factors Affecting Losses Electrical steel, air gap, saturation, supply frequency, condition of interlaminar insulation
Friction and windage losses (W _{fw})	25%	10%	Fan efficiency, lubrication, bearings, seals
Stator I2R losses (W _s)	26%	34%	Conductor area, mean length of turn, heat dissipation
Rotor I2R losses (W _r)	19%	21%	Bar and end ring area and material
Stray load losses (W _I)	11%	14%	Manufacturing processes, slot design, air gap, condition of air gap surfaces and end laminations

Increased Efficiency versus Increased Reliability, IEEE Industry Applications, January / February 2008, p.33

Energy Consumption by Motor Size

Motor system energy consumption (Adapted from information in the *United States Industrial Electric Motor Systems Market Opportunities Assessment*, available online at www.eere.energy.gov/industry/bestpractices/.)


http://www1.eere.energy.gov/manufacturing/tech_deployment/pdfs/39157.pdf

U.S. Energy Policy Act* Efficiency Targets

	Nominal Full-Load Efficiency							
	(PEN MOTO	RS	(LOSED MOT	ED MOTORS		
Number of Poles	6	4	2	6	4	2		
Motor Horsepower								
1	80.0	82.5		80.0	82.5	75.5		
1.5	84.0	84.0	82.5	85.5	84.0	82.5		
2	85.5	84.0	84.0	86.5	84.0	84.0		
3	86.5	86.5	84.0	87.5	87.5	85.5		
5	87.5	87.5	85.5	87.5	87.5	87.5		
7.5	88.5	88.5	87.5	89.5	89.5	88.5		
10	90.2	89.5	88.5	89.5	89.5	89.5		
15	90.2	91.0	89.5	90.2	91.0	902		
20	91.0	91.0	90.2	90.2	91.0	90.2		
25	91.7	91.7	91.0	91.7	92.4	91.0		
30	92.4	92A	91.0	91.7	92.4	91.0		
40	93.0	93.0	91.7	93.0	93.0	91.7		
50	93.0	93.0	92A	93.0	93.0	92.4		
50	93.6	93.6	93.0	93.8	93.6	93.0		
75	93.6	94.1	93.0	93.6	94.1	93.0		
100	94.1	94.1	93.0	94.1	94.5	93.6		
125	94.1	94.5	93.6	94.1	94.5	94.5		
150	94.5	95.0	93.6	95.0	95.0	94.5		
200	94.5	95.0	94.5	95.0	95.0	95.0		

Increasing Efficiency Targets

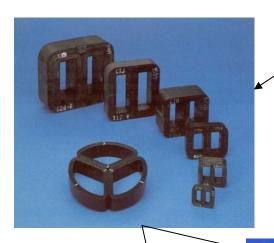
^{*} EPAct

Additional Motor Efficiency Information

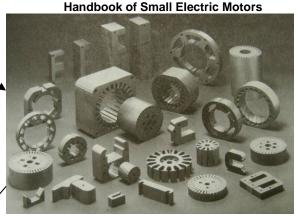
- Energy Efficient Electric Motor Selection Handbook
 - www.wbdg.org/ccb/DOE/TECH/ce0384.pdf
- Buying an Energy Efficient Electric Motor
 - www1.eere.energy.gov/industry/bestpractices/pdfs/mc-0382.pdf
- Consortium for Energy Efficiency
 - www.cee1.org/ind/mot-sys/mtr-ms-main.php3
- Efficient Electric Motor Systems for Industry
 - www.osti.gov/bridge/servlets/purl/10112522-FoENQM/webviewable/10112522.PDF
- Efficient Electric Motor Systems: SEEEM
 - www.asiapacificpartnership.org/BATF/BATF%20Projects%20Workshops/Motors%20WS-SEEEMbrunner.pdf
- Development of Ultra-Efficient Electric Motors
 - www.osti.gov/bridge/servlets/purl/928973-hsePV1/928973.PDF
- Electric Motor Systems in Developing Countries: Opportunities for Efficiency Improvement
 - www.osti.gov/bridge/servlets/purl/10187187-n23Ohm/native/10187187.PDF

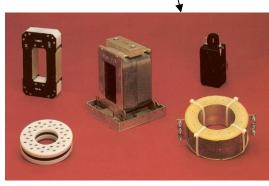
Agenda

- Setting the Picture
 - Energy & Electricity Production and Consumption
- Alternative Energy Production Wind
- Energy Consumption in Motors
 - PM versus Induction versus Synchronous
 - Motor efficiency
- Motor Materials
 - The Rare Earth Dilemma
 - Prices
 - Availability
 - Alternative Materials and Research

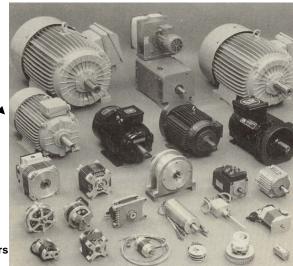


Motor Materials

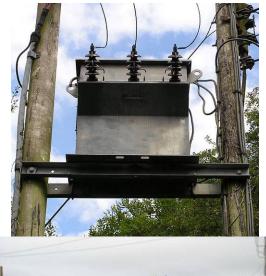

- Steel (electrical)
- Copper and/or Aluminum
- Permanent Magnets
 - Ferrite
 - SmCo
 - NdFeB
 - Alnico
- Power Electronics



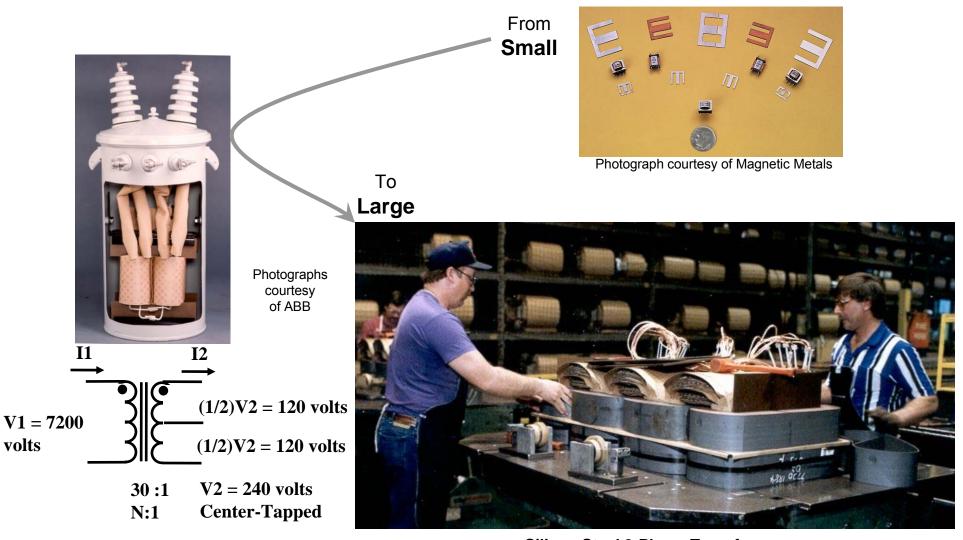
Two Main Applications for Electrical Steel Transformers and Motors



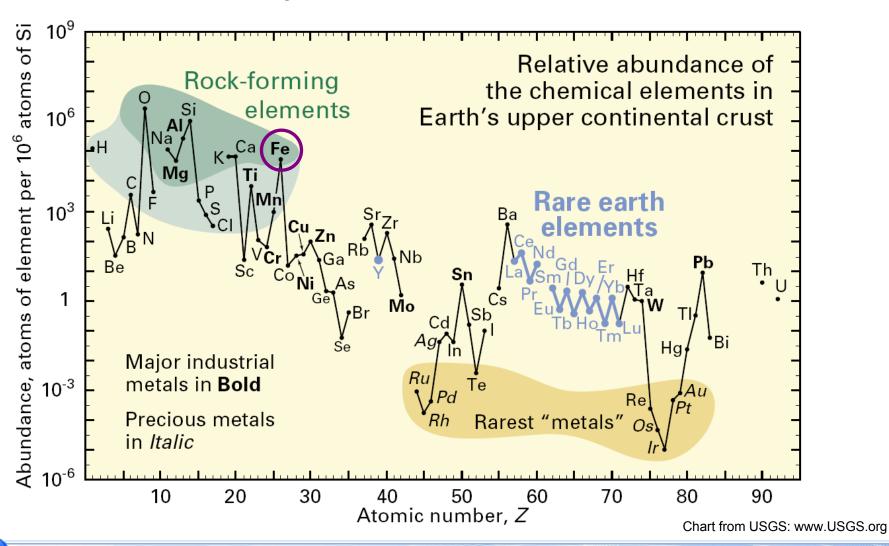
Transformers



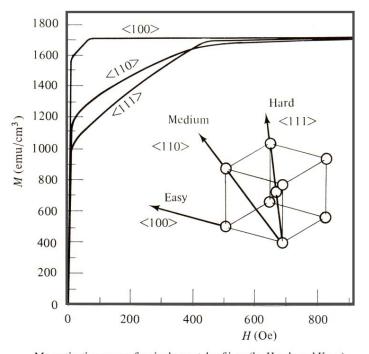
Transformers can be small enough for installation onto circuit boards or as large as a house



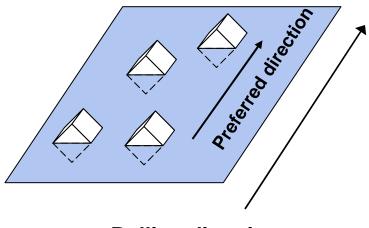
Our World Touches Your World Every Day...


volts

Transformers: Examples



Widely Available Materials



Understanding the Structure of Electrical Steel

Magnetization curves for single crystals of iron (by Honda and Kaya)

Rolling direction

Directional Properties of Si-Steel (GOES)

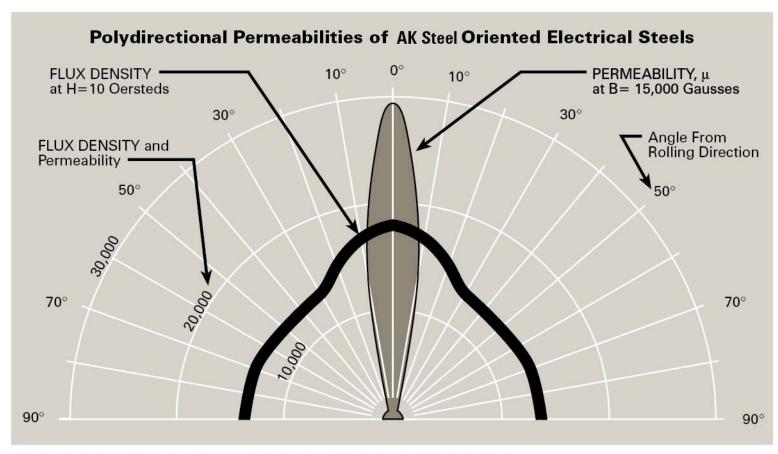
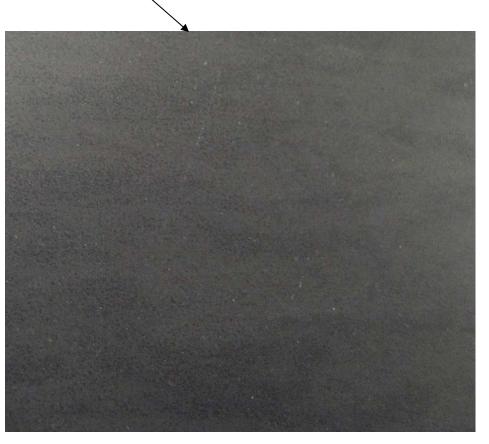


Figure 3. Tests made on Epstein samples cut at various angles to rolling direction, stress annealed after shearing. Negligible joint effects. Assumed density 7.65 grams per cubic centimeters.


GOES versus NGOES

Grain Oriented Electrical Steel v

versus

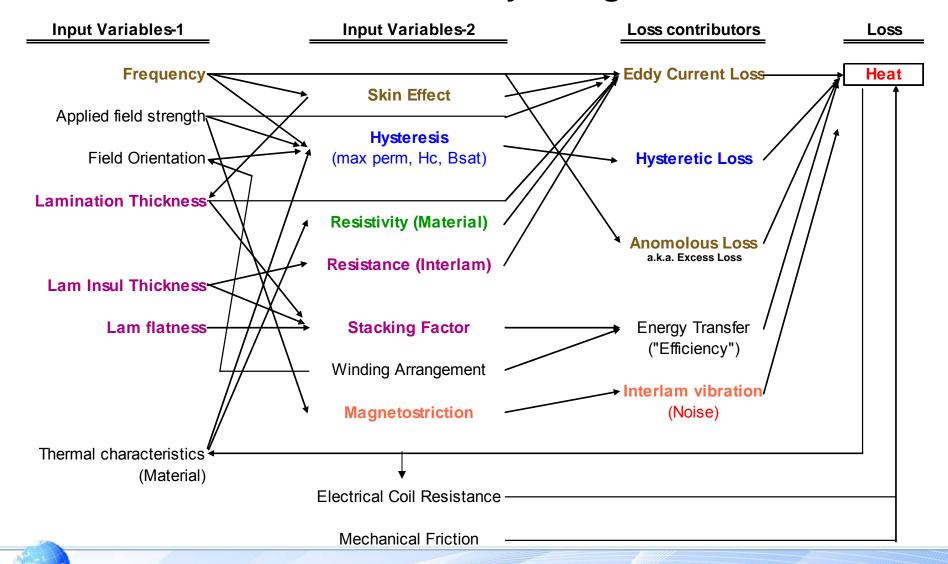
Non-grain Oriented Electrical Steel

Direction of rolling during manufacture —

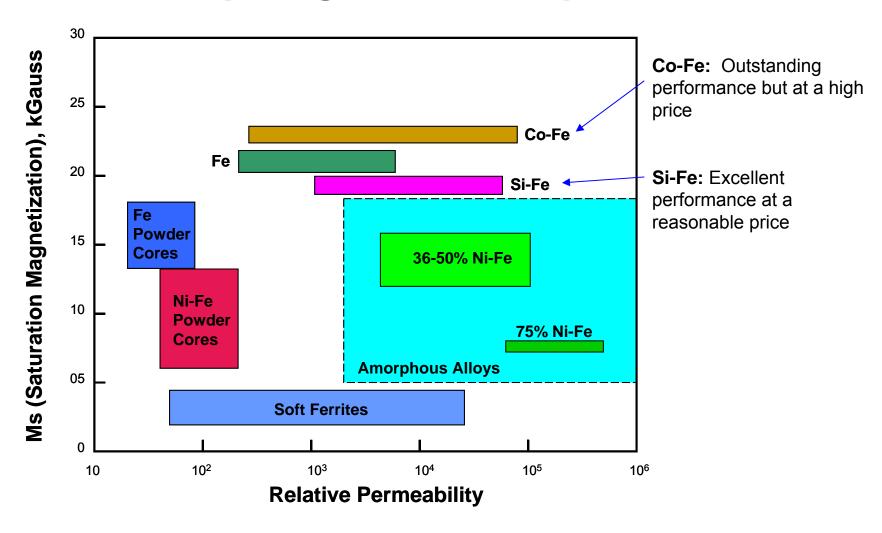
Core Loss MechanismsSilicon Steel Core Loss

$$W = W_h + W_{cl} + W_{exc}$$

Where Classical Loss is


$$W_{\rm cl} = \frac{\pi^2}{6} \frac{\sigma d^2 J_{\rm p}^2 f}{\delta}$$

Measurement and Characterization of Magnetic Materials, Fausto Fiorillo, p.31


- 1. Magnetic Hysteresis
- 2. Eddy Current
- 3. Laminations Characteristics
- 4. Magnetostriction
- 5. Material Resistivity

Motor Loss Variables by Categories

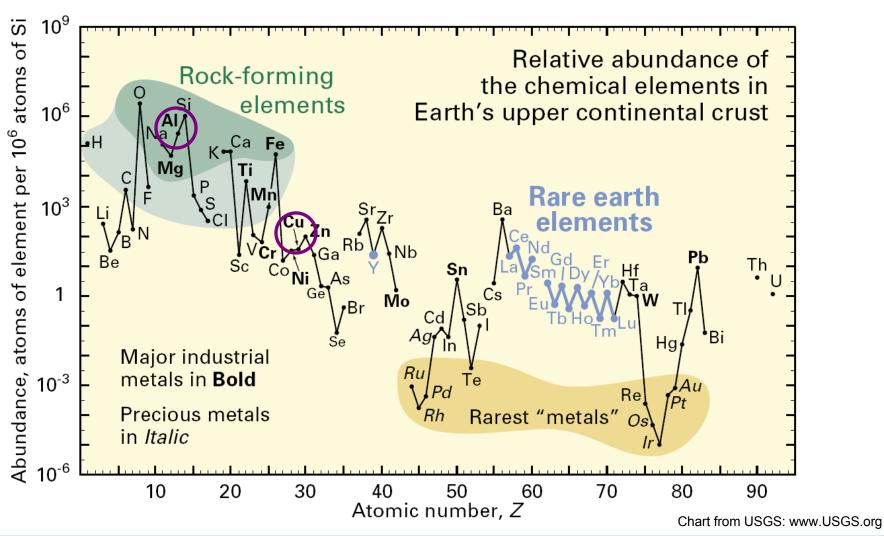
Comparing Material Properties

Copper / Aluminum

- Two main uses
 - Copper in the windings of the stator (and rotor brushed type)
 - Aluminum in the rotor of induction motors
- Neither copper nor aluminum is considered a critical material or in short supply, however...
 - Price swings regularly occur due to supply-demand imbalance
 - Aluminum is present in the earth's crust in higher quantity than copper (next slide): about 8 000x more Al than Cu

Bauxite (aluminum) mine

Open pit copper mines



Widely Available Materials

Magnets – many choices!

			Al	loy Produ	cts	Bonded Magnets				
		Material	Cast	Extruded or Rolled	Sintered, Fully Dense	Injection Molded	Compression Bonded	Flexible	Rigid Extruded	
		Alnico	Y		Υ	Y				
		FeCrCo	Y	Y						
The 4 most widely used commercial permanent		Ferrite*			Y	Y		Y	Y	
		NdFeB		(Y)	Y	Y	Y	Υ	(Y)	
		SmCo**			Y	Υ	(Y)			
		Si-Fe		Y			SMCs			
magnets		SmFeN				Υ				
		Vicalloy		Y						
		Hybrids				Y	Y	Υ		

^{*} Ferrite refers to strontium ferrite permanent magnets

SMC = Soft magnetic composite

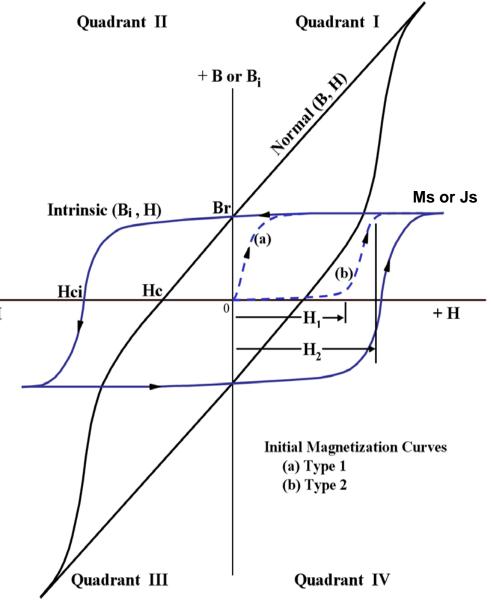
^{**} SmCo refers to either SmCo5 or Sm2Co17

What makes a magnet good?

Requirements depend upon the application

- Flux density (Br)
- Energy Product (BHmax)
- Resistance to demagnetization (Hcj)
- Usable temperature range
- Magnetization change with temperature (RTC)
- Demagnetization (2nd quadrant) curve shape
- Recoil permeability (minimal close to one)
- Corrosion resistance
- Physical strength
- Electrical resistivity
- Magnetizing field requirement
- Available sizes, shapes, and manufacturability
- Raw material cost and availability

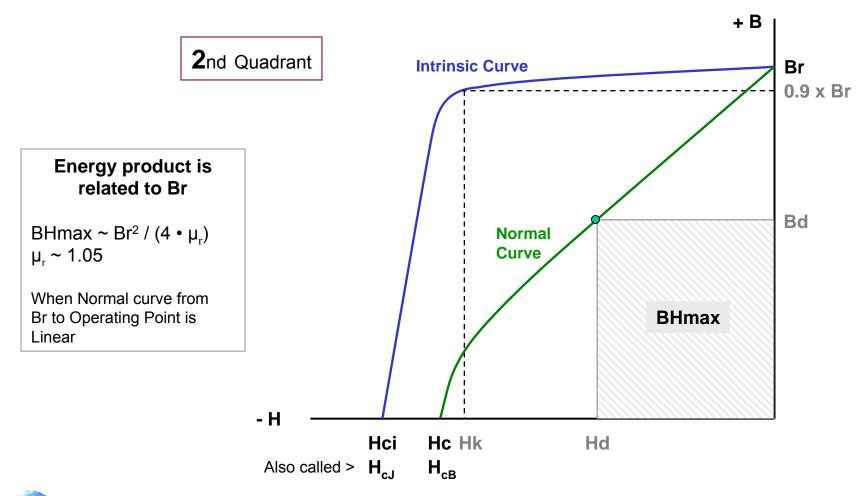
Directional Indicators


Competitive Values

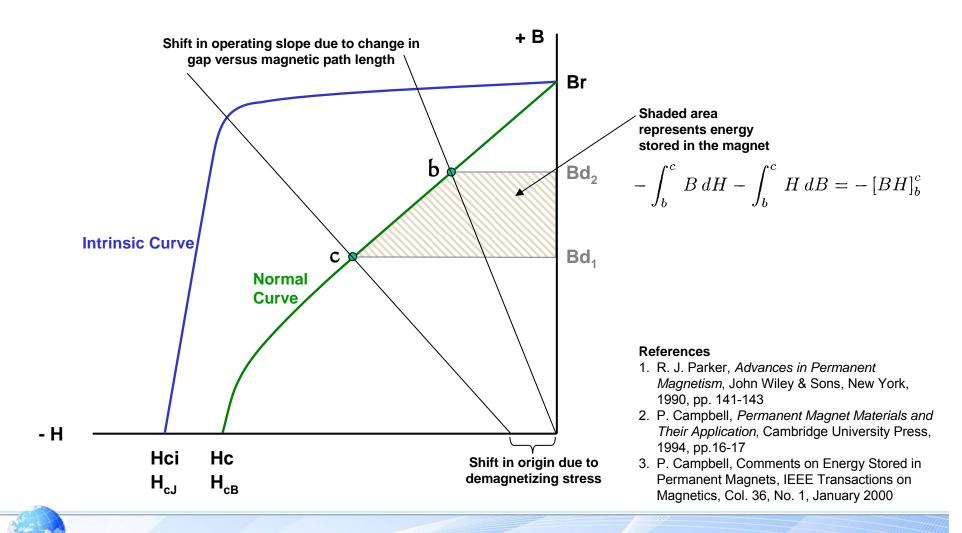
Characteristic	Units	Alnico 5-7	Alnico 9	Ferrite 8	Ferrite 9	SmCo 1:5	SmCo 2:17	NdFeB 33EH	NdFeB 48M	Indicator
Flux density (Br)	Tesla	1.35	11200	0.39	0.45	0.9	1.1	1.15	1.39	> is better
Energy Product (BHmax)	kJ/m ³	60	84	28	37	175	230	230	370	> is better
Resistance to demagnetization (Hcj)	kA/m	59	115	245	370	2400	1600	2400	1115	> is better
Usable temperature range	°C	4 K to 520 °C	4 K to 520 °C	-40 to 150 °C	-40 to 150 °C	4 K to 520 °C	4 K to 520 °C	150 K to 200 °C	150 K to 100 °C	minimum -40 to 200 °C
Induction change with temperature (RTCof Br)	%/°C	-0.02	-0.01	-0.2	-0.18	-0.045	-0.035	-0.11	-0.12	< is better
2nd quadrant Normal curve shape		Curved	Curved	Straight	Straight	Straight	Straight	Straight	Straight	Straight
Recoil permeability	B / H	2	1.3	1.04	1.04	1.03	1.05	1.04	1.05	~1
Corrosion resistance		Excellent	Excellent	Outstanding	Outstanding	Good	Good	Fair	Fair	Outstanding
Physical strength	MPa	55	55	65	70	120	120	285	285	> 50 also "tough"
Electrical resistivity	$\mu\Omega$ • cm	47	50	10 ⁶	10 ⁶	55	90	180	180	> is better
Magnetizing field requirement	kA/m	120	240	480	800	2000	4000	2700	2700	Less than 4000
Coefficient of Termal Expansion	%/ °Cx10 ⁻⁶	11.5	11	10 to 15	10 to 15	7 to 14	11 to 13	7.5 to -0.1	7.5 to -0.1	< 15
Approx Current Price (ballpark estimates)	\$/kg	\$40	\$45	\$8	\$15	\$120	\$100	\$200	\$150	< is better
Relative Cost at 20 °C	\$/MGOe	\$5.3	\$4.3	\$2.3	\$3.2	\$5.5	\$3.5	\$6.9	\$3.2	< is better
Relative Cost at 200 °C	\$/MGOe	\$5.7	\$4.4	\$5.6	\$7.1	\$6.5	\$3.9	\$10.8	n/a	< is better

Magnetic Hysteresis

- "H" is the applied magnetic field
- "B" is the measured, induced field ("induction")
- Normal curve is a measurement of the applied plus the induced field
- The Intrinsic curve is a measure of —H only the induced field and represents the magnetic properties of the magnet under test
- The dashed lines represent starting with an unmagnetized material
- Once magnetized, the material will be driven around the hysteresis loops represented by the solid lines



Source: ASTM A977-07 – Standard Test Method for magnetic properties of high coercivity permanent magnet materials



Permanent Magnet Key Characteristics

Energy Stored in a Magnet

Permanent Magnet Development Timeline

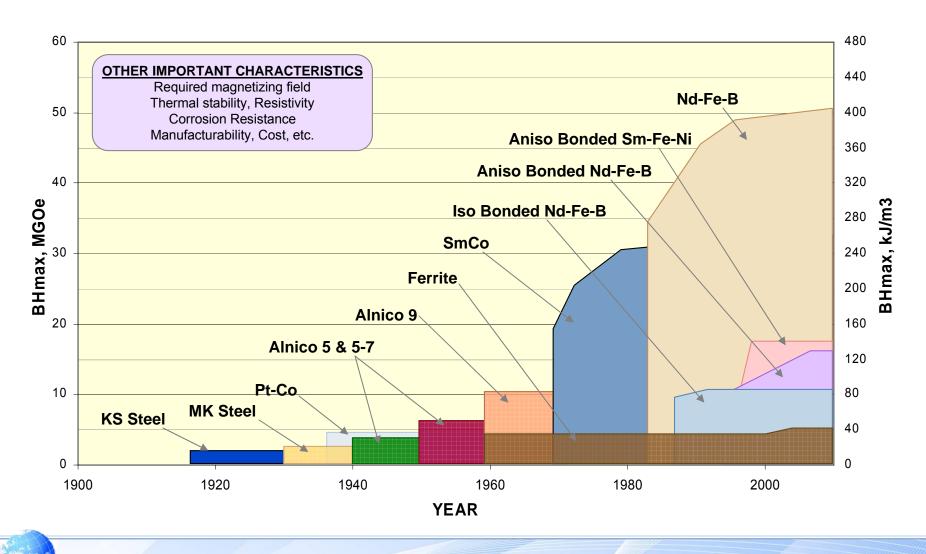
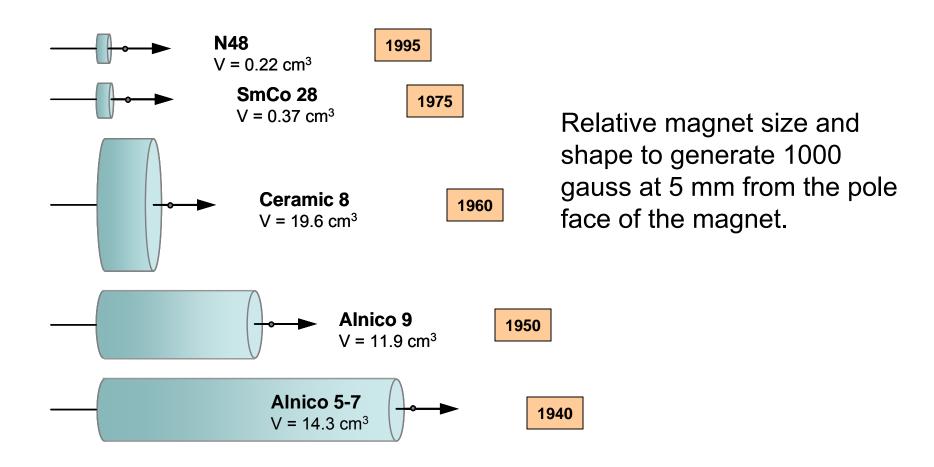
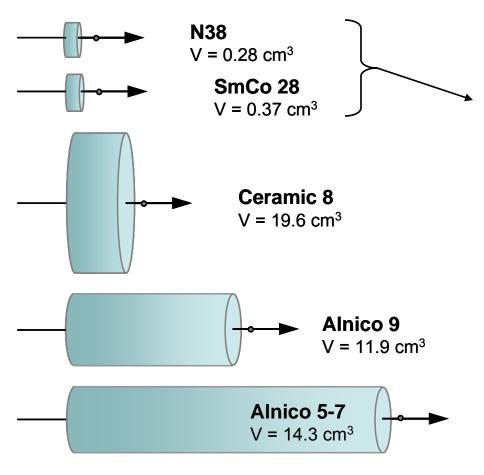

- Permanent Magnets have been developed to achieve
 - Higher Br and Energy Product (BHmax)
 - Greater resistance to demagnetization (Hci)
- Most are still in production
 - Exceptions
 - Lodex was discontinued due to use of hazardous materials in production and in the product
 - Cunife has been replaced by FeCrCo
 - PtCo is a specialty item made in very limited quantities due to it's high material cost

Table based on information in *Advances in Permanent Magnetism* by Rollin J. Parker, p.331-332

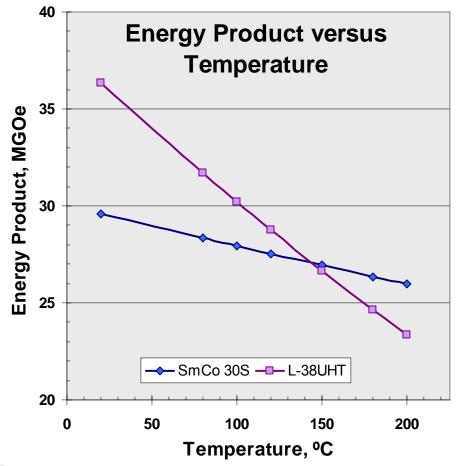
	First		
Material	Reported	BH(max)	Hci
Remalloy	1931	1.1	230
Alnico	1931	1.4	490
PtCo	1936	7.5	4,300
Cunife	1937	1.8	590
Cunico	1938	1.0	450
Alnico, field treated	1938	5.5	640
Vicalloy	1940	3.0	450
Alnico, DG	1948	6.5	680
Ferrite, isotropic	1952	1.0	1,800
Ferrite, anisotropic	1954	3.6	2,200
Lodex [®]	1955	3.5	940
Alnico 9	1956	9.2	1,500
RECo ₅	1966	16.0	20,000
RECo ₅	1970	19.0	25,000
RE ₂ (Co,Fe,Zr,Cu) ₁	1976	32.0	25,000
RE ₂ TM ₁₄ B	1984 -	26.0	25,000
		35.0	11,000
RE ₂ TM ₁₄ B	2010	30.0	35,000
	2010	52.0	11,000



Improvement in Magnet Strength



Relative Magnet Sizes



SmCo - Neo: Compared

Comparison of magnetic performance only

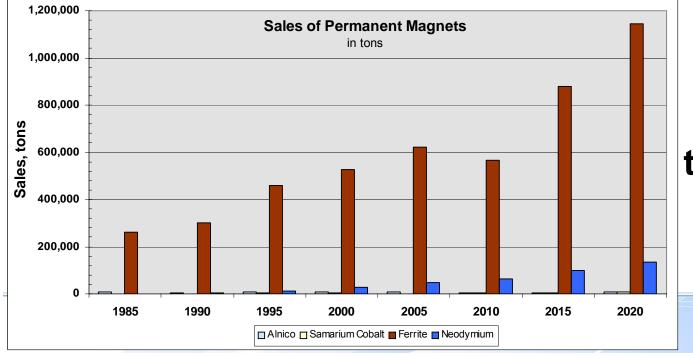
Usable Temperature Range for Common Permanent Magnets


Ferrite

Neo

AInico

SmCo


-275 -200 -125 -50 25 100 175 250 325 400 475 550 Temperature, °C

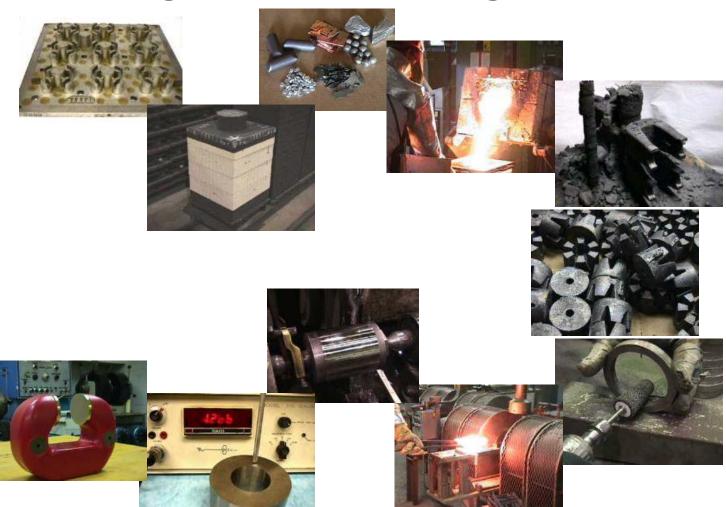
Alnico Magnet Manufacturing

Press Sand Molds

Build Stacks

Melt alloy

Break-out


Rough Grind

Field Heat Treat

Finish Grind

Test

Assemble

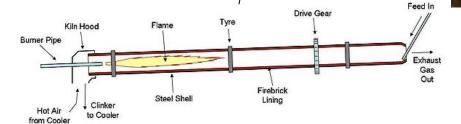
79

Ferrite Magnet Manufacturing

Blend Powders

Calcine

Mill


Storage: Dry or Slurry

Press

Sinter

Grind / Slice

Test

Rare Earth Magnet Supply Chain

to

Magnet

Mine / Mill

Concentrate

Separate RE's

Metal Extraction

Alloy Melt & Cast

Hydride

Fine Milling

Align & Press

Sinter

Finish Machine

Coat

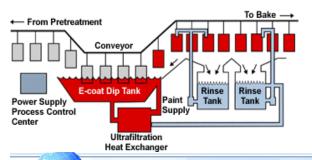
Neo & SmCo Magnet Manufacturing

H₂ Decrepitate (NdFeB)

Mill to fine powder

Press powder

Coat


Nickel Plate

E-coat

Aluminum IVD

...others

Typical Electrocoat System

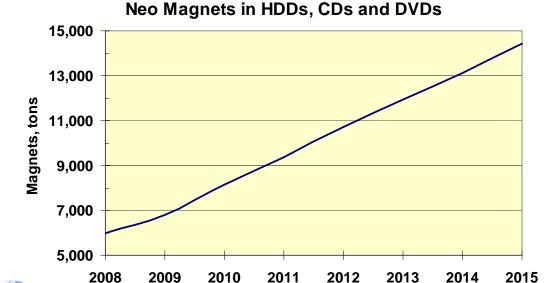
Finish Machine Grind, Slice, EDM

Cast Alloy

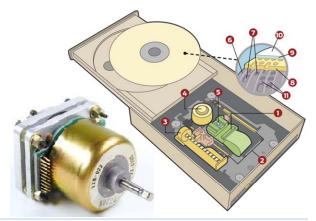
Rare Earth Magnet Applications and RE Oxide Requirements

		201	0			2015			
	yr 2010	Magnet	Oxide,	tons	yr 2015	Magnet	Oxide,	tons	
Applications	% of mix	tons	Nd	Dy	% of mix	tons	Nd	Dy	
Motors, industrial, general auto, etc	25.5%	15,871	7,122	1,059	25.0%	24,316	10,912	1,622	
HDD, CD, DVD	13.1%	8,140	4,196	0	14.4%	14,040	7,237	0	
Electric Bicycles	9.1%	5,680	2,549	379	8.2%	7,955	3,570	531	
Transducers, Loudspeakers	8.5%	5,290	2,727	0	6.5%	6,322	3,259	0	
Unidentified and All Other	6.5%	4,046	1,995	90	6.0%	5,836	2,878	130	
Magnetic Separation	5.0%	3,112	1,466	138	3.4%	3,307	1,558	147	
MRI	4.0%	2,490	1,228	55	1.5%	1,459	720	32	
Torque-coupled drives	4.0%	2,490	1,117	166	2.5%	2,432	1,091	162	
Sensors	3.2%	1,992	982	44	1.5%	1,459	720	32	
Hysteresis Clutch	3.0%	1,867	879	83	1.5%	1,459	687	65	
Generators	3.0%	1,867	769	194	1.0%	973	400	101	
Energy Storage Systems	2.4%	1,494	670	100	2.5%	2,432	1,091	162	
Wind Power Generators	2.1%	1,300	583	87	10.1%	9,810	4,402	654	
Air conditioning compressors and fans	2.0%	1,245	559	83	2.5%	2,432	1,091	162	
Hybrid & Electric Traction Drive	0.9%	570	214	80	6.3%	6,160	2,308	867	
Misc: gauges, brakes, relays & switches,									
pipe inspection, levitated transportation, reprographics, refrigeration, etc.	7.7%	4,792	2,186	285	7.1%	6,906	3,113	447	
Total	100.0%	62,246	29,243_	2,843	100.0%		45,037	5,115	
		Nd: 54% increase							

REO requirement includes 80% oxide to metal, 97% metal alloying, and 80% magnet manufacturing material yields.


83

Dy: 80% increase

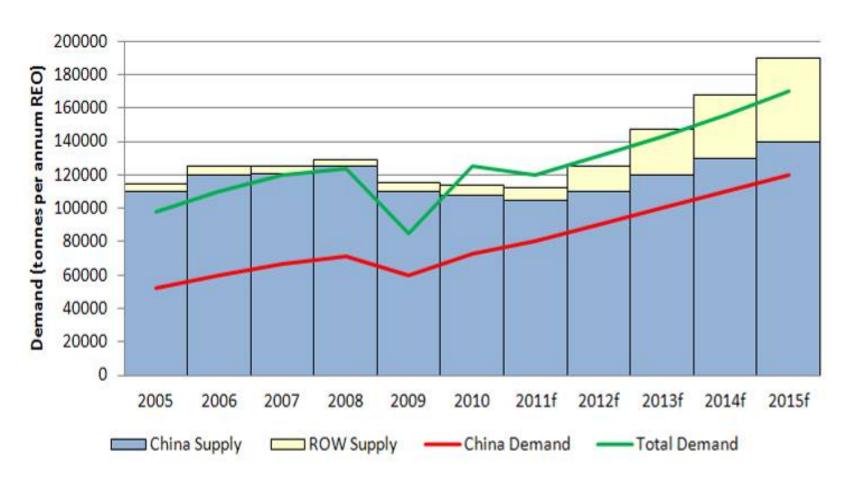

Hard Disk Drives (HDD's), CD's, DVD's

- Drives (Global): existing and growing market
 - Overall drive shipments for 2008 would total 593.2 million units, up 14.9% compared to... 2007 (iSuppliCorp: www.isuppli.com)
 - Shipments of HDDs alone in the first half of 2011 were 327.6 million, on track for 660 million by year's end

Transportation

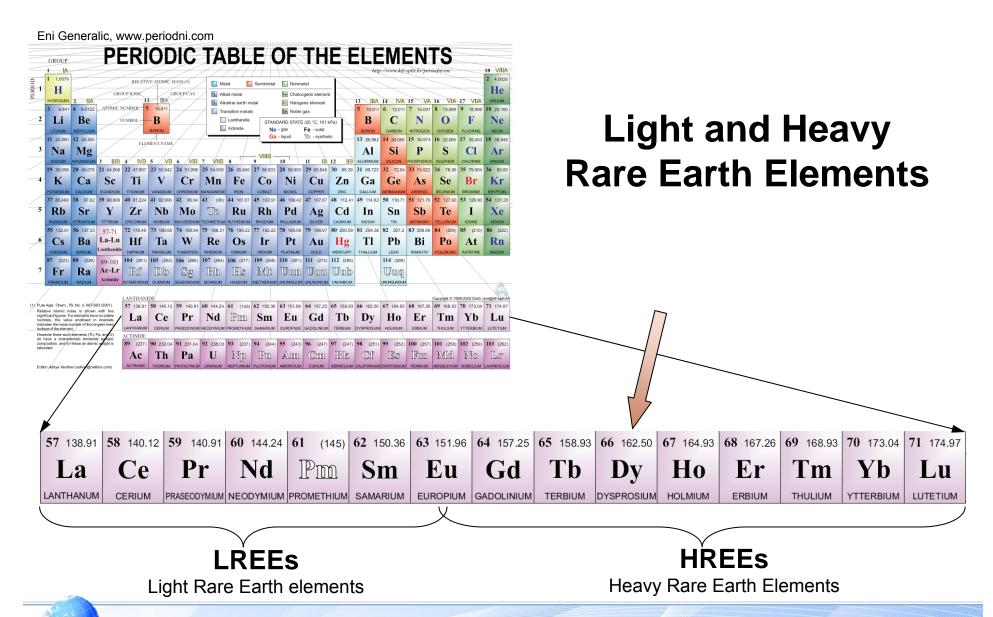
- **EB**'s (electric bicycles) (primarily in <u>Asia</u>): large and growing application especially in 3rd world nations
 - 20 million sold in China in 2009
 - Forecast to 35 million per year in 2015
 - Year 2015 neo magnet usage = 3,800 tons

- Hybrid and EV vehicles (Global): in growth phase
 - Estimate of 1.73 million hybrid or EV's to be manufactured in 2015
 - Total neo magnet usage in 2015 = 4,200 tons



The "Dudley Chart"

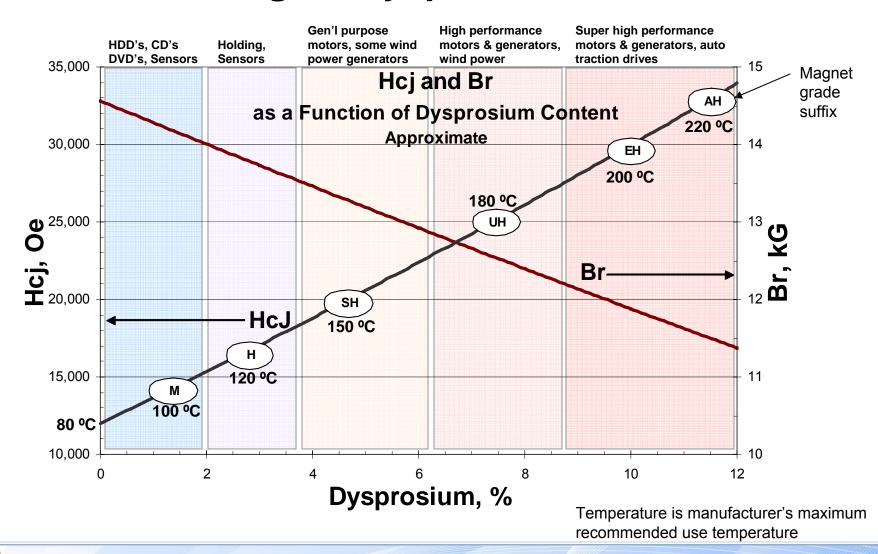
Source: Dudley Kingsnorth, IMCOA, 2011


Rare Earth China Export Quotas

			ocation	2nd Allocation			tal		
		Domestic	Foreign	Domestic	Foreign	Domestic	Foreign	Grand	%
Year		Companies	Companies	Companies	Companies	Companies	Companies	Total	Change
2005		n/a	n/a	n/a	n/a	48,040	17,569	65,609	
2006		n/a	n/a	n/a	n/a	45,752	16,069	61,821	-5.8%
2007		19,600	8,211	23,974	8,289	43,574	16,500	60,074	-2.8%
2008		22,780	8,211	11,376	5,082	34,156	13,293	47,449	
2008		P	Adjusted for 1	2-month basi	is	40,987	15,834	56,939	-6.6%
2009	15,043 6,685 18,25		18,257	10,160	33,300	16,845	50,145	-11.9%	
2010	10 16,304 5,978 6,2		6,208	3 1,768 22,512 7,746	7,746	30,258	-39.7%		
2011		10,762 3,746 12,221 3,517		3,517	14,508	15,738	30,246	0.0%	
	LRE	15,999	6,097	4,000	1,524	19,999	7,621	27,620	
2012	HRE	2,202	852	551	213	2,753	1,065	3,818	
	Total	18,201	6,949	4,551	1,737	22,752	8,686	31,438	3.9%

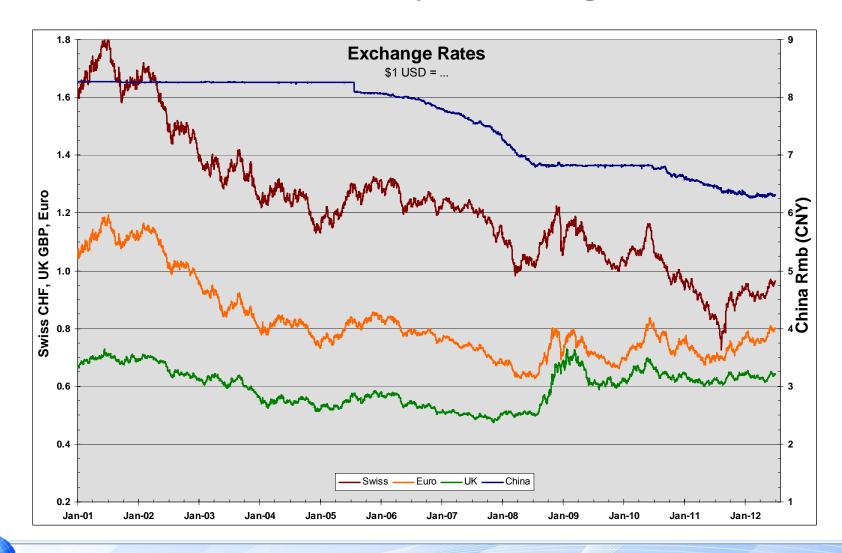
Separating rare earth export quotas into LREs and HREs suggests that China understands they need to be separately managed

2012 quotas are divided into LRE and HRE; 1st half quotas were published and updated May 17; second half quotas are inferred to be 20% of annual total resulting in a 3.9% increase year over year.

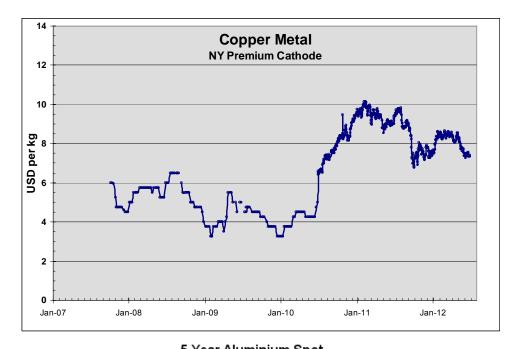

Dysprosium is a Short & Long Term Issue

			Pote	Potential Sources of Additional Production between 2010 and 2015							5		
		United	States		Australia		Vietnam	South Africa	Q		roducti		
		2010 Production ⁶⁹	Mt. Pass Phase I ⁷²	Mt. Pass Phase II	Mt. Weld ⁷³	NolansBore ⁷⁴	Dubbo Zirconia [™]	Dong Pao™	Steenkamps- kraal ⁷⁷	Russia & Kazakhs-tan™	India ⁷¹	Total 2015 Production Capacity	
	La	31,000	5,800	6,800	5,600	2,000	510	970	1,100	140	560	54,000	
	Ce	42,000	8,300	9,800	10,300	4,800	960	1,500	2,300	290	1200	81,000	Supply Increase
	Pr	5,900	710	840	1,200	590	110	120	250	20	140	9,900	iliciease
	Nd	20,000	2,000	2,300	4,100	2,200	370	320	830	44	460	33,000	65% increase
	Sm	2,800	130	160	510	240	56	27	125	5	68	4,000	43% increase
	Eu	370	22	26	88	40	2		4	1		550	
	Gd	2,400	36	42	176	100	56		83	1	30	3,000	
\Box	Tb	320	5	6	22	10	8		4	0.4		370	
	Dy	1,600	9	10	22	30	53		34	1		1,700	6% increase
	Υ	10,500			66		410	21	250			11,300	
	Others	2,000	73	86			75	25	12	3	25	2,300	
	Total	120,000	17,000	20,000	22,000	10,000	2,600	3,000	5,000	500	2,500	200,000	

Quantities are metric tons of Rare Earth Oxides
DOE Critical Materials Strategy, final version January 10, 2012; Table 4.2, p.84

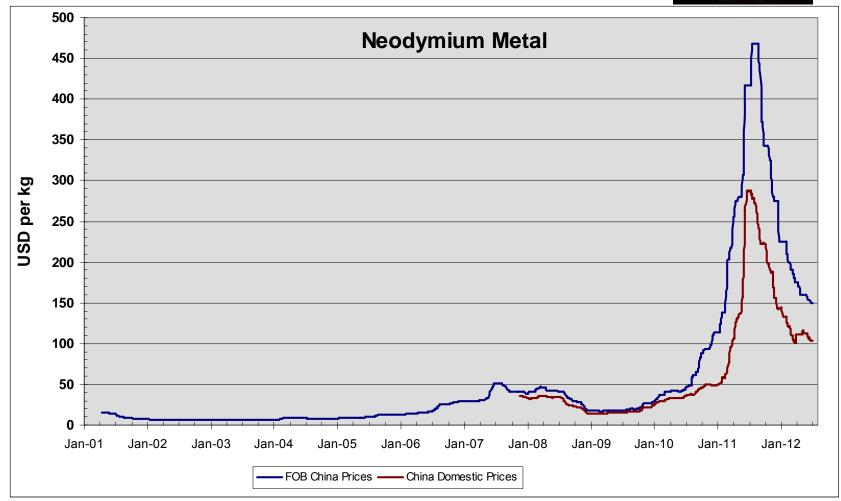


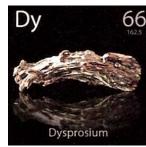
Neo Magnet Dysprosium Issue

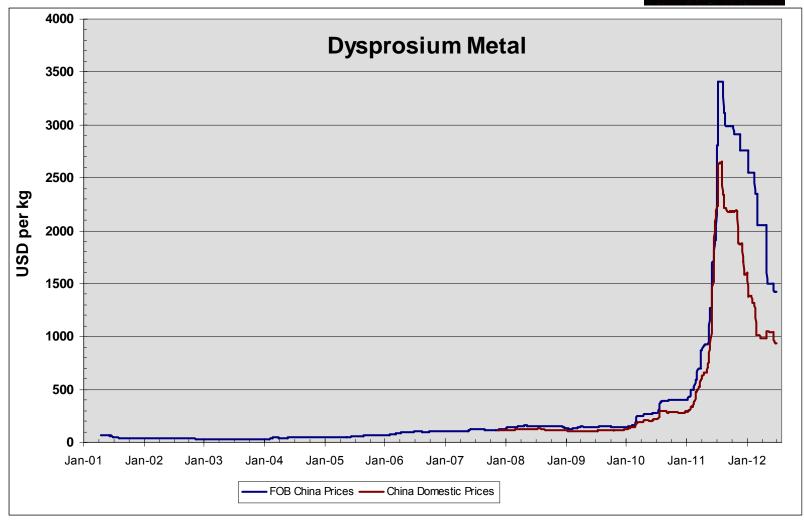

Selected Currency Exchange Rates

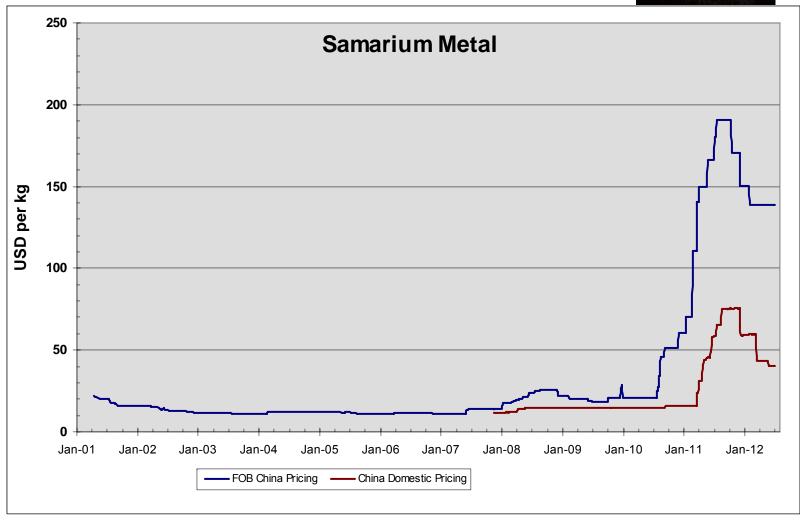
Copper and Aluminum Pricing

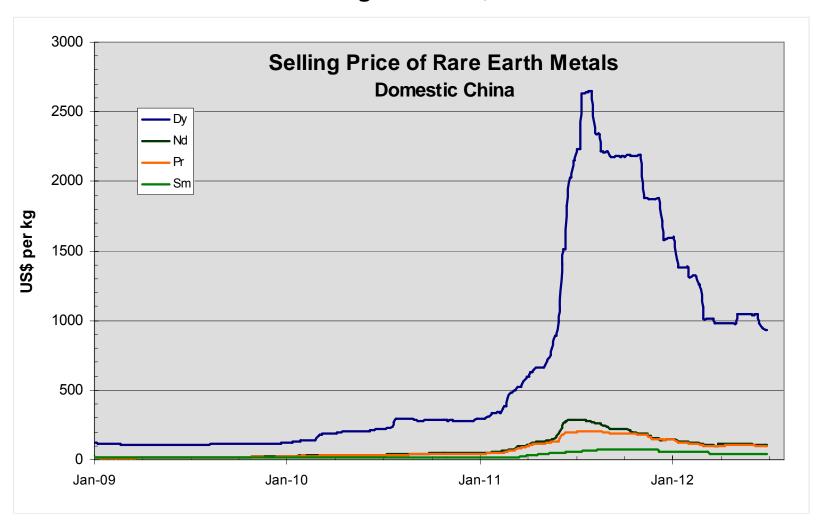
Through June 28, 2012



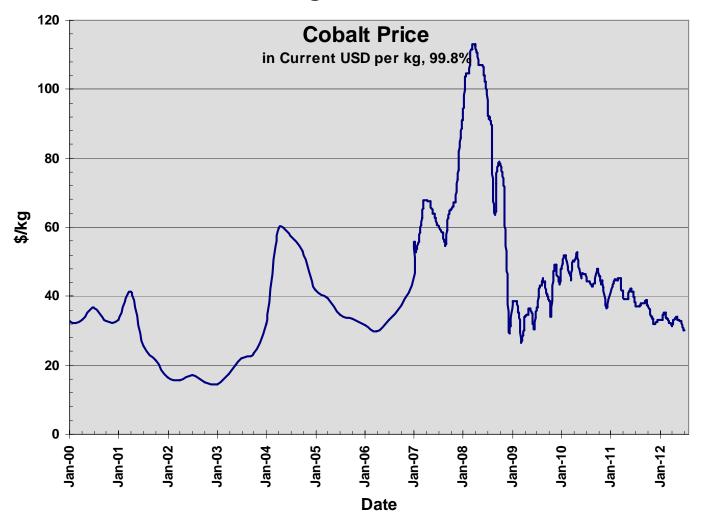








RE Metal Pricing Through June 28, 2012


RE Metal Pricing Through June 28, 2012

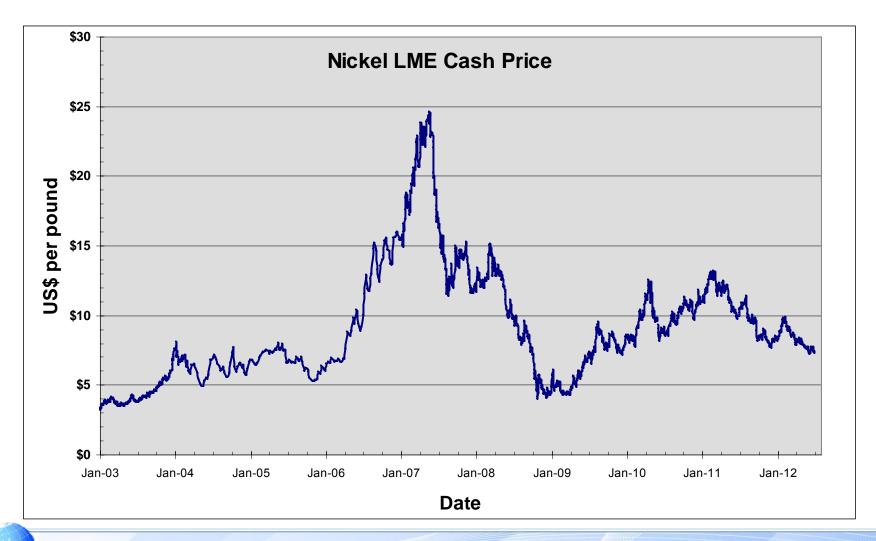
Material Pricing: Cobalt

Through June 28, 2012

Magnet Material Costs

in US Dollars, June 28, 2012

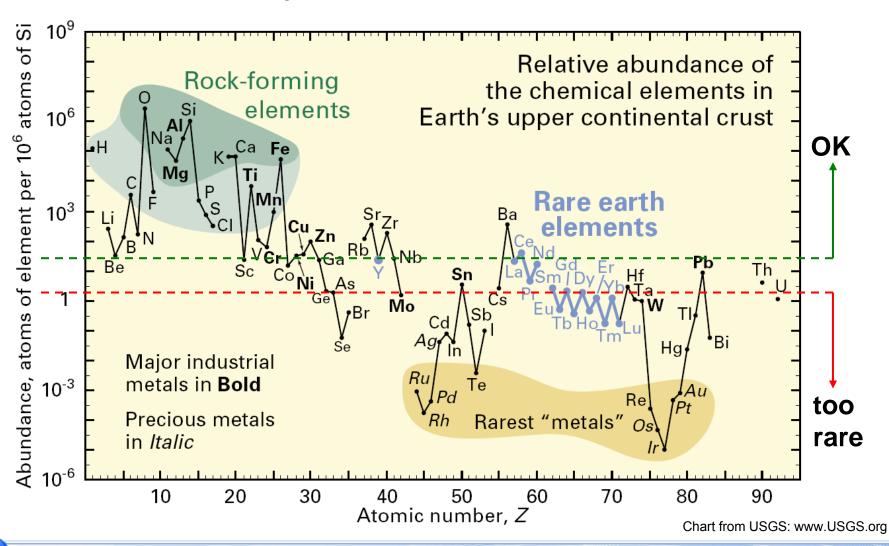
Domestic China Raw Material Costs, USD


Element	SmCo 26HE	SmCo 30S	N30AH	N35EH	N40UH	N45SH
Nd	-	-	21.5	23.9	26.3	28.7
Dy	-	-	102.8	81.3	59.8	38.3
Sm	10.5	10.5	-	-	-	-
Co	15.1	15.1	0.2	0.2	0.2	0.2
Fe	0.2	0.2	0.8	0.8	0.8	0.8
Other	0.4	0.4	0.1	0.1	0.1	0.1
Total	26	26	125	106	87	68

- While neodymium has become expensive it is the very expensive dysprosium that dominates Neo magnet material costs.
 - Based on 1 kg block magnet
 - Material prices as published by Asian Metals and Metal Pages


Material Pricing: Nickel

Through June 28, 2012



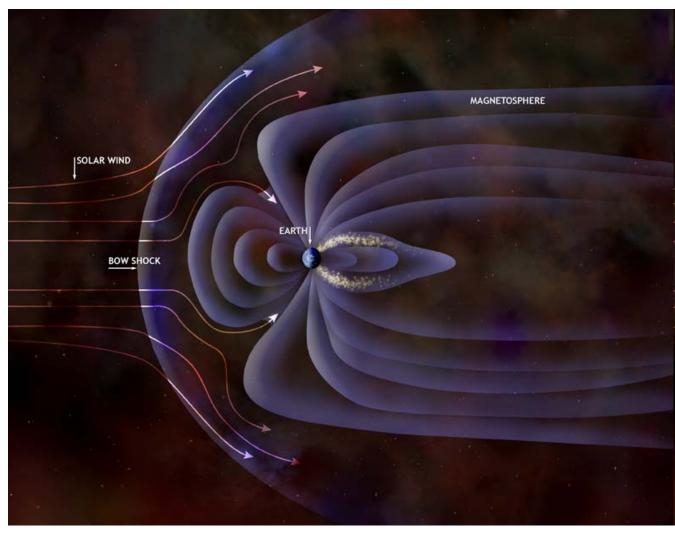
Magnet Price* versus Energy Product

Widely Available Materials

- Research - Variations on a Theme Revisiting & modifying prior materials

- SmCo plus exchange-coupled soft phase
- NdFeB plus exchange-coupled soft phase
- Fe-N (variation of SmFeN), interstitial N
- Mn alloys: MnBi, MnAlC
- Heusler alloys
- Alnico modified to enhance coercivity
- Carbides: FeC, CoC
- Modified Ferrites (chemical or structural modifications):
 La-Co Ferrites, Core-Shell structure ferrites
- Ce-Co,Fe and Ce-Fe,Co-B,C

- Research - "Greenfield" Magnets


- Computer calculations to arrive at alloy structure with net magnetic moment
- Promising alloys are then formed in the lab and evaluated
- 2 and 3-component alloys are practical
 - 4+ component alloys represent significant computational difficulty
- Finished magnet must be...
 - Fully dense to take advantage of undiluted properties
 - Domains must be oriented to that the magnetic field is in one preferred direction

Summary

- The selection and use of materials in production and utilization of electric energy requires consideration of many factors including
 - price and availability
 - appropriateness for the application
 - environmental impact
- Practical alternatives to rare earth magnets may not exist for some applications
 - this maintains the burden on adequate supply of rare earths
- Dysprosium is the single most important element in the RE magnet supply dynamic
- Alternative technologies and materials will be employed where cost and availability dictate and performance, size and weight permit
- Reduction or elimination of rare earth elements and other expensive ingredients in high performance permanent magnets is a focus of numerous R&D initiatives
 - R&D is a long process and not likely to relieve the rare earth criticality short to mid-term

http://chandra.harvard.edu/photo/2005/earth/index.html