Model Predictive Control in

Medium-Voltage Drives

Tobias Geyer

6 Department of Electrical and Computer Engineering
meunvernsy  Lhe University of Auckland
s New Zealand

In collaboration with

AL 1D ED
FRIPEP ETH..



http://www.abb.ch/global/chabb/chabb118.nsf!OpenDatabase&mt=&l=ge

Outline

Introduction

e Control problem
e Performance trade-off
e (Control and modulation schemes

Model Predictive Control

e 1-step predictive control
* Model predictive direct current/torque control
e Computational efficiency

Summary and Outlook
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Control Problem



Control Problem
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Control and Modulation

* Cascaded control loops: @ Grid
— Speed control loop
— Current control loop *
~ (Active)

® Current control problem — | Rectifier

=> split into current controller and modulator

—Il— Dc-Link

@ Speed [T,k Current | U u
—( )—) ——~ Modulator =—"> Inverter
controller __ | controller
— 1
®

@ Electrical
Machine

Q

Fundamental trade-off between switching losses

(frequency) and the current / torque distortion levels

Tobias Geyer Model predictive control in medium-voltage drives May 9, 2011



Performance Trade-Off



Trade-Off (High Switching Frequency)

fow=700Hz
P, =16.7kW,P_ =2.7kW

THD~2.31%
THD,=1.93%

T,. L Current
| controller —— > Modulator F=—=>
A

Inverter: 3-level NPC with IGCTs
Induction machine: 3.3kV, 2MV A
Operation point: w,=1pu, T ,=1pu
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Trade-Off (Low Switching Frequency)

————————————————————————
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£..=150Hz

P, =3.9kW, P, =2.8kW
THD =6.9%
THD,=6.0%

T, L Current
: ﬁ_: controller
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Q

Inverter: 3-level NPC with IGCTs
Induction machine: 3.3kV, 2MV A

Operation point: w,=1pu, T ,=1pu
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Trade-Off for PWM /SVM

Torque THD vs switching losses

Current THD vs switching losses

Switching losses [%]

Switching losses [%]

Y

T. THD + Psw = const

)

I, D - Psw = const
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Control and Modulation Schemes



Control and Modulation
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: : T. Current
per distortions =1 controller [—+] Modulator F=>
a is
®
large - . . @
' Field Oriented '

Control with
PWM/SVM

R

small {---------------- ------------------------------------------------ .

| i _ Torque response time
" (controller bandwidth)

fast slow

Tobias Geyer Model predictive control in medium-voltage drives May 9, 2011



Control and Modulation

Switching losses
per distortions
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Control and Modulation

Switching losses . . |_"_|
. . T, 5 Current | “ u 1=
per distortions =1 controller Modulator =1~/
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Control and Modulation

Switching losses o |_"_|
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Control and Modulation

Switching losses |_||_|

per distortions

Predictive Control i
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Control and Modulation: Goal

Switching losses
per distortions
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Control and Modulation: New Methods

Switching losses |_||_|

per distortions
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Control and Modulation: New Methods

Switching losses |_||_|

per distortions
U —
Controller and modulator fF—> -

% One-step =
Predictive Control i
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Direct Torque
large +--- Control - @
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Control and Modulation: New Methods

Goal: Fully utilize capability of drive hardware
¢ Minimize switching losses per distortions

* Achieve very fast torque and current response @ crid
Approach: *

e Treat control and modulation problem in one stage

e Work in the time-domain y I(QA(;(c::ttli\;ii)r

* Adopt model predictive control

—"— Dc-Link

Inverter

@ Electrical
Machine

2 Speed
; controller

u
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Model Predictive Control
for MV Electrical Drives



Classification of MPC Schemes for Electrical Drives

Model Predictive Control:

Direct methods (without a modulator)

[ Reference tracking [ Hysteresi% Trajectory control j

~
Torque /
flux ctrl.

/s

~N -

Current Torque / Current Current Flux

control flux ctrl. control trajectory trajectory
— A — _/
~ N e~ TN

Very short prediction Medium to long prediction Closed-loop control of pre-

horizons (typically one step) horizons (20 to 150 steps) computed pulse patterns

— U ~— _
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Classification of MPC Schemes for Electrical Drives

Model Predictive Control:
Direct methods (without a modulator)

[ Reference tracking

Current
control

Very short prediction
horizons (typically one step)
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One-Step Predictive Current Control

is,(k+1) Algorithm
I transitions
» time
error at k+1
- is,b’,ref
Iy5 (k+1)
I » time
k+1

e Enumerate all 27 switch

e Predict currents at k+1
e Choose switch transition

with minimal current
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One-Step Predictive Current Control

Performance Index: J*(z(k)) = n?}}gn llie(k + 1)||1 + A\nl|Du(k)]||1

N\ v
N ~ N -

Deviation from Penalty on
current reference  switching effort

[ is(k+ 1) = A1is(k) + Aovpr (k) + Bu(k), Model of machine
Constraints < u(k) c {— 1,0, 1}3 : Discrete-valued switch positions
\ w(k) e U(u(k — 1)) Restrictions on switch transitions

Main features: e prediction horizon is one
* machine model
* minimization of switching effort (e.g. frequency)
e )\ =>trade-off between tracking accuracy and switching
* conceptually and computationally very simple
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One-step Predictive Current Control

Torque TDD vs switching losses

Current TDD vs switching losses
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e Torque THD significantly worse than PWM
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Classification of MPC Schemes for Electrical Drives

Model Predictive Control:
Direct methods (without a modulator)

[ Reference tracking

Torque /
flux ctrl.

Very short prediction
horizons (typically one step)
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One-step Predictive Torque Control

Torque TDD vs switching losses

Current TDD vs switching losses
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e Current THD significantly worse than PWM
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Classification of MPC Schemes for Electrical Drives

_

Model Predictive Control:

Direct methods (without a modulator)

_

[ Hysteresis bounds

Current
control

Medium to long prediction
horizons (20 to 150 steps)
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Model Predictive Direct Current Control: Step 1

. NP potential not shown here

Zripcy

Predict current trajectories for (all)
possible switching sequences

Key ingredients:

* Drive model P !
e Extrapolation e
Switching horizon, e.g. ‘eSESE’
* S: consider all switch transitions ot
* E: extrapolate/extend currents and NPP
e e: optional “‘E’ a

SR S S EN S -
Prediction horizon N, gl S S S S S
Typically 50..150 time-steps -

k e S ES E N,
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Model Predictive Direct Current Control: Step 1

A

. NP potential not shown here

Predict current trajectories for (all) fripa | -

possible switching sequences

Key ingredients: ]

* Drive model R >
frips

e Extrapolation

Switching horizon, e.g. ‘eSESE’

e S: consider all switch transitions

* E: extrapolate/extend currents and NPP u ¢

o e: optional ‘E o O — |
b : .....
Prediction horizon N,
C : : : : .....
Typically 50..150 time-steps Ay
k e S E S E N
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Model Predictive Direct Current Control: Step 2

c . . 1.
Evaluate and minimize sw. losses ripe

A

. NP potential not shown here

1 N1 f f
J (:C) — m(}n F Z Eloss(xk,uk) . .
P k=0 : '
=> Optimal switching sequence U " ? ? &
Zripﬂ
-t
u 1t
I — I S
b .....
C e e
>t
k e S E S E N,
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Model Predictive Direct Current Control: Steps 2 & 3

A

. NP potential not shown here

- e I F -
Evaluate and minimize sw. losses ripe
1 N1
* e .
J (:C) .- m(}n F Z Eloss(xka uk)
=> Optimal switching sequence U N ~ 1
Zrlpﬂ e @ el e e r mm s mm o e o mm o r mm s o e mm r mm s e s omm n o os -
Apply only the first element of U
Plan R
h >t
> 1
k u 4
Plan R A fereeeeiteeiiiiiiiiiiniiniin S N
>t
b .....
k+1
Plan . s Chb— .
- >t
e k e S ES E N,
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Model Predictive Direct Current Control

Np—1
1 p
Performance Index: J*(z) := min — Y Ejpes(@p, ug)
v P k=0 v

YT
Short-term avg. switching losses (power)

( x k+1 = f(a: ks uk) , Model of machine and inverter
. yr = g(xk), Outputs (currents and NP)
Constraints Yk €, Bounds on currents and NP
Vk=0,....,N—1 ur € {— 1,0, 1}3, Discrete-valued switch positions
L Uk € U(ug_1) Restrictions on switch transitions

Main features: e short switching horizon but long prediction horizon
e models of machine, inverter and losses
* minimization of switching losses
* receding horizon policy

e tailored online solution approach
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3-level NPC inverter with 2MVA

Performance during Transients oG imvert

Speed: w,=0.6 pu
Torque: reference steps between T=1 and 0 pu

Torque Stator currents Switch positions

L N R o B
S NN R R G O/ SN (R =1 R

06 il S S ﬁ

| e s | s e I W T, S W

oo e NN

o 5 10 15 20 25 30 0o 5 10 _15 20 25 30 0o 5 10 _15 20 25 30
Time (ms)

Time (ms) Time (ms)

Torque (current) response time of 2 ms
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3-level NPC inverter with 2MVA ind. machine

Performance at Steady-State . -06pu 71 pu

Current Current spectrum Switch positions
0.04 . ‘ .
° 1k L
FOC with MO
PWM and 0.5¢ a8 -1F ¢
f=270Hz | ool || L P,,=415kW ___
- _ [0 5 u L]
oorll || | oL LN
S ¢ s i, s WO I | | 107 8 8 IR 9 N e s s S e e T
0 5 10 15 20 25 30 3¢ 0 500 1000 1500 2000 0 5 10 15 20 25 30 35
Time (ms) Frequency (Hz) Time (ms)
0.04,
1
MPDCC
le(SE)3I 05 0.03}
NP =70 0 ITHD = 4-560/0 0.02§
-0.5
0.01}
-1
0 5 10 15 20 25 30 3 Co 500 1000 1500 2000 0 5 10 15 20 25 30 35
Time (ms) Frequency (Hz) Time (ms)

Current THD reduced by 40% (for the same switching losses)
Similar to optimal pulse patterns
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. -level inverter with ind. machine
MPDCC outperforming OPP . 5¢p, ropu

w,=0.6 pu, T,=1 pu

Optimized Pulse Pattern Model Pred. Direct Current Ctrl.

T T T T T T T T
1 D =L SRRREEE i Tp ——t i SRR R
4 - X i RN : X X & : h N : : :
0 - : : -~ ! X : X : X o : X X
7 : ; —I <= ; :
h # : X

: N | - 0
_1 ___________ ______ P

| y 5 : i o —F
ow=L192KkW :140%less )" oo P =1 - H
: : e N — — [ SR S S — e S
0 ‘é_e-* _I\"L : : - .\H\L,

, ; : = 0 ' ' =
- : "~y : :

: : ~ : ”" : : : A
. : : : : B ™ - I : - : : : S Bl
—1 ----- ﬁ-q#*'"—' -------------------- e —1 w"’ -------------------- e e e e e e e D LI o

N I =8.18 % _1 5% more e I I =8.60 % _...-
T — THD 5% 1 bawp THD —

- : ‘-h — _______ __________ _
0 5 10 15 20 25 30 35 O 5 10 15 20 25 30 35
Time [ms] Time [ms]

e OPPs: for a given switching frequency, minimize the current THD
e MPDCC: for a given current THD, minimize the switching losses
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Model Predictive Direct Current Control

Current TDD vs switching losses Torque TDD vs switching losses

———————————————————————————————————————————————————————
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OPP | ; | | /MPDCC eSE
1 1 1 ‘ ' _MPDCC e(SE)3

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

5 _MPDCCeSE~ & T === = |
MPDCC e(SE)3 -~

0 01 02 03 04 05 06 07 08 0 01 02 03 04 05 06 07 08

Switching losses [%] Switching losses [%]

Long switching horizon eSESESE (50-150 steps):
e Current THD: better than with optimized pulse patterns
e Torque THD: similar to PWM
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Tuning

e Current and torque distortions: linear function of bound width

In percent, normalized to maximum

3-level NPC inverter with 2MVA IM
w=~0.6 pu, T,=1 pu, MPDCC with ‘eSE’

100 1 ' | 2>
:! -
i ’
T_- . 4
BOF - b R EREEEEEE A EEEEEERERE -
Swrtchmg losses ; ;o™
/"
Swrt;:hmg frequency i~
GO g gV .
3 . ' J Current THD
% ,."g' Torque THD
40 i R :
Y v |
a4
ll’//\’f,-,
200 '.-‘,.,.”_‘ """"""""""""""" T
4 : T
+* AR )y, % _I'-["rb.r_uuiu‘
0 i i i
0 5 10 15 20

Current bound width [*100]

e Switching frequency (and losses): hyperbolic function of bound width
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Classification of MPC Schemes for Electrical Drives

_

Model Predictive Control:

Direct methods (without a modulator)

_

[ Hysteresis bounds

Torque /
flux ctrl.

Medium to long prediction
horizons (20 to 150 steps)
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Direct Torque Control

Torque
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Stator flux magnitude
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Torque

Model Predictive Direct Torque Control
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Model Predictive Direct Torque Control

Current TDD vs switching losses Torque TDD vs switching losses
16 | | 7 |
< OPP |
A \e—PWM 6\
L | N s 5.0 R S e .
© 01\ MPDTCeSE =~ = O\T’4,,, I N R R R R R
S s NN\ eSSy
a 3 3 | | | Oz N N\
o NN\ A A S R — = lopp
e
L MPDTC eSE " N
) T
MPDTC e(SE)3 |
0 0 ‘ ‘

0 01 02 03 04 05 06 07 08 0 01 02 03 04 05 06 07 08

Switching losses [%] Switching losses [%]

Long switching horizon eSESESE (50-150 steps):
e Current THD: similar to optimized pulse patterns (OPP)

e Torque THD: significantly better than OPP, but at the expense of
current THD — points on curves do not correspond to each other!
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Classification of MPC Schemes for Electrical Drives

_

Model Predictive Control:

Direct methods (without a modulator)

_

[ Hysteresis bounds

Torque /
flux ctrl.
E+ Computational efficiencyj

Medium to long prediction
horizons (20 to 150 steps)
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Search Tree

B Search tree induced by
b i@ L N optimization problem
P Nl . e i Computational burden =~
Y Y R S R number of nodes
1 E
I B STTRTRT e e L So far: full enumeration

A
S
A
Not
candidates
E
Candidate
switching Ovtimal
1ma
k+ Npdooooooonnd S sWIi)tChing
Y sequence
time
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Search Tree

k. R N W N
k41 e ke D
;i.-' _|_ _) i ST . oS PRI YIS AU,
B3 e S
E
]1-: _|_ 4 sk i B e e G v v v a v e
ke
S Approaches to reduce
o= computation time?
Not
candidates . e More efficient
implementation of algorithm
e More efficient extension /
Candidate extrapolation step
switchin
5 e quenceg Optimal e Reduce number of nodes
R switching explored in search tree b
\ sequence ; Y
Hime using Branch & Bound
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Evolution of the Optimal Cost during Optimization

16 '. .' ! .' '. .' !
R R T AT AT RO R Without
| | Branch & Bound
bl -
| e
Tef oL -
z - |
O b o
LIRSS S OO OO SO SO T
* : :
% 204 400 600 goo lteration step

(number of nodes visited)
u* found
Certificate of
optimality found

Search tree fully explored
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Evolution of the Optimal Cost during Optimization

16 '. .' ! .' '. .' !
Wiuues 1RO AR S S S N S With
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(number of nodes visited)

u* found u* found

Certificate of
optimality found

Certificate of
optimality found

Upper and lower bound converged Search tree fully explored
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Performance vs Computational Burden

(~in b1l A cAtLin 5o | P2 I R ey N~adac avinlAaraAd PR S DAl ain~n [0/
UIILLLOULICL dCLlLL léb 1 ICU. 11U11Z40U11 INOUCD> C)\J:JJ.UJ.CU. w 1 C1LIVULLILAIILE | /0]
OW. NOIiZ0i1  iVmax Jmax avyg iMiaXx avyg ifiax 10Ul | /0] I sW Jsw 1s THD 4e,THD
DTC - - - - - - - 100 100 100 100
"
eSSE - - 26.6 96 112 277 100 <. 573 )71.2 103 98.4
I
eSSE 50 50 | 22.0 97 43.6 50 92.2 <. 5§8.3 74.1 104 103
ACCTECTECT aQ N 1R8N 2944 702 1NN 27 Q AQ O a7 N a2 N
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aCCEFCECKF 110 NN QRN 189 AR NN a2 1 2Q ¢ K1 4 Q7 12 aan
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Short switching horizon (eSSE):

* B&B => computational burden reduced by factor 5.5
e Switching losses and THDs merely affected

Benefit: simplify implementation for short switching horizons
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Performance vs Computational Burden

Contrallor cotbinoa Prad harizan | Naodec evinlored e Porfarmance 1941
UIILLLOULICL dCLlLL léb 1 ICU. 11U11Z40U11 INOUCD> C)\J:JJ.UJ.CU. w 1 C1LIVULLILAIILE | /0]

OW. NOIiZ0i1  iVmax Jmax avyg Ifiax avyg IMax IOUliG | /0] I sW Jsw s THD 4e,THD
DTC - - - - - - - 100 100 100 100
eSSE - - 26.6 96 112 277 1 100 | 57.3 271.2 103 98.4

| U
eSSE 50 50 | 22.0 97 43.6 50 922 (] 583 741 104 103
~CCECEQE _ _ oR ” 150 2464 7602 ) | 100 < 270 MO Q7 0 a9 0
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Long switching horizon (eSSESESE):
* B&B => computational burden reduced by factor 13
* Switching losses and THDs merely affected

Benefit: enable implementation for long switching horizons
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Performance Results

ACS 6000, w,=0.6 pu, T=1 pu;
Same torque bounds, flux bounds relaxed by +/- 0.01pu
ABB’s simulation environment
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Summary and Conclusions



Commercial Benefits

e Higher rating of inverter possible

— 40% higher power capability
(e.g. from 5 MVA to 7 MVA)

— Hardware remains the same

e Standard machines can be used

— No derating of machine required

e For ‘complicated’ topologies

— MPC is enabling technology

Fully utilize the drive hardware
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Summary and Conclusions

Goal: Fully utilize capability of drive hardware
* Minimize switching losses per distortions

e Achieve very fast torque and current response

Approach:
e Treat control and modulation problem in one stage
e Work in the time-domain

e Adopt model predictive control

Results:
e MPDxC family
e MP3C
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For More Information

www.ece.auckland.ac.nz/tgey001
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