

Encoderless Control of AC Drives Recent Achievements – Realistic and Unrealistic Expectations

Ralph M. Kennel, Technische Universitaet Muenchen, Germany kennel@ieee.org

Reasons for Industrial Applications of Drives with encoderless Control:

• Cost

 \bullet

• Reliability

Robustness

- ?? 💖 ??
 - is encoderless (sensorless) esulting in additional cost ???

Industrial Drives with Sensorless Control

since several years / decades sensorless control is investigated

and published on conferences and magazines

- acceptance in industry, however, is rather low

Why?

new ideas and concepts are interesting for industry,

only if they do not result in higher cost or higher effort!!!

What does that mean

for industrial drives with sensorless control ?

no additional or more powerful processors / controlle
 no additional hardware or additional sensors (e. g
 no increased installation effort with respect to parallel

this was valid from 2000 to 2010

Industrial Drives with Sensorless Control

since several years / decades sensorless control is investigated

and published on conferences and magazines

- acceptance in industry, however, is rather low

Why?

new ideas and concepts are interesting for industry,

only if they do not result in higher cost or higher effort!!!

What does that mean

for industrial drives with sensorless control ?

single scheme for wide speed range (no phase over)
 no additional noise (except usual noise by inverter insensitivity with respect to parameter variations

What does industry think today ?

Industrial Drives with Sensorless Control Actual Requirements from Industry

- there should be a single concept for encoderless control
 - for the complete speed range (from standstill to maximum speed)

 \blacksquare single scheme for wide speed range (no phase over)

 in case there is a signal to be injected for speed/position detection this should not cause any additional noise

 except usual noise caused by inverter supply with standard PWM

☑ no additional noise

- parameters of electrical machine and/or power electronics should not impact the performance of encoderless control too much (a certain impact is acceptable)
 - \blacksquare insensitivity with respect to parameter variations

Sensorless (Encoderless) Motor Drives

introduction

- fundamental model methods
- high frequency injection methods

encoderless control of synchronous machines

- machine response on high frequency injection voltages
- tracking of magnetic saliencies / anisotropies

practical results

- experiences with industrial drives
- ... what about "predictive" encoderless control ?
- ... what about arbitrary injection ?
- use of current derivation sensors ?
- experiences with different motor designs

conclusions

Field oriented control of PMSM

Fundamental model based position estimation

Calculation of Speed by Fundamental Model is not Practicable for Very Low Speeds

... because

- the voltage signal becomes very small
- errors between real voltage and values used for calculation cannot be avoided and become more significant
- DC components of these errors

let the integrators for flux calculation drift away

 \rightarrow the calculated speed gets more and more incorrect

is an encoder/resolver the only feasable solution ??

Categories of Machine Models for "Sensorless" Control

INFORM method according to M. Schroedl (Technical University of Vienna, Austria)

- this is basically a transient voltage injection method
 - \rightarrow currents have to be sensed at specific times !!!
- when using standard current transducers

 \rightarrow these cannot be synchronized with PWM

 \rightarrow the hardware of a standard industrial drive

has to be changed

nevertheless this method comes close to industrial needs !

Stationary Signal Injection Methods

according to R. Lorenz, S.-K. Sul, R. Kennel, etc.

• the basic idea is

to use the electrical machine itself as a resolver !!!

Stationary Signal Injection Methods

according to R. Lorenz, S.-K. Sul, R. Kennel, etc.

• the basic idea is

to use the electrical machine itself as a resolver !!!

- a resolver is nothing else but an electrical machine
 → can we operate the motor itself like a resolver ?
- if the machine itself is a resolver (encoder)
 → is that really an "encoderless" control ???

now we do the same with an electrical AC machine

 \rightarrow

injection of high frequency voltages

fundamental voltage phasor/vector

fundamental current phasor/vector

injected high frequency

voltage phasor/vector

high frequency

current phasor/vector (response)

injection of high frequency voltages

fundamental voltage phasor/vector

fundamental current phasor/vector

injected high frequency

voltage phasor/vector

high frequency

current phasor/vector (response)

Position Information of Salient Rotors in High Frequency *Rotating* Phasors

- machine responds

 on a rotating voltage phasor
 with an elliptic current response
- ellipse is correlated with the geometric anisotropy

of the rotor

 rotor position information is included

in the high frequency current

elliptic current response i_{c} (rotating)

Injection of High Frequency *Alternating (Pulsating)* Voltage Phasors

composing an alternating (pulsating) voltage phasor by two phasors rotating in opposite direction advantage : no rotational (HF) field \rightarrow no additional torque

Tracking Scheme for Magnetic Anisotropies

Tracking the estimated angle of the rotor flux by controlling i_{cq} to 0

Encoderless Control Structure

step response of the PLL; PLL is locked after ca. 10 -15 ms

control structure

of an encoderless control with alternating high frequency signal injection

the estimated angle can be used for *field orientation* as well as for *speed* or *position* control of synchronous machines

(SMPMSM, carrier frequency $f_c = 0.5$ kHz)

Stator Admittance in Complex Plane

Injection of 2 Voltage Pulses in +d and -d

Step Response of Encoderless Position Control

Stationary Signal Injection Methods

according to R. Lorenz, S.-K. Sul, R. Kennel, etc.

• when the basic idea is

to use the electrical machine itself as a resolver ...

... the performance of this type of encoderless control must be more or less equal to a control with a low performance resolver ...

> because the electrical machine is designed to be an electrical machine and not to be a good resolver !

Practical Experience with an Industrial Servo Drive

Implementation of a sensorless control into a servo drive of

- training of a development engineer
 2 x 1 week in our laboratory
- programming of additional software in manufacturer's factory
- delivery of prototype after ca. 3 months
- presentation on Hanover Fair in April 2006

meanwhile : more industrial applications

- WEG (Brazil) as mentioned before
- BAUMÜLLER same experiences as WEG
- TRÜTZSCHLER successful application

in textile machinery

• two more companies

- who do not want to be mentioned

• ABM Greiffenberger – advertising actively

on SPS/IPC/Drives 2010

the concept of encoderless control as presented here works similar to radio broadcasting :

the information of rotor position is modulated by a high frequency signal

the information is demodulated / extracted from motor currents

modulation on a high frequency carrier by the motor itself

Further Research Activities

- are there demodulation schemes being able to distinguish the different current responses resulting from rotor and field anisotropies ?
- design of a parameter independant encoserless control

for induction machines without voltage sensors

Saliency based Encoderless Predictive Torque Control without Signal Injection

P. Landsmann, D. Paulus, P. Stolze and R. Kennel Technische Universitaet Muenchen Munich Germany <u>Overview</u>

UNIVERSITÄT

Predictive Torque Control

Saliency Tracking

Simulation Results

Measurements

Conclusion

Basic Idea:

A Predictive Torque Controller neglecting the saliency in the model causes a prediction error which contains the angle information Saliency Tracking

Overview

Predictive Torque Control

Simulation Results

Measurements

Conclusion

Predictive Torque Control

<u>Overview</u>

TECHNISCHE UNIVERSITÄT MÜNCHEN

Predictive Torque Control

Saliency Tracking

Simulation Results

Measurements

Conclusion

Predictive Torque Control

Predictive Torque Control

- \rightarrow Discrete model of the machine
- → Current prediction based on mean inverse inductance

$$oldsymbol{u}_L^s = oldsymbol{u}_s^s - R_s oldsymbol{i}_s^s - oldsymbol{J} \omega oldsymbol{\psi}_{pm}^s$$
 $\Delta \hat{oldsymbol{i}}_s^s = Y_{\Sigma} oldsymbol{u}_L^s \Delta t$
 $Y_{\Sigma} = rac{1}{2} \left(rac{1}{L_d} + rac{1}{L_q}
ight)$

TΠ

En

Saliency Tracking Approach

Predicted current progression

$$\Delta \hat{i}_s^s = Y_{\Sigma} \boldsymbol{u}_L^s \Delta t$$

$$Y_{\Sigma} = \frac{1}{2} \left(\frac{1}{L_d} + \frac{1}{L_q} \right)$$

 $\begin{aligned} \widehat{\mathbf{Real current progression}} \\ \Delta \mathbf{i}_s^s &= \mathbf{L}_s^{s-1} \mathbf{u}_L^s \Delta t \\ &= Y_{\Sigma} \mathbf{u}_L^s \Delta t + Y_{\Delta} \mathbf{S}(\theta) \mathbf{u}_L^s \Delta t \\ Y_{\Delta} &= \frac{1}{2} \left(\frac{1}{L_d} - \frac{1}{L_q} \right) \\ \mathbf{S}(\theta) &= \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix} \end{aligned}$

Overview

Predictive Torque Control

Saliency Tracking

Simulation

Results

Measurements

Conclusion

Saliency Tracking Approach

Measured prediction error

$$oldsymbol{e}_{prd}^s = oldsymbol{i}_s^s - \hat{oldsymbol{i}_s^s}$$

Reconstructed prediction error $\boldsymbol{e}_{prd}^{s} = \mathbf{S}(\theta_{pll})\boldsymbol{u}_{L}^{s}$

PLL controller input $e_{pll} = \left(\mathbf{i}_s^s - \hat{\mathbf{i}}_s^s \right) \mathbf{J} \ \mathbf{S}(\theta_{pll}) \mathbf{u}_L^s$

Simulation Results for PMSM

Simulation parameter of PMSM

R_s	10.0	$m\Omega$
L_d	13.5	mH
L_q	15.0	mH
L_d/L_q	90.0	%
i_{max}	30.0	A
	$L_d \\ L_q \\ L_d/L_q$	$egin{array}{ccc} L_d & 13.5 \ L_q & 15.0 \ L_d/L_q & 90.0 \end{array}$

Speed controlled encoderless predictive torque control

$$\xrightarrow{\omega^*} \text{Speed} \xrightarrow{M^*} \text{Encoderless} \xrightarrow{u_s^s} \text{PMSM} \xrightarrow{\theta}$$

<u>Overview</u>

Predictive Torque Control

Saliency Tracking

Simulation Results

Measurements

Conclusion

Simulation Results for PMSM

Measurements with Reluctance Machine

Data of transverse laminated RM

Pole pairs	2	
Nominal power	1.1	kW
Rated current	3.5	A
Rated mechanical torque	7	Nm
Rated electrical speed	314	rad/s

Overview

Predictive Torque Control

Saliency Tracking

Simulation Results

Measurements

Conclusion

Measurements with Reluctance Machine

Measurements with Reluctance Machine

Response to 66% rated torque load step at speed controlled standstill

Institute for Electrical Drive Systems & Power Electronics – Technische Universität München Arcisstr. 21, D-80333 Munich - peter.landsmann@tum.de

UNIVERSITÄT MÜNCHEN

Proposed Scheme:

- Neglect the saliency in PTC equations
- Prediction error contains angle information
- Reconstruct Prediction Error using PLL angle
- Vectorproduct of both is PLL input

Benefits:

- Saliency based:
 - >> permanent operation at standstill
- No signal injection:
 - ⇒ operation at high speed as well as at standstill

<u>Overview</u>

Predictive Torque Control

Saliency Tracking

Simulation Results

Measurements

Conclusion

ER

Encoderless Control with Arbitrary Injection

"Limitations" of HF Injection Methods

- HF injection \rightarrow voltage margin \rightarrow limitation to medium and low speed
- Restriction to rotating or alternating shape due to algorithmic reasons

Meaning of "Arbitrary"

- No physical necessity for injection shape
- Basically **any** current ripple contains the saliency angle information
- Finding a way to exploit this provides additional degrees of freedom

Encoderless Control with Arbitrary Injection

"Limitations" of HF Injection Methods

- HF injection \rightarrow voltage margin \rightarrow limitation to medium and low speed
- Restriction to rotating or alternating shape due to algorithmic reasons

Meaning of "Arbitrary"

- No physical necessity for injection shape
- Basically **any** current ripple contains the saliency angle information
- Finding a way to exploit this provides additional degrees of freedom

Encoderless Control with Arbitrary Injection

"Limitations" of HF Injection Methods

... usually the current ripple caused by the inverter switchings are sufficient to exploit the rorot position ...

Meaning of "Arbitrary"

- No physical necessity for injection shape

- Basically **any** current ripple contains the saliency angle information

... if not ... any current ripple can eben be music !!!

Industrial Needs

The proposed PTC (Predictive Torque Control) method

works from standstill to maximum speed

✓ single scheme for wide speed range (no phase over)

The sensorless control scheme presented here

does not need additional voltage measurement devices - neither on the machine/motor side nor on the line side

✓ no additional noise (except usual noise by inverter supply)

As long as there is a detectable saliency

PTC is very robust to variations of the motor parameters

Signal Injection Method

according to J. Holtz, H.Pan, etc.

• this is basically a current injection method

 \rightarrow voltage sensors are necessary !!!

• it is possible to use current derivatives

instead of motor voltages

→ measuring current derivatives, however,

by standard current transducers is not really possible

Basic Principle of Transient Current Response Detection

- just use the voltage pulses provided by the PWM anyway
- detect the anisotropy dependant (transient) current responses

Practical Problems

- sometimes the original PWM pulses are too short
 ♥PWM patterns have to be modified (→ several schemes !)
- current derivation is needed to detect inductance variations

Position Estimation by Pulse Injection

• the stator leakage inductance variations can be detected in the motor voltages or in the current derivations

$$\frac{di_a(u_1)}{dt} = K \left(2 - \frac{l_A}{l_{\sigma 0}} \cos(n\theta) \right)$$
$$\frac{di_b(u_1)}{dt} = K \left(1 + \frac{l_A}{l_{\sigma 0}} \cos\left(n\left(\theta - \frac{4\pi}{3}\right)\right) \right)$$
$$\frac{di_c(u_1)}{dt} = K \left(1 + \frac{l_A}{l_{\sigma 0}} \cos\left(n\left(\theta - \frac{2\pi}{3}\right)\right) \right)$$

☑ the availability of the current derivations would be very helpful

Current Derivative Sensors as used at the University of Malta

Coax Sensor Responses as measured at the University of Malta

Coaxial Coils as used at Wuppertal University

Derivative Output Signal of Coaxial Coil

further investigations

- will industry accept (additional) current derivation sensors (e. g. Rogowski type) ?
 - ☑ probably not (nearly the same problem as with additional voltage sensors)
- can the "standard" current sensors be used for derivation measurement ?
 - Measuring sequentially 2 currents and calculating the difference is possible problem 1 : measuring time cannot be synchronized with PWM problem 2 : small differences need high resolution A/D conversion
- can "standard" current sensors provide an additional derivation output ???
 (e. g. based on the compensation voltage available inside)

Compensation Current Sensor

- ... compensate the magnetic field of the primary current by a second magnetic field produced by a secondary coil
- the respective compensation controller/regulator is feeding the secondary coil by a voltage

u = L di/dt

• \rightarrow a current derivative signal

does already exist inside the current sensor

 however, is the signal quality sufficient for sensorless/encoderless control of induction machines ???

Compensation Current Sensor

- contact meetings with current sensor manufacturers have already taken place
- current sensor manufacturers hesitate to provide the internal signal for external use, because the basic internal signal has bad accuracy

they fear a hint for their business

by any bad accuracy of any signal in the data sheet

• sensorless/encoderless control, however,

does not require good accuracy of the current deviation signal,

it requires good linearity only

some more experiences in encoderless control

- Bolognani reported (in 2006 ?) ... but that was discussed by Alan Jack before !!
- ... saturation in "q" direction increases under load

(armature reaction)

- \rightarrow difference between l_{cq} and l_{cd} decreases
- ... and vanishes at a certain load
 - \rightarrow an encoderless tracking of the anisotropy

does not work any more

this effect appears

- around 2 to 3 times rated load with IPM motors
- around 5 to 6 times rated load with SMPM motors

Accuracy of the Rotor Position Identification under Load Conditions

a) without load

b) rated load

(carrier frequency $f_c = 2 \text{ kHz}$)

Accuracy of the Rotor Position Identification under Load Conditions

... because the usual rotor designs of servo motors (mechanical holes for inertia reduction)

do not allow a load depending displacement of the main field

why is the armature reaction" so small ???

Load Dependancy of Saturation Anisotropy (Armature Reaction)

cross section of a synchronous reluctance machine

Anisotropy of a Non-Compensated Machine

Anisotropy of a Compensated Machine

meanwhile :

in certain applications difficulties occur

• there are motor designs,

with difficulties in encoderless control under specific operation conditions

• there are motor designs,

which cannot be controlled encoderless(ly) by an anisotropy tracking (PLL) controller at all

single tooth (bobbin) windings

cost reduction with respect to significant smaller end windings \rightarrow will replace distributed windings in synchronous machines

disadvantage : magnetic field has non-sinusoidal distribution
 → several maxima / zero crossings per period possible

consequence : the tracking controller does not catch the "position" any more

consequence : the tracking controller

does not catch the "position" any more

because it cannot find a maximum or minimum

q component of the high frequency current response

В

1.000 V

STOPPEDD

kS∕ø

Further Research Activities

• enabling encoderless control to work with more sophisticated motor designs

 \blacksquare how can the schemes be improved ?

• encoderless control suffers under small detection signals (currents)

 \square can wavelet-based concepts improve anything ?

- which motor designs support encoderless control,
 - \blacksquare high frequency models for electrical machines are needed
 - most well-known models consider the fundamental behaviour only

Actual EAL Activities

- encoderless control of more types of permanent magnet synchronous machines was successfully implemented in several industrial servo drives

 we can proceed with more collaboration partners and/or applications
- encoderless control of synchronous reluctance machines is investigated in collaboration with our partner University of Stellenbosch (South Africa)
 Imal results are available
- a project on encoderless control of induction machines was prepared funding is granted and project start was in January 2013
 - \square first results are expected after 2 3 years
- a project on predictive encoderless control is in preparation
 - funding is expected to start the project hopefully in the second half of 2013
 - \square first results are expected after 1 2 years

Thank you !!!

