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Introduction                      Reluctance machines
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Non-salient
induction

Single-salient
reluctance

Double-salient
“switched”
reluctance

Single-salient
flux barrier
reluctance

� Non-salient stator and unexcited rotor with magnetic asymmetry

focus



Introduction                                         Name

Name:

'Reaktionsmaschine‘ (German) - 1960

'Unexcited synchronous machine‘ - 1930

'Polyphase reaction reluctance machine‘ - 1920

'Synchronous reluctance machine' (SRM or SyncRM)

today

� Reluctance synchronous machine (RSM)

Wound-rotor synchronous machine

Permanent magnet synchronous machine (PMSM)
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Introduction                   … a viable alternative?

• Lipo(1991) T.A.: "Synchronous reluctance machines – a 
viable alternative for AC drives," Electr Mach Power Syst, 
vol. 19, pp. 659-671.

• Vagati (1994) A.: "The synchronous reluctance solution: a 
new alternative in A.C. drives," Proc IEEE IECON (Bologna), 
vol. 1, pp. 1-13.

• Kamper (2013).: "Reluctance synchronous machine drives 
– a viable alternative?," IEEE Joint IAS/PELS/IES Chapter 
Meeting, Graz (Austria).
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Same title roughly 20 years 
later than Lipo and Vagati !!! 
Why don’t we see RSM drives?



History                           Kostko
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Kostko (1923) J.K.: "Polyphase reaction synchronous motors", Journal 
AIEE, vol. 42, pp. 1162-1168.

Kostko said in 1923, "... it 
can hardly be expected that 
reaction motors will ever be 
extensively used."



History                           Brinkman
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Brinkman (1965) J.: "Theoretische und experimentelle untersuchen an 
einem motor mit verbesserter ausnuzung des reaktionsprinzips", 
Dissertation, Fakultät für Maschinenwesen der Technischen Hochshule 
Carolo-Wilhelmina, Braunschweig, Jan 1965.



History                        Cruickshank, Honsinger
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Cruickshank (1971) A.J.O. et al: "Theory and performance of reluctance 
motors with axially laminated anisotropic rotors", Proc. IEE, vol 118, no. 7.

Honsinger (1971) V.B.: "The inductances Ld and Lq of reluctance machines", 
IEEE Trans. PAS, vol 90, no. 1.



History                         Other: 1960’s and 70’s
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Lipo (1967) T.A. and Krause, P.C.: "Stability analysis of a reluctance-
synchronous machine", IEEE Trans. PAS, vol 86, no. 7, pp. 825-834.

Krause (1969), P.C. and Lipo T.A.: "Analysis and simplified representations 
of rectifier-inverter reluctance-synchronous motor drives", IEEE Trans. 
PAS, vol 88, no. 6, pp. 825-834.

Ong (1977), C.M. and Lipo T.A.: "Steady state analysis of a current source 
inverter reluctance motor drive", IEEE Trans. PAS, vol 96, no. 4.

Faucher (1979), J. et al: "Characterization of a closed-loop current-fed 
reluctance machine taking into account saturation", IEEE Trans. on 
Industrial Applications, vol 15, no. 5, pp. 482-488.



History                                     Other: 1980’s
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Weh (1985) H. and Schroder U.: "Static inverter concepts for multiphase 
machines with square-wave current-field distributions", European Power 
Electronic (EPE) Conference (Brussels), pp. 1147-1152.

Fratta (1987) A., Vagati A. and Vilatta A.: "A reluctance motor drive for high 
dynamic performance applications", IEEE-IAS Annual Meeting, pp. 295-
302.

Al-Antably (1985) A. and Hudson T.L.: "The design and steady state 
performance of a high efficiency reluctance motor", IEEE-IAS Annual 
Meeting, pp. 770-776.



Conclusion 1          direct on line / converter-fed
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X

X

With cage

With / without cage

VSD open loop VSD open loop



Modelling                              Steady-state dq
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Modelling                               Steady-state dq
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Modelling                                         Torque
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Modelling                                  Power factor
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Modelling                Variation of dq Inductances
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Modelling                   dq Inductance difference
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Steady-state control                     RSM drive
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Closed loop current control 
with rotor position feedback



Steady-state control     Torque and Power factor

19



Steady-state control              Current control
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Steady-state control       Control block diagram
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Steady-state control          Field weakening
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Conclusion 2        CPSR

� Use constant current angle in sub-base 
speed region for maximum T/Amp

� RSM drive has a poor constant power 
speed range (CPSR) and, hence, is not 
suited for applications that requires a 
large CPSR

� Compares not as good to the IM drive in 
terms of the CPSR

23



Design                                          Rotor type
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Axially laminated Normal laminated with 
internal flux barriers

X

… due to m anufacturing costs and possible rotor 
iron losses in axially laminated rotors

X



Design                Multi layer internal flux barriers
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110 kW

9 kW

42 kW

42 kW



Design                          FE design optimisation
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Design                          FE design optimisation
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Maximum T/current Maximum T/kVA



Design      Vagati – number of barriers and positions
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42 kW

In this case:

2, 4,...
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Design                               Flux barrier design
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An example using circular shaped flux barriers with certain 
widths for each flux barrier



Design                Shaping air/iron and iron webs
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110 kW 30 kW

� Shape iron segments rather

� Rather no iron webs

iron web



Design                                   Asymmetric rotor
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� Reducing torque ripple without skewing

Sanada, Morimoto, 2004;  Bianchi, 2006



Design      Mechanical strength
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Design                                            Chording
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9 kW

42 kW



Design                                                Skew
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9 kW

42 kW



Design                                                Skew
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42 kW

Bomela, X. and Kamper M.J.: "Effect of stator chording and rotor skewing on 
performance of reluctance synchronous machine", IEEE Trans. Ind. Appl. 
Soc. (IAS), vol. 38, no. 1, pp. 91-100, Jan. 2002.



Design                                      2-pole design
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4-pole 6-pole2-pole

?



Position sensorless control            Methods
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• Standstill to low speeds (saliency based)

� Rotating HF injection � Impuls voltage vector

� Alternating HF injection � PWM without injection

� Arbitrary injection (parameter insensitive)

• Minimum to rated speeds (fundamental model based)

� Fundamental saliency method (RSM)

� Active flux method (Generic)

• Hybrid method (with hysterises band)

W.T. Villet, M.J. Kamper, P. Landsmann and R. Kennel, "Hybrid sensorless speed control of a 
reluctance synchronous machine through the entire speed range ", 15th International Power 
Electronics and Motion Control Conference and Exposition (EPE-PEMC 2012: ECCE 
Europe), Novi Sad (Serbia), 4-6 Sept. 2012



Position sensorless control  Alternating injection
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injection



Position sensorless control  Alternating injection
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Position sensorless control  Effect of rotor design
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Villet (2013) W. and Kamper M.J.: “Design of a RSM for saliency based position sensorless 
control at zero current", IEEE Int. Conf. on Industry Technology (ICIT), Cape Town (SA), 25-27 
Feb, 2013.

IdealNormal with ribs



Position sensorless control  Alternating injection

41

Villet (2013) W. and Kamper M.J.: “Design of a RSM for saliency based position sensorless 
control at zero current", IEEE Int. Conf. on Industry Technology (ICIT), Cape Town (SA), 25-
27 Feb, 2013.

Simulated Measured



Position sensorless control  Shift and coefficient

Magnetic axis shift (real position error)
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Saliency coefficient – a measure for valuing the suitability 
of a motor for sensorless control (range of 0 – 1)
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Position sensorless control       Fundamental
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P. Landsmann, R. Kennel, H.W. de Kock and M.J.Kamper, "Fundamental saliency 
based encoderless control for reluctance synchronous machines", XIX International 
Conference on Electrical Machines (ICEM), Rome (Italy), Sep 2010



Position sensorless control           Evaluation

• Almost no effect on efficiency and thermal.

• No higher audible noise with sensorless FOC.

• Rotor skewing is no problem with sensorless control.

• Rated standstill torque could be obtained sensorless.

• Sensorless with low to zero load current ?  � need 
alternative rotor design and manufacturing.
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W.T. Villet and M.J. Kamper, "Evaluation of reluctance synchronous machine rotor 
topologies for position sensorless control", Southern African Universities’ Power Engineering 
Conference (SAUPEC), Potchefstroom, Jan 31 – Feb 1, 2013

Performance of sensorless control (based on 1.5 kW RSM 
tests):



Manufacturing + Performance       9 kW RSM
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2.8 kW DC
2.2 kW IM
9 kW RSM

9 kW @ 1500 r/min RSM 
rotor - skewed



Manufacturing + Performance       9 kW RSM
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5.5 kW Induction 
Machine

9 kW RSM

Kamper M.J., Van der Merwe F.S. and Williamson S.: "Direct finite element 
design optimisation of the cageless reluctance synchronous machine", IEEE 
Trans. on Energy Conversion, Vol. 11, No. 3, September 1996, pp. 547-553.

… in same casing!



Manufacturing + Performance       9 kW RSM
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5.5 kW standard line 
started Induction 
Machine – stator 
and casing

9 kW Converter-fed 
RSM – stator in 5.5 
kW IM casing



Manufacturing                            42 kW RSM
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Manufacturing             Loher 30 kW RSM
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Performance tests     Loher 30 kW RSM
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Abbildung 2 Prüfstand im IM Prüffeld zur Messung des  RSM

Airgap Current Voltage Pout Effciency Tempr.

IM 0.7 mm 55.4 A 400 V 30 kW 91.7 59 K

RSM 0.6 mm 52.5 A 457 V 28.3 kW 93.8 45 K



Manufacturing                           110 kW RSM
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Manufacturing                           110 kW RSM
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Locally manufactured 110 kW RSM Rotor



Performance tests                    110 kW RSM
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Manufacturing                          Epoxy casted
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Villet (2013) W. and Kamper M.J.: “Design of a RSM for 
saliency based position sensorless control at zero 
current", IEEE Int. Conf. on Industry Technology (ICIT), 
Cape Town (SA), 25-27 Feb, 2013.

epoxy resin
iron ribs machined out

skewedunskewed



Cost                          Rotor manufacturing
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• Cost of RSM rotor versus IM rotor

• Energy (kJ or kWh) required to manufacture the rotor

• RSM rotor � Punch of laminations and End plates

• Epoxy casted RSM rotor ?

• Cost of the RSM inverter versus IM inverter ?



ABB                         Data

56



ABB                         Data

57



ABB                         … quotes
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… important statement 

… slide 46 confirms 
this statement 



RSM / IM working    Electric and magnetic circuits
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RSM

IM

(q-axis)

the difference in 
q-axis circuits 
explain the 
differences 
between the 
machines



Some other questions                         
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� Audible noise of RSM drives ?

… this seems not to be an issue.

� Bearing currents in converter-
fed RSMs ?

… are bearing currents worse than 
e.g. in the IM drive ?



Assisted RSMs                 IPM, FI, WR
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RSM

Bi-axialC-RSM

A-RSM FI-IPM

IPM

(d) (f)



Assisted RSMs                 IPM
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Epoxy bonded 
rare-earth layer 

IM stator 



Comparison                      RSM, IM, PM-RSM
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Assisted RSMs                 Wound rotor
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Kamper M.J. en Villet W.: "Design and performance of compensated reluctance synchronous machine drive 
with extended constant power speed range", IEEE ECCE, Raleigh (USA), Sept. 15-20, 2012.



Assisted RSMs                 Field intensified
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RSM

1.0

FI-IPM

1.0

FI-IPM

0.8
p.u. stack 

volume for the 
same power 

�

M.H.A. Prins, C.W. Vorster and M.J.Kamper, "Reluctance 
synchronous and field intensified-PM motors for variable-gear electric 
vehicle drives", IEEE ECCE, Denver (USA), 15-19 Sept, 2013.



Conclusions                   Viability of RSM drive
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Two main reasons why RSM-drives did not become 
viable alternative VSDs the past 20 years:

• Efficiency was less of an issue.

• A shaft position sensor was necessary.

These have changed now:

• Efficiency of VSDs totday is extremely important 
and RSM drives have that advantage.

• RSM position sensorless control is viable for 
certain small and medium power VSD applications.



Conclusions                    Viability of RSM drive

• ABB:

� 17 – 350 kW RSM drives in production for pump 
and fan applications.

• KSB (Frankenthal, Germany):

� 0.55 – 45 kW for pumps 

• Siemens ?

� ABB and KSB are in mass production, although 
for limited number of applications (pumps, fans).
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Conclusions                        Other applications

• Multi-gear EV drives

• RSG high speed windgenerators ?
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M.H.A. Prins, C.W. Vorster and M.J.Kamper, "Reluctance 
synchronous and field intensified-PM motors for variable-
gear electric vehicle drives", IEEE ECCE, Denver (USA), 
15-19 Sept, 2013.
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