IEEE Joint IAS/PELS/IES Chapter Meeting 4 – 5 July 2013, Graz, Austria

Reluctance Synchronous Machine Drives – a Viable Alternative ?

Prof MJ Kamper

Electrical Machines Laboratory Stellenbosch University South Africa

- Introduction
- History
- Modelling and steady state control
- Design
- Position sensorless control
- Manufacturing + Performance
- Cost
- Industry
- Assisted reluctance machines
- Conclusions: Answer to the question

Name:

Rather

'Reaktionsmaschine' (German) - 1960

'Unexcited synchronous machine' - 1930

'Polyphase reaction reluctance machine' - 1920

'Synchronous reluctance machine' (SRM or SyncRM)

today

→ <u>Reluctance</u> synchronous machine (RSM)

<u>Wound-rotor</u> synchronous machine

Permanent magnet synchronous machine (PMSM)

 Lipo(1991) T.A.: "Synchronous reluctance machines – a viable alternative for AC drives," Electr Mach Power Syst, vol. 19, pp. 659-671.

 Vagati (1994) A.: "The synchronous reluctance solution: a new alternative in A.C. drives," Proc IEEE IECON (Bologna), vol. 1, pp. 1-13.

 Kamper (2013).: "Reluctance synchronous machine drives – a viable alternative?," IEEE Joint IAS/PELS/IES Chapter Meeting, Graz (Austria).

Same title roughly 20 years later than Lipo and Vagati !!! Why don't we see RSM drives?

Kostko

Kostko (1923) J.K.: "Polyphase reaction synchronous motors", Journal AIEE, vol. 42, pp. 1162-1168.

Kostko said in 1923, "... it can hardly be expected that reaction motors will ever be extensively used."

Brinkman (1965) J.: "Theoretische und experimentelle untersuchen an einem motor mit verbesserter ausnuzung des reaktionsprinzips", Dissertation, Fakultät für Maschinenwesen der Technischen Hochshule Carolo-Wilhelmina, Braunschweig, Jan 1965.

Cruickshank (1971) A.J.O. *et al*: "Theory and performance of reluctance motors with axially laminated anisotropic rotors", Proc. IEE, vol 118, no. 7.

Honsinger (1971) V.B.: "The inductances L_d and L_q of reluctance machines", IEEE Trans. PAS, vol 90, no. 1.

Lipo (1967) T.A. and Krause, P.C.: "Stability analysis of a reluctancesynchronous machine", IEEE Trans. PAS, vol 86, no. 7, pp. 825-834.

Krause (1969), P.C. and Lipo T.A.: "Analysis and simplified representations of rectifier-inverter reluctance-synchronous motor drives", IEEE Trans. PAS, vol 88, no. 6, pp. 825-834.

Ong (1977), C.M. and Lipo T.A.: "Steady state analysis of a current source inverter reluctance motor drive", IEEE Trans. PAS, vol 96, no. 4.

Faucher (1979), J. *et al*: "Characterization of a closed-loop current-fed reluctance machine taking into account saturation", IEEE Trans. on Industrial Applications, vol 15, no. 5, pp. 482-488.

Al-Antably (1985) A. and Hudson T.L.: "The design and steady state performance of a high efficiency reluctance motor", IEEE-IAS Annual Meeting, pp. 770-776.

Weh (1985) H. and Schroder U.: "Static inverter concepts for multiphase machines with square-wave current-field distributions", European Power Electronic (EPE) Conference (Brussels), pp. 1147-1152.

Fratta (1987) A., Vagati A. and Vilatta A.: "A reluctance motor drive for high dynamic performance applications", IEEE-IAS Annual Meeting, pp. 295-302.

$$T = \frac{3}{2} p \left(\lambda_d I_q - \lambda_q I_d \right)$$

$$\rightarrow \text{ If } L_d = \frac{\lambda_d}{I_d} \text{ and } L_q = \frac{\lambda_q}{I_q}$$

$$T = \frac{3}{2} p \left(L_d - L_q \right) I_d I_q$$

$$T = \frac{3}{4} p \left(L_d - L_q \right) \hat{I}_s^2 \sin(2\phi)$$

$$P_{f} = \cos\left(\tan^{-1}\left(\frac{\frac{L_{d}}{L_{q}} \cdot \frac{I_{d}}{I_{q}} + \frac{I_{q}}{I_{d}}}{\frac{L_{d}}{L_{q}} - 1}\right)\right)$$

$$T = \frac{3}{2} p(L_d - L_q) \hat{I}_s^2 \sin(2\phi) = k \Delta L(\phi) \sin(2\phi)$$

Closed loop current control with rotor position feedback

Current control

- Use constant current angle in sub-base speed region for maximum T/Amp
- RSM drive has a poor constant power speed range (CPSR) and, hence, is not suited for applications that requires a large CPSR
- Compares not as good to the IM drive in terms of the CPSR

Rotor type

Axially laminated Normal laminated with internal flux barriers ... due to manufacturing costs and possible rotor

iron losses in axially laminated rotors

X

Multi layer internal flux barriers

9 kW

42 kW

FE design optimisation

FE design optimisation

An example using circular shaped flux barriers with certain widths for each flux barrier

- \rightarrow Shape iron segments rather
- \rightarrow Rather no iron webs

Asymmetric rotor

→ Reducing torque ripple without skewing

Sanada, Morimoto, 2004; Bianchi, 2006

Mechanical strength

Von Mises Stress Distribution due to 4500 rpm Rotation on Deformed Model (Blown-up)

Bomela, X. and Kamper M.J.: "Effect of stator chording and rotor skewing on performance of reluctance synchronous machine", IEEE Trans. Ind. Appl. Soc. (IAS), vol. 38, no. 1, pp. 91-100, Jan. **2002**.

- Standstill to low speeds (saliency based)
 - \rightarrow Rotating HF injection \rightarrow Impuls voltage vector
 - \rightarrow Alternating HF injection \rightarrow PWM without injection
 - → Arbitrary injection (parameter insensitive)
- Minimum to rated speeds (fundamental model based)
 - → Fundamental saliency method (RSM)
 - \rightarrow Active flux method (Generic)
- Hybrid method (with hysterises band)

W.T. Villet, M.J. Kamper, P. Landsmann and R. Kennel, "Hybrid sensorless speed control of a reluctance synchronous machine through the entire speed range ", 15th International Power Electronics and Motion Control Conference and Exposition (EPE-PEMC 2012: ECCE Europe), Novi Sad (Serbia), 4-6 Sept. 2012

S Position sensorless control Alternating injection

S Position sensorless control Alternating injection

$$i_{sq(\text{demodulated})}^{r} \approx \frac{u_{c}L_{\Delta}\theta_{\Delta}}{L_{d}L_{q}\omega_{c}}$$

Saliency
$$\rightarrow L_{\Delta} = \frac{L_d - L_q}{2};$$
 Position error $\rightarrow \theta_{\Delta} = \theta_e - \hat{\theta}_e$
 $L_d = \frac{\partial \psi_d}{\partial i_d};$ $L_q = \frac{\partial \psi_q}{\partial i_q}$

\rightarrow Saliency is load dependent

Villet (2013) W. and Kamper M.J.: "Design of a RSM for saliency based position sensorless control at zero current", IEEE Int. Conf. on Industry Technology (ICIT), Cape Town (SA), 25-27 Feb, 2013.

Villet (2013) W. and Kamper M.J.: "Design of a RSM for saliency based position sensorless control at zero current", IEEE Int. Conf. on Industry Technology (ICIT), Cape Town (SA), 25-27 Feb, 2013.

Position sensorless control Shift and coefficient

Frenzke, EPE (Dresden) 2005

Magnetic axis shift (real position error)

$$\theta_{\Delta 0} = -\frac{1}{2} \tan^{-1} \left(\frac{2L_{dq}}{L_d - L_q} \right) \quad \text{with} \quad L_{dq} = \frac{\partial \psi_d}{\partial i_q}$$

Saliency coefficient – a measure for valuing the suitability of a motor for sensorless control (range of 0 - 1)

$$\zeta = \frac{\sqrt{\left(L_d - L_q\right)^2 + 4L_{dq}^2}}{L_d + L_q}$$

P. Landsmann, R. Kennel, H.W. de Kock and M.J.Kamper, "Fundamental saliency based encoderless control for reluctance synchronous machines", XIX International Conference on Electrical Machines (ICEM), Rome (Italy), Sep 2010

Performance of sensorless control (based on 1.5 kW RSM tests):

- Almost no effect on <u>efficiency</u> and thermal.
- No higher audible <u>noise</u> with sensorless FOC.
- Rotor <u>skewing</u> is no problem with sensorless control.
- Rated standstill torque could be obtained sensorless.
- Sensorless with <u>low to zero</u> load <u>current</u>? → need alternative rotor design and manufacturing.

W.T. Villet and M.J. Kamper, "Evaluation of reluctance synchronous machine rotor topologies for position sensorless control", Southern African Universities' Power Engineering Conference (SAUPEC), Potchefstroom, Jan 31 – Feb 1, 2013

2.8 kW DC 2.2 kW IM 9 kW RSM

9 kW @ 1500 r/min RSM rotor - skewed

Kamper M.J., Van der Merwe F.S. and Williamson S.: "Direct finite element design optimisation of the cageless reluctance synchronous machine", IEEE Trans. on Energy Conversion, Vol. 11, No. 3, September **1996**, pp. 547-553.

5.5 kW standard line started Induction Machine – stator and casing

9 kW Converter-fed RSM – stator in 5.5 kW IM casing

Loher 30 kW RSM

Loher 30 kW RSM

Abbildung 2 Prüfstand im IM Prüffeld zur Messung des RSM

	Airgap	Current	Voltage	Pout	Effciency	Tempr.
IM	0.7 mm	55.4 A	400 V	30 kW	91.7	59 K
RSM	0.6 mm	52.5 A	457 V	28.3 kW	93.8	45 K

110 kW RSM

Locally manufactured 110 kW RSM Rotor

110 kW RSM

Rotor manufacturing

- Cost of RSM rotor versus IM rotor
- Energy (kJ or kWh) required to manufacture the rotor
- RSM rotor \rightarrow Punch of laminations and End plates
- Epoxy casted RSM rotor ?
- Cost of the RSM inverter versus IM inverter ?

size or higher output from the same size

Pump applic 22 kW, 1500	rpm		Fan application example 37 kW, 3000 rpm		
	High output SynRM motor	ABB IE2 induction motor		High output SynRM motor	ABB IE2 induction motor
Frame size	160, 174 kg	180, 222 kg	Frame size	160, 157 kg	200, 298 kg
Motor efficiency	DOL: N/A, VSD: 92.8%	DOL: 92.4%, VSD: ~91.0%	Motor efficiency	DOL: N/A, VSD: 93.7 %	DOL: 93.4%, VSD: ~92.2%
Customer be	nefit: Same output	from a smaller		Free area: 65%	Free area: 25%

Customer benefit: Reduced system space

- lower weight, easier installation

Since there is always a frequency converter between the motor and the grid, the lower power factor is not apparent on the grid side and consequently does not have an impact on the grid supply dimensioning. However, the lower power factor may sometimes mean that a frequency converter with a higher current rating is needed.

... important statement

Audible noise of RSM drives ? ... this seems not to be an issue.

Bearing currents in converterfed RSMs ?

... are bearing currents worse than e.g. in the IM drive ?

Assisted RSMs

IPM

Assisted RSMs

Wound rotor

Kamper M.J. en Villet W.: "Design and performance of compensated reluctance synchronous machine drive with extended constant power speed range", IEEE ECCE, Raleigh (USA), Sept. 15-20, 2012.

Field intensified

M.H.A. Prins, C.W. Vorster and M.J.Kamper, "Reluctance synchronous and field intensified-PM motors for variable-gear electric vehicle drives", IEEE ECCE, Denver (USA), 15-19 Sept, 2013.

Two main reasons why RSM-drives did not become viable alternative VSDs the past 20 years:

- Efficiency was less of an issue.
- A shaft position sensor was necessary.

These have changed now:

- Efficiency of VSDs totday is extremely important and RSM drives have that advantage.
- RSM position sensorless control is viable for certain small and medium power VSD applications.

• ABB:

- → 17 350 kW RSM drives in production for pump and fan applications.
- KSB (Frankenthal, Germany):
 - \rightarrow 0.55 45 kW for pumps
- Siemens ?
 - → ABB and KSB are in mass production, although for limited number of applications (pumps, fans).

Other applications

Multi-gear EV drives

M.H.A. Prins, C.W. Vorster and M.J.Kamper, "Reluctance synchronous and field intensified-PM motors for variablegear electric vehicle drives", IEEE ECCE, Denver (USA), 15-19 Sept, 2013.

RSG high speed windgenerators ?

Prof MJ Kamper

Electrical Machines Laboratory Department of Electrical and Electronic Engineering University of Stellenbosch South Africa

