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Outline 

Current and Envisioned Status of the Power System 
– Overview of control requirements 

 

Proposed Control Strategy 
– Online set point modulation 

 

Results of Evaluation of the Strategy 
– Offline simulation 
– Real-time implementation  
– Fine tuning the parameters of the strategy 

 

Applications 
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Motivation 

One of the U.S. grand energy challenges is to enable 
integration of at least 80% renewable energy resources 
at a competitive cost in the power grid by 2050. 
While it is technically feasible to run the U.S. economy 
on renewable technologies available today, what is 
missing is a flexible power system that accommodates 
the unique characteristics of renewable resources: 
– Intermittency 
– Lack of inertia 
– Susceptibility to violation of operational limits 

This work addresses the latter—susceptibility to 
violation of limits.  
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Global Need 

The need to address this challenge is confirmed by 
– Department of Energy 2012 microgrid workshop (and 2011/2010) 
– 2013 White House 21st century grid report (and 2012) 
– National Academy of Engineering (2013 grand challenges) 

Our proposed strategy addresses this challenge: 
– It empowers controllers to closely track their set points even 

when the host system changes significantly. 

The existing work does not address this gap: 
– The common designs assume the host system does not 

experience significant changes.  

Significance of this work is that it reduces the need for 
overdesign and subsequently increases asset utilization. 
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Goal 

Our goal is to significantly improve the performance of 
controllers in a system that  
– Is time varying  
– Has limited reserve  

 
A prominent example of such systems is a microgrid. 
– Enabling concept for the modern and smart power system as a 

building block. 
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Microgrids 

Definition 
– An aggregate of collocated resources (loads, generation units, and 

storage units) that are interfaced to the main grid at the 
distribution level and is capable of operating in the grid-
connected mode, islanded mode, and the transition between 
these two modes.  
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Microgrid Challenges (1/3) 

Microgrids offer scalability, modularity, and security, but 
they may experience 

• Frequent changes in the topology; 
• Units susceptible to overcurrents and overvoltages; 
• Operation close to the limits to increase asset utilization; and 
• Limited total capacity. 

Therefore, changes in the microgrid may have a 
detrimental effect on the performance of controllers. 
– Controllers are designed for a prespecified configuration. 

It is imperative to ensure controllers retain their tracking 
capability under various operating conditions, including 
those very different from the original design. 
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Microgrid Challenges (2/3) 

Existing control design approaches include 
– Model-based automated tuning (Astrom’s work) 
– Optimization-based (Gole’s work) 

 
However, these approaches 
– Require access to updated system models; 
– Need availability of a computational infrastructure to allow 

redesign; 
– Have limited robustness to topology, operating point, and system 

parameters; 
– Are difficult to retune; or 
– Are intrusive. 
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Microgrid Challenges (3/3) 

Example 
– Effect of large load change on controller performance. 

Load Disconnected 
Overshoot: 26% 

Settling time: 67 ms 

Original System 
Overshoot: 15% 

Settling time: 32 ms 
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Our objective is to design stringent control strategies 
that offer close set point tracking while being 
– Robust to topological and operational changes; 
– Independent of the system model; and 
– Operating with little information about the unit to which it is 

associated. 

Objective 
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Shaping of the Response Trajectory 

Consideration of Dynamic Limits of Devices 
 
 
 
 

 
 
Challenges 
– Avoid violating dynamic limits 

• With a small overshoot 
– Achieve a fast response 

• Without changing the existing controller 
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Proposed Solution 

Improving the response by  
temporarily manipulating  
the set point 
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Set Point Modulation 

Best Strategy 
– Choose T1 so that the peak of the response equals the reference 
– Choose T2 to be the time of this peak 

 

Not Implementable 
– Faster-than-real-time simulator 
– Closed-form solution  
– System parameters 
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Finite-State Machine 

SPAACE /speɪs/: Set Point Automatic Adjustment with 
Correction Enabled 
 
Salient Features: 
– Based on local signals 
– Independent of model 
– Robust to changes in 

parameters 
– Independent of time scale 
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Case Study I: Set Point Change 

System Response 
DG2 step change from 0.91 pu to 1.09 pu 

DG1 and DG3 unchanged 
(40% overshoot) 

 

 

IEEE 34-Bus System 
Added 3 DG units and a load 

Operates in grid-connected mode 
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Case Study II: Simultaneous Change 

System Response 
Simultaneous step change 
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Case Study III: Load Disconnection 

System Response 
Resistive 0.5 pu load change  

(15% overshoot) 
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Case Study IV: Unbalanced System 
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Metric 

A Metric to Assess Improvement in Tracking 
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HVDC Study System 

CIGRE HVDC Monopolar First Benchmark System 
Rectifier is current controlled 
Inverter is gamma controlled 

345 kV 
50 Hz 

230 kV 
50 Hz 

12 pulse, 500 kV, 1000 MW 
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Case I: Rectifier Current Step (0 to 0.55 pu) 
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No SPAACE 0.878 59.6% 1.0 95 

With SPAACE 0.708 28.7% 0.56 (Δ=44%)  75 (Δ=26.3%)  
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Case II: Faulted (I-Side) DC Current, 50 ms 
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Prediction Methods 
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Prediction Algorithms: Step Change 

Linear Prediction 
Quadratic Prediction 
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Prediction Algorithms: Fault 

Peak (pu) Error (Se) Settling (ms) 

No SPAACE 1.744 1.0 800 

With SPAACE (L) 1.540 0.45 (Δ=55%)  260 (Δ=67.5%)  

With SPAACE (Q) 1.206 0.21  (Δ=79%) 500 (Δ=37.5%) 
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Effect of Scaling Factor m 

Adaptive Nature of SPAACE 

t

x(t)

u1
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Response without 
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Response with 
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Scaling Factor m 
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Upper Bound of m 
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Physical Analogy 
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Alternative Methods to SPAACE 
Model-

Free 
Non-

Intrusive 
No Access to 

Controller 
Comments 

SCALING PI ✔ ✔ X Limited to performance of 
the original design 

RAMP ✔ ✔ ✔ Unnecessary intervention, 
DC tracking 

MPC X ✔ X Computationally intensive 

PID X ✔ X D as linear extrapolation 

ES / IFL ✔ X X Sinusoidal perturbation o 
input 

POSICAST X ✔ ✔ Essentially open-loop, 
2nd-order 

SPAACE ✔ ✔ ✔ 
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SPAA 

If a priori knowledge of overshoot is available 
– SPAA /spɑː/: Set point automatic adjustment 
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SPAA Case Study 

Start-Up Current Control 
– IEEE 34-bus system with 3 DERs 
– DER1 and 3: id = 1.0 pu, iq = 0 
– DER2: off to id = 1.08 pu 
– SPAA assumes ζ=0.361 and ω=8450 rad/s  
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SPAA vs. SPAACE 

 
 SPAA SPAACE 

RATE OF UPDATE After steady state Continuously 
NEED TO MODEL Yes (approximate) No 
EFFECTIVENESS Large changes Moderate changes 
APPROACH Open loop Closed loop 
RESPONSIVENESS Set point change Any difference in the set 

point and response (set 
point change, load 
switching, faults) 
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Experimental Implementation 

NI cRIO: 
SPAACE 
Algorithm 

DC Power Supply 

NI cDAQ: Collect Data 

Measurement and 
Control Signals 

RSCAD 

Real-Time Digital Simulator 
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Experimental Implementation 

x(t): output signal, u(t): set point for output, u*(t): adjusted set point. 

u*(t)

x(t), u(t), u*(t)

measure x(t), u(t), u*(t)
NI cDAQ: 

Data 
Acquisition

NI cRIO: 
SPAACE 

Algorithm

Real-Time 
Digital 

Simulator 
(RTDS): 

Power system

Laptop: 
RSCAD and 
LabVIEW 

status 
monitoring

Interactive Execution Data, Data Monitoring

x(t), u(t)

Data
Monitoring
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1

2

3 4 5

1 – Laptop running RSCAD and LabVIEW
2 – Real-Time Digital Simulator
3 – DC Power Source
4 – NI Compact RIO Controller
5 – NI cDAQ (Data Acquisition)
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Test System 



39 of 43 

Case I: Load Energization (1.2 pu) 
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Case II: Step Change in iq 
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Conclusions 

By appropriately designing the trajectory to reduce 
overshoots, it is possible and safe for a system to 
operate closer to its limits. 
 
 
Offline (PSCAD) and real-time (RTDS) simulation studies 
show that SPAACE is effective in mitigating transients: 
– Step change: Mitigating overshoots (37%) 
– Fault: Closer set point following 
– Load energization: Eliminating a peak of 1.15 pu 
– Load disconnection in a unbalanced system: Stabilizing oscillatory 

behavior of voltage 
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Applications 

Systems with Limited Resources 
– Transients may exceed the capacity of the system  

 
 
 
 
 
 

 
 
 
Emerging Application: HSIL transmission lines 
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Thank You 
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