
Reconstructive Geometry

© 2008, 2009, 2010, 2011, Torsten Ullrich
Reconstructive Geometry

Institut für ComputerGraphik
und WissensVisualisierung,
Technische Universität Graz

Dissertation

Reconstructive Geometry

submitted in partial satisfaction of the requirements

for the degree of Doctor of Philosophy (PhD)

in Information and Computer Science

by Dipl.-Math. Torsten Ullrich,

Graz University of Technology, Austria

Institute of Computer Graphics
and Knowledge Visualization

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other

than the declared sources, and that I have explicitly marked all material which has

been quoted either literally or by content from the used sources.

(date) (signature)

Preface

A this point, I would like to use the opportunity to thank my supervisor Prof. Dr. Dieter

W. Fellner and my colleagues of the Institute of Computer Graphics and Knowledge

Visualization at Graz University of Technology. Highly committed colleagues and an

inspiring working environment had a significant influence on the fruitfulness and the

numerous achievements. In this context, I would like to thank all the coauthors of the

scientific articles published within their and my work.

Abstract

The thesis “Reconstructive Geometry” by TORSTEN ULLRICH presents a new collision

detection algorithm, a novel approach to generative modeling, and an innovative

shape recognition technique. All these contributions are centered around the ques-

tions “how to combine acquisition data with generative model descriptions” and “how

to perform this combination efficiently”. Acquisition data – such as point clouds and

triangle meshes – are created e.g. by a 3D scanner or a photogrammetric process. They

can describe a shape’s geometry very well, but do not contain any semantic informa-

tion. With generative descriptions it’s the other way round: a procedure describes a

rather ideal object and its construction process. This thesis builds a bridge between

both types of geometry descriptions and combines them to a semantic unit. An in-

novative shape recognition technique, presented in this thesis, determines whether a

digitized real-world object might have been created by a given generative description,

and if so, it identifies the high-level parameters that have been passed to the genera-

tive script. Such a generative script is a simple JavaScript function. Using the genera-

tive modeling compiler “Euclides” the function can be understood in a mathematical

sense; i.e. it can be differentiated with respect to its input parameters, it can be em-

bedded into an objective function, and it can be optimized using standard numerical

analysis. This approach offers a wide range of applications for generative modeling

techniques; parameters do not have to be set manually – they can be set automatically

according to a reasonable objective function. In case of shape recognition, the objec-

tive function is distance-based and measures the similarity of two objects. The tech-

niques that are used to efficiently perform this task (space partitioning, hierarchical

structures, etc.) are the same in collision detection where the question, whether two

objects have distance zero, is answered. To sum up, distance functions and distance

calculations are a main part of this thesis along with their application in geometric

object descriptions, semantic enrichment, numerical analysis and many more.

Publications

All main parts of this thesis have been – respectively will be – published in the follow-
ing articles and conference contributions:

[HUF11] Sven Havemann, Torsten Ullrich, and Dieter W. Fellner. The Meaning
of Shape and some Techniques to Extract It. Multimedia Information
Extraction, XX:to appear, 2011.

[SUF11] Christoph Schinko, Torsten Ullrich, and Dieter W. Fellner. Simple and
Efficient Normal Encoding with Error Bounds. Poster Proceedings of
Theory and Practice of Computer Graphics, XX:to appear, 2011.

[SSUF11a] Thomas Schiffer, Christoph Schinko, Torsten Ullrich, and Dieter W.
Fellner. Real-World Geometry and Generative Knowledge. The Euro-
pean Research Consortium for Informatics and Mathematics (ERCIM)
News, XX:to appear, 2011.

[SSUF11b] Christoph Schinko, Martin Strobl, Torsten Ullrich, and Dieter W. Fell-
ner. Modeling Procedural Knowledge – a generative modeler for cul-
tural heritage. Selected Readings in Computer Graphics 2010, XX:to ap-
pear, 2011.

[UF11a] Torsten Ullrich and Dieter W. Fellner. Generative Object Definition and
Semantic Recognition. Proccedings of the Eurographics Workshop on
3D Object Retrieval, 4:1–8, 2011.

[UF11b] Torsten Ullrich and Dieter W. Fellner. Linear Algorithms in Sublinear
Time – a tutorial on statistical estimation. IEEE Computer Graphics and
Applications, 31:58–66, 2011.

[BBU+11] Frank Breuel, René Berndt, Torsten Ullrich, Eva Eggeling, and Dieter W.
Fellner. Mate in 3D – Publishing Interactive Content in PDF3D. Pub-
lishing in the Networked World: Transforming the Nature of Communi-
cation, Proceedings of the International Conference on Electronic Pub-
lishing, 15:110–119, 2011.

[SUSF11] Christoph Schinko, Torsten Ullrich, Thomas Schiffer, and Dieter W.
Fellner. Variance Analysis and Comparison in Computer-Aided Design.
Proceedings of the International Workshop on 3D Virtual Reconstruc-
tion and Visualization of Complex Architectures, XXXVIII-5/W16:3B21–
25, 2011.

[USB10] Torsten Ullrich, Volker Settgast, and René Berndt. Semantic Enrich-
ment for 3D Documents: Techniques and Open Problems. Publishing
in the Networked World: Transforming the Nature of Communication,
Proceedings of the International Conference on Electronic Publishing,
14:374–384, 2010.

[USF10b] Torsten Ullrich, Christoph Schinko, and Dieter W. Fellner. Procedu-
ral Modeling in Theory and Practice. Poster Proceedings of the 18th
WSCG International Conference on Computer Graphics, Visualization
and Computer Vision, 18:5–8, 2010.

[USF10a] Torsten Ullrich, Andreas Schiefer, and Dieter W. Fellner. Modeling with
Subdivision Surfaces. Proceedings of the 18th WSCG International Con-
ference on Computer Graphics, Visualization and Computer Vision,
18:1–8, 2010.

[SSUF10b] Martin Strobl, Christoph Schinko, Torsten Ullrich, and Dieter W. Fell-
ner. Euclides – A JavaScript to PostScript Translator. Proccedings of the
International Conference on Computational Logics, Algebras, Program-
ming, Tools, and Benchmarking (Computation Tools), 1:14–21, 2010.

[SSUF10a] Christoph Schinko, Martin Strobl, Torsten Ullrich, and Dieter W. Fell-
ner. Modeling Procedural Knowledge – a generative modeler for cul-
tural heritage. Proccedings of EUROMED 2010 - Lecture Notes on Com-
puter Science, 6436:153–165, 2010.

[SSB+10] Thomas Schiffer, Andreas Schiefer, René Berndt, Torsten Ullrich, Volker
Settgast, and Dieter W. Fellner. Enlightened by the Web – A service-
oriented architecture for real-time photorealistic rendering. Kongress
Multimediatechnik, 5:41–48, 2010.

[SBU+10] Andreas Schiefer, René Berndt, Torsten Ullrich, Volker Settgast, and Di-
eter W. Fellner. Service-Oriented Scene Graph Manipulation. Proceed-
ings of the 15th International Conference on Web 3D Technology, 15:55–
62, 2010.

[USOF09] Torsten Ullrich, Volker Settgast, Christian Ofenböck, and Dieter W. Fell-
ner. Short Paper: Desktop Integration in Graphics Environments. Proc-
cedings of the 2009 Joint Virtual Reality Conference of Eurographics
Symposium on Virtual Environments (EGVE), International Conference
on Artificial Reality and Telexistence (ICAT), and EuroVR (INTUITION)
Conference, 15:109–112, 2009.

[USF09] Torsten Ullrich, Volker Settgast, and Dieter W. Fellner. Semantic Fit-
ting and Reconstuction. Selected Readings in Computer Graphics 2008,
19:69–84, 2009.

[FUFB09] Christoph Fünfzig, Torsten Ullrich, Dieter W. Fellner, and Edward N.
Bachelder. Terrain and Model Queries Using Scalar Representation
With Wavelet Compression. IEEE Transactions on Instrumentation and
Measurement, 58:3079–3085, 2009.

[SRO+08] Markus Steiner, Philipp Reiter, Christian Ofenböck, Volker Settgast,
Torsten Ullrich, Marcel Lancelle, and Dieter W. Fellner. Intuitive Nav-
igation in Virtual Environments. Proceedings of Eurographics Sympo-
sium on Virtual Environments, 14:5–8, 2008.

[UTF08] Torsten Ullrich, Torsten Techmann, and Dieter W. Fellner. Web-based
Algorithm Tutorials in Different Learning Scenarios. World Confer-
ence on Educational Multimedia, Hypermedia and Telecommunica-
tions (ED-Media), 20:5467–5472, 2008.

[UKF08] Torsten Ullrich, Ulrich Krispel, and Dieter W. Fellner. Compilation of
Procedural Models. Proceeding of the 13th International Conference on
3D Web Technology, 13:75–81, 2008.

[USF08b] Torsten Ullrich, Volker Settgast, and Dieter W. Fellner. Semantic Fit-
ting and Reconstuction. Journal on Computing and Cultural Heritage,
1(2):1201–1220, 2008.

[USF08a] Torsten Ullrich, Volker Settgast, and Dieter W. Fellner. Abstand: Dis-
tance Visualization for Geometric Analysis. Project Paper Proceedings
of the Conference on Virtual Systems and MultiMedia Dedicated to Dig-
ital Heritage (VSMM), 14:334–340, 2008.

[FUFB07] Christoph Fünfzig, Torsten Ullrich, Dieter W. Fellner, and Edward N.
Bachelder. Empirical Comparison of Data Strucutres for Line of Sight
Computation. Proceedings of IEEE International Symposium on Intelli-
gent Signal Processing (WISP) 2007, 1:291–296, 2007.

[SUF07] Volker Settgast, Torsten Ullrich, and Dieter W. Fellner. Information
Technology for Cultural Heritage. IEEE Potentials, 26(4):38–43, 2007.

[USK+07] Torsten Ullrich, Volker Settgast, Ulrich Krispel, Christoph Fünfzig, and
Dieter W. Fellner. Distance Calculation between a Point and a Subdi-
vision Surface. Proceedings of 2007 Vision, Modeling and Visualization
(VMV), 1:161–169, 2007.

[UFF07] Torsten Ullrich, Christoph Fünfzig, and Dieter W. Fellner. Two Different
Views On Collision Detection. IEEE Potentials, 26(1):26–30, 2007.

[UF07b] Torsten Ullrich and Dieter W. Fellner. Robust Shape Fitting and Seman-
tic Enrichment. Proceedings of the 2007 International Symposium of
the International Committee for Architectural Photogrammetry (CIPA),
21:727–732, 2007.

[UF07a] Torsten Ullrich and Dieter W. Fellner. Client-Side Scripting in Blended
Learning Environments. The European Research Consortium for Infor-
matics and Mathematics (ERCIM) News, 71:43–44, 2007.

[FUF06] Christoph Fünfzig, Torsten Ullrich, and Dieter W. Fellner. Hierarchical
Spherical Distance Fields for Collision Detection. Computer Graphics
and Applications, 26(1):64–74, 2006.

[LOU+06] Marcel Lancelle, Lars Offen, Torsten Ullrich, Torsten Techmann, and
Dieter W. Fellner. Minimally Invasive Projector Calibration for 3D Ap-
plications. Proceedings of 3. Workshop Virtuelle und Erweiterte Realität
der GI-Fachgruppe VR/AR, 1(1):1–9, 2006.

[UF05] Torsten Ullrich and Dieter W. Fellner. Computer Graphics Courseware.
Proceedings of Eurographics 2005 Education, 1:11–17, 2005.

[UF04b] Torsten Ullrich and Dieter W. Fellner. Modulare Inhaltserzeugung nach
dem Baukastenprinzip. DeLFI 2004: Die e-Learning Fachtagung der
Gesellschaft für Informatik 2004, 52:405–406, 2004.

[UF04a] Torsten Ullrich and Dieter W. Fellner. AlgoViz - a Computer Graphics
Algorithm Visualization Toolkit. World Conference on Educational Mul-
timedia, Hypermedia and Telecommunications (ED-Media), 16:941–
948, 2004.

Contents

1 Introduction 1
1.1 Cultural Heritage 2

Acquisition Pipeline, 2 – Assembling Object Parts, 4.

1.2 Geometric Reconstruction and Semantic Enrichment 6
Fitting Techniques, 6 – Semantic Enrichment, 8.

1.3 Open Problems and Overview 9
Note: Selected Readings on Digital Cultural Heritage, 11 .

2 Mathematical Basis 13
2.1 Linear Algebra 14

Vector Space, 14 – Bases and Dimension, 15 – Change of Bases,
15 – Transformations, 16 – Inner Products and Orthogonality,
16 – Projection, 17 – Normalization, 17 – Eigenanalysis, 19 –
Principal Component Analysis, 19 – Multiresolution Analysis, 21 –
Note: Wavelets for Image Compression, 31.

2.2 Probability and Statistics 32
Probability Space, 32 – Discrete Probabilities, 33 – Discrete Distri-
butions, 34 – Continuous Probabilities, 36 – Note: Random Sample
Consensus , 38 – Continuous Distributions, 40 – Inequalities and
Limits, 42 – Statistical Estimation, 44 – Note: Linear Algorithms in
Sublinear Time, 48.

2.3 Numerical Optimization 49
Quadratic Search, 50 – Gradient Descent, 50 – Note: Automatic
Differentiation, 52 – Conjugated Gradients, 54 – Genetic Algo-
rithms, 55 – Differential Evolution, 55 .

3 Geometry 57
3.1 Topology 58

Topological Space, 58 – Maps and Bases, 58 – Manifold, 59.

3.2 Affine Geometry 60
Affine Space, 60 – Affine Coordinate System, 61 – Convex Hull and
Barycentric Coordinates, 61.

3.3 Euclidean Geometry 63
Metric, 63 – Point Sets, 64 – Signed distance, 65 – Note: Distance
Visualization, 66.

3.4 Projective Geometry 68
Projective Space, 68 – Projective Coordinates, 69 – Affine Spaces
↔ Projective Spaces, 70 – Duality Principle, 72 – Projections, 72

– Note: Projector Calibration, 76.

3.5 Differential Geometry 78
Differential Geometry of Curves, 78 – Change of Parameter, 78
– Arc Length Parametrization, 79 – Local Coordinate System, 79
– Frenet Formulas, 80 – Differential Geometry of Surfaces, 82 –
Change of Parameter, 84 – Fundamental Forms, 85 – First Funda-
mental Form, 85 – Note: Map Projections, 88 – Second Fundamen-
tal Form, 90 – Euler Curvature Formula, 91 – Mean Curvature and
Gaussian Curvature, 92 – Note: Curvature on Discrete Structures, 94 .

4 Computer-Aided Geometric Design 97
4.1 Heightfields and Polygonal Surfaces 98

Line-Of-Sight Calculation, 99 – KD-Tree Ray Casting, 99 – Non-
standard Decomposition in Max-Plus-Algebra, 103 – Nonstandard
Decomposition in Real Algebra, 104 – Note: Max Plus Algebra, 104
– Optimizations and Empirical Comparison, 107 – Note: Laser
Scanning, 110.

4.2 Collision Detection 112
Spherical Distance Fields, 113 – Note: Axis-Aligned Bounding Boxes,
114 – Spherical Model Representation, 116 – Spherical sampling,
118 – Intersection Test, 119 – Technical Details, 122 – Benchmark,
125.

4.3 Subdivision Surfaces 130
Bézier and B-Spline Techniques, 130 – Note: Vector Fonts, 132 –
Tensor Product Surfaces, 136 – Catmull-Clark Subdivision Surfaces,
140 – Distance Fields, 147 – Technical Details , 151 – Benchmarks,
155 – Modeling with Subdivision Surfaces, 157 – Curvature-Driven
Modeling, 172.

4.4 Generative Modeling 178
Generative Modeling Techniques, 179 – Note: Generative Modeling
Language, 184 – Procedural Model Compilation, 185 .

5 Reconstructive Geometry 207
5.1 Information Extraction 208

2D/3D Analogy, 208 – Semantic Gap, 209 – Digital Libraries, 209
– Note: Documents, Metadata, and Annotations, 210.

5.2 Shape Description 212
Description by Definition, 212 – Taxonomic Examples, 213 – Sta-
tistical Approaches and Machine Learning, 213 – Algorithmic De-
scription, 214.

5.3 Reverse Engineering 215
Structural Decomposition, 217 – Symmetry Detection, 218 – Com-
plete Fitting, 219 – Subpart Fitting with Segmentation, 220 – Sub-
part Fitting without Segmentation, 220.

5.4 Generative Object Definition and Semantic Recognition 221
Distance Function, 222 – Weighting Function, 223 – Parameter
Estimation, 226.

5.5 Implementation 227
Hierarchical Shape Description, 227 – Fuzzy Geometry , 229 –
Inverse Geometry , 230 – Optimization, 230 – Distance Calculation,
231 – Linear Algorithms in Sublinear Time, 232.

5.6 Applications 233
Selfsimilarity, 234 – Parameter Estimation, 236 – Shape Recognition,
241 .

6 Conclusion & Future Work 249
6.1 Collision Detection 250

Contribution, 250 – Benefit, 250.

6.2 Generative Modeling 250
Contribution, 251 – Benefit, 251.

6.3 Semantic Reconstruction 252
Contribution, 252 – Benefit, 252.

6.4 Future Work 252
Generative Modeling, 253 – Procedural Optimization, 253 .

Bibliography 257
Index 285

Notation

The following notation is used throughout this book:

Scalars a ,b ,c , . . .

Vectors u,v,w, . . .

Matrices M,A,B, . . .

Vector spaces V,A,B , . . .

Points P,Q ,R , . . .

Point sets P,Q,R, . . .

Affine spaces A,B,C, . . .

Algebras F ,G , . . .

Sets X ,Y ,Z , . . .

1

1 Introduction

Information technology applications in the field of cultural heritage include various
disciplines of computer science. The work flow from archaeological discovery to sci-
entific preparation demands multidisciplinary cooperation and interaction at various
levels.

This chapter describes the information technology pipeline from the computer
science point of view. The description starts with the model acquisition. Computer vi-
sion algorithms are able to generate a raw 3D model using input data such as photos,
scans, etc. In the next step computer graphics methods create an accurate, high-level
model description.

Beside geometric information each model needs semantic metadata in order to
perform digital library tasks (storage, markup, indexing, and retrieval). A structured
repository of virtual artifacts completes the pipeline – at least from the computer sci-
ence point of view.

The context of information technology in the field of cultural heritage is described
in this chapter. In the whole thesis it will serve a field of applications for reconstruc-
tion techniques. The subsequent chapters explain reconstructive geometry in-depth
including its mathematical basis and additional, illustrative applications in collision
detection, line-of-sight calculation, projector calibration, and many more.

Contents

1.1 Cultural Heritage 2

1.2 Geometric Reconstruction and Semantic Enrichment 6

1.3 Open Problems and Overview 9

2 1 Introduction

1.1 Cultural Heritage

Une civilisation est un héritage de croyances, de coutumes et de connais-
sances, lentement acquises au cours des siècles, difficiles parfois á justifier
par la logique, mais qui se justifient d’elles-mêmes, comme des chemins,
s’ils conduisent quelque part, puisqu’elles, puisqu’elles ouvrent á l’homme
son ètendue intérieure.

A civilization is a heritage of beliefs, customs, and knowledge slowly accu-
mulated in the course of centuries, elements difficult at times to justify by
logic, but justifying themselves as paths when they lead somewhere, since
they open up for man his inner distance.

ANTOINE DE SAINT-EXUPÉRY1

Each civilization wants to preserve its paths back to the roots, as the legacy from the
past is an irreplaceable source of inspiration and an indispensable element to un-
derstand history. The demand to preserve mankind’s artifacts of history is a body of
thought that obtains more and more acceptance in society. Using state-of-the-art in-
formation technology the limited resources needed to conserve cultural heritage can
be turned to account efficiently. The technical process to acquire historical artifacts
is a non-trivial task, even if the questions of preservation, restoration, and refurbish-
ment shall remain unanswered within this text.

1.1.1 Acquisition Pipeline

The first step in the acquisition pipeline is to measure an object using 3D scanning
technologies based on laser scanners, computer tomography, or photogrammetry.
The measured data, usually represented as a point cloud or a heightfield, has to be
re-engineered to receive a geometric description of the object. Although the geomet-
ric description has an added value, a further, expedient acquisition needs semantic
information which classifies the object and provides a valuable context.

The acquisition pipeline starts with the physical measurement of an object. The
possibilities to acquire a three-dimensional artifact varies from manual tape mea-
surement and haptic sensor acquisition to laser range scanners and image-based
photogrammetry.

All these methods have their advantages and disadvantages. From the usability
point of view an image-based reconstruction is the easiest one – everyone can handle

1 ANTOINE DE SAINT-EXUPÉRY (June 29, 1900 – July 31, 1944) Antoine de Saint-Exupéry belongs to the
most popular representatives of modern, French literature. His book “Le Petit Prince” (english: The
Little Prince) became world famous.

1.1 Cultural Heritage 3

Photo n −1

Photo n
Photo n +1

P

P̃n−1

P̃n

P̃n+1
cn−1

cn

cn+1

dn−1

dn

dn+1

Figure 1.1: A photogrammetric reconstruction uses differences in a sequence of images to
determine the 3D coordinates of an object. One of the main steps of an image-based recon-
struction is to identify corresponding points P̃i , which are images of the same 3D point P . Hav-
ing identified a set of corresponding points in the sequence of images, the theory of epipolar
geometry allows the determination of the cameras’ parameters (their position cn and orien-
tation dn vectors, focal length, etc.).

a camera. The complexity of this approach is hidden within the algorithms to gen-
erate a 3D model. To build a three dimensional model out of a sequence of images,
three steps need to be done:

1. In the sequence of images, so-called corresponding points have to be identified.
Two points in different images are corresponding, if they show the same 3D point
that has been photographed. Such a constellation is illustrated in Figure 1.1.

2. Having identified a set of corresponding points in the sequence of images, the
theory of epipolar geometry allows the determination of the extrinsic camera
parameters (position and orientation) as well as the intrinsic camera parameters
(principal point, focal length, and distortion).

4 1 Introduction

At least seven pairs of corresponding points in two images are needed to deter-
mine the two cameras. Due to numerical stability aspects, any robust algorithm
will use many more points to perform an error minimization.

3. The process by which a few points with already calculated coordinates in 3D are
compared to a complete mapping of all pixels to the correct 3D coordinates is
called dense matching. After this process, a depth value can be assigned to each
pixel in a photograph transforming an image into a heightfield.

The corresponding point problem can be solved in many ways. Several common ap-
proaches can work iteratively to solve this chicken and egg problem. It is easy to iden-
tify corresponding points when the underlying 3D model is known. It also is possible
to reconstruct the photographed point in 3D when its correspondences in all images
are known.

Besides many techniques, a very general solution to this problem has been pro-
posed by YOSHIHISA SHINAGAWA and TOSIYASU L. KUNII [SK98]. They use so-called mul-
tiresolutional critical-point filters to automatically match images. The main idea is to
trace corresponding points recursively through a multiresolution hierarchy. To calcu-
late the point correspondence of two points at level i the algorithm uses the already
calculated correspondence at level i − 1 and an error function. At level 0 the images
have a size of 1× 1 pixel and the point correspondence is trivial, as there is only one
possibility. The fact that no prior knowledge about the objects is necessary, makes the
algorithm attractive for a wide range of applications such as stereo photogrammetry,
fully automatic morphing, object recognition, and volume segmentation.

To reduce the amount of potentially corresponding points, almost every algorithm
solving the correspondence problem uses an upstream filter, e.g., a Laplace filter as
shown in Figure 1.2. In many cases filters produce similar results for corresponding
points in both images. For example, a point on an edge will most likely have a cor-
responding point that is also located on an edge. Therefore, an edge detection filter
reduces the number of possible correspondences significantly.

Due to projective and epipolar geometry the images of corresponding points in a
sequence of photographs are sufficient to determine the extrinsic and intrinsic cam-
era parameters.

1.1.2 Assembling Object Parts

In practice it is not possible to acquire an object of interest with only one sequence of
images or laser scanned range maps. In many cases, it is necessary to match multiple
data sets into one coordinate system. This process is called registration. Depending
on the complexity of the scanned object, hundreds of object parts have to be regis-
tered to create one consistent data set.

The registration is relatively easy, if the exact location and orientation of the scan-
ner is known. This can be achieved by tracking the scanning device with appropriate
hardware. As the tracking of the overall scanning process is laborious – especially for
large objects like cathedrals, etc. – a software solution for registration is desired.

1.1 Cultural Heritage 5

Figure 1.2: A Laplace filter eliminates same-color regions and highlights edges. Assuming
that a point on an edge will have corresponding points that are also located on edges, a
Laplace filter reduces the amount of input data to solve the corresponding point problem
and to find a stable solution.

The software registration process is typically separated into a coarse and a fine regis-
tration step. During the coarse registration step all object parts are transformed into
a less detailed representation. In the last years, many of these representations have
been proposed. Their purpose is to reduce the quadratic complexity of pairwise data
set alignment. Furthermore, the computation time is shortened by selecting only the
most important features of the data set. The main task of automatic registration is
to minimize the distance of overlapping parts. One of the algorithmic challenges of
the coarse step is to figure out the correct arrangement of repeating object structures.
This procedure takes a lot of time; in particular, if it needs user interaction.

The VISUAL COMPUTING LAB (VCL), in Pisa, which is supported by the Italian Na-
tional Research Council’s Institute of Information Science and Technologies, has de-
veloped an automatic registration technique. It considers the knowledge of the typ-
ically regular scanner pose pattern. Under the condition of a sufficient overlap (15-
20%) and of regular scan stripes, it simplifies the sequential arrangement of range
maps. To align one range map to another one, three pairs of common points are

6 1 Introduction

needed. Normally the alignment problem is solved iteratively, until an error threshold
condition is met.

The entire registration of this algorithm relies on a variance classification for each
point of the range map regarding its neighborhood. This variance helps to cluster
the range map into parts of similar curvature. As regions with high variance may be
created due to scanning errors and regions of low variance do not contain enough
characteristics, the algorithm does not take them into account. The iterative align-
ment procedure limits the choice of point pairs to points of similar variance. The fine
registration of the range maps is typically done using the Iterative Closest Point (ICP)
algorithm. Details of both algorithms are described in “Exploiting the scanning se-
quence for automatic registration of large sets of range maps” [PFC+05].

1.2 Geometric Reconstruction and Semantic Enrichment

The creation of consistent and accurate model descriptions is known as reverse engi-
neering and comprehends fitting, approximation and numerical optimization tech-
niques. If the underlying model description is able to describe every three dimen-
sional object in a consistent and integrative way without the need of an additional
superstructure, the reconstruction process can be called complete. Otherwise an ob-
ject is described by several small parts whose orientation to each other is stored in a
superstructure; e.g. a scene graph. This approach is a subpart reconstruction.

1.2.1 Fitting Techniques

In 1992 HUGUES HOPPE et al. presented “Surface reconstruction from unorganized
points” [HDD+92] – an algorithm that fits a polyhedral surface to an unorganized
cloud of points. The result is a polygonal mesh, which describes the complete object.
Further development of polygonal reconstruction has lead to algorithms – amongst
other the crust algorithm [ACDL00] – whose output is guaranteed to be topologically
correct and convergent to the original surface as the sampling density increases.

As polyhedral surfaces are not the only way to describe a three dimensional object
in a unified way, the class of complete reconstructions also comprises algorithms to fit
radial basis functions, constructive solid geometry, or subdivision surfaces, to name
a few.

The subpart fitting approaches can be divided into two categories depending on
whether or not the input data has to be segmented and partitioned in advance. No
preceding segmentation is needed among others by algorithms based on random
sample consensus (RANSAC). The basic idea of RANSAC methods is to compute the
parameters of a model from an adequate number of randomly selected samples. Then
all samples vote on whether or not they agree with the proposed hypothesis. This
process is repeated until a sufficiently broad consensus is achieved. Two major ad-
vantages of this approach are its ability to ignore outliers without explicit handling,

1.2 Geometric Reconstruction and Semantic Enrichment 7

and be extended to extract multiple model instances in a data set. In this way, it is
possible to determine, for example, the planes that describe the input data best. Al-
though these algorithms can take advantage of feature extractions, they do not rely
on them.

Feature extraction algorithms can determine feature lines such as crease loops
and junctions, or border lines. These algorithms use principal component analysis or
heuristics on local neighborhoods to classify points according to the likelihood that
they belong to a feature line. These local feature vectors separate the input data into
smaller regions, which can be approximated individually by a single surface as illus-
trated in Figure 1.3.

A sequence of tests splits a large point cloud into smaller and smaller subregions
until no further subdivision is sensible. These model fragmentations are needed, for
example, by subpart reconstructions based on nonuniform rational B-splines (a com-
monly used surface description in computer-aided design), developable surfaces, or
least squares fitting techniques.

The aim of the remeshing and reconstruction process is to extract high-level ge-
ometry and to generate consistent and accurate model descriptions as shown in Fig-
ure 1.4.

Figure 1.3: The aim of the remeshing and reconstruction process is to extract high-level ge-
ometry, such as the temple’s columns, out of a low-level description.

8 1 Introduction

Figure 1.4: A successful reconstruction of a building ends up in a consistent and accurate
construction plan.

1.2.2 Semantic Enrichment

Without semantic information scanned objects are nothing more than a heap of prim-
itives. There would be no difference between the door knob of a house and a banana.
Also, the amount of scanned data increases rapidly as the scanning process itself is
now available to a wide audience. The importance of semantic metadata becomes ob-
vious in the context of electronic product data exchange and storage or, more gener-
ally, of digital libraries. For a heap of primitives without valuable metadata, it is hard, if
not impossible, to realize the mandatory services required by a digital library such as
markup, indexing, and retrieval. In a very restricted and simple approach, this infor-
mation may consist of attributes like title, creator, time of creation, and original place
of the objects. But for many tasks this is not enough. For example, the Theseus Temple
in Vienna consists of 28 Doric columns. To search for these types of columns in a large
data set of scanned temples, the search engine needs to know that the temples consist
of columns and what kind of columns they are. In order to allow navigation through
the data sets (in 3D as well as on a semantic level), it is necessary to have a column’s
position within the data set of the temple. In analyzing the column, it might be neces-
sary to find other artifacts of the same mason or the same period of time. In general,
relations between objects are an essential aspect of working with cultural heritage.
In 2000 the “International Committee for Documentation of the International Coun-
cil of Museums” released the Conceptual Reference Model (CIDOC-CRM), a standard

1.3 Open Problems and Overview 9

for representing such relational semantic networks in cultural heritage. The CIDOC-
CRM specification (in version 5.0.1) [Gro03] offers a formal ontology with 90 object
classes for entities:

• actor (person)

• place

• event

• time-span

• man-made object

and 148 properties to describe all possible kinds of relations between objects that
include the following:

• participated in

• performed

• at some time within

• took place at

• is referred to by

• has created.

Figure 1.5 shows a simplified cutout of a semantic network.

1.3 Open Problems and Overview

There are still many open problems in the described work flow. As the common scan-
ning techniques are mostly optical, the scanning quality depends on viewing condi-
tions. In complex structures such as a cathedral, there are always parts that are hard
to reach (sculptural details) or scan (windows). Acceptable results are rarely produced
without manual interference.

As described, the semantic enrichment is very important for working with the
scanned objects. But the additional semantic information has to be extracted and
added laboriously. This is a very difficult task which requires expertise. Although se-
mantic information enables a simple search within 3D data, the problem to formulate
an appropriate query is still an open question.

Another big problem dealing with cultural heritage objects is the long-term preser-
vation. Common storage containers for digital data have a short life time compared
to traditional (analog) storage like microfilms. Not only does the media have to last,
but the software and hardware also have to remain available.

10 1 Introduction

Theseus Temple
(Vienna)

Hephaistos Temple
(Athens)

Scan #342

Peter von Nobile

1821 – 1823

was built in

consists of

is located in

was
planned

by

was
inspired

by

Photo by Adam Carr

Figure 1.5: A semantic network helps when working with different cultural heritage objects.
In this example, the column to the left was scanned and then connected to the semantic net-
work of which only a cutout is shown.

This thesis concentrates on the geometric reconstruction and semantic information
extraction aspect. It is divided into six main parts. The next chapter introduces the
mathematical basics and notations; namely linear algebra, probability and statistics,
and numerical optimization. The third chapter consists of an introduction to geomet-
rical concepts. These techniques are the basis of computer-aided geometric design,
which is presented in the subsequent chapter. The fifth chapter focuses on geometric
fitting and semantic reconstruction techniques. Future prospects on this topic, given
in the last chapter, complete this thesis.

Selected Readings on Digital Cultural Heritage

The work flow from an archaeological
discovery into a digital cultural her-
itage library is a multifaceted process
of substantial research. An overview
of state-of-the-art techniques and
open research questions can be found
in “Recording, Modeling and Visu-
alization of Cultural Heritage” by
EMMANUEL BALTSAVIAS, ARMIN GRUEN,
LUC VAN GOOL, and MARIA PATERAKI

(Ed) [BGVGP06].
The scanning process is explained

in “A Comparison of Systems and
Tools for 3D Scanning” by FRANK

TER HAAR, PAOLO CIGNONI, PATRICK

MIN, and REMCO VELTKAMP in “3D Dig-
ital Imaging and Modeling: Applica-
tions of Heritage, Industry, Medicine
and Land”, [tHCMV05].

The resulting point clouds and
meshes of the scanning process need
to be aligned and registered to each
other. “Exploiting the scanning se-
quence for automatic registration of
large sets of range maps” by PAOLO

PINGI, ANDREA FASANO, PAOLO CIGNONI,
CLAUDIO MONTANI, and ROBERTO

SCOPIGNO addresses this algorithmic
problem [PFC+05].

The photogrammetric approach
to acquire a 3D object is presented
in RICHARD HARTLEY’s and ANDREW

ZISSERMAN’s book “Multiple View Ge-
ometry in Computer Vision” pub-
lished by Cambridge University
Press [HZ04].

The generation of high-level ge-
ometry is the subject-matter of
“Automatic Reconstruction of 3D
CAD Models from Digital Scans”

by FAUSTO BERNARDINI, CHANDRAJIT

L. BAJAJ, JINDONG CHEN, and DANIEL R.
SCHIKORE. This overview report has
been published in the International
Journal of Computational Geometry
and Applications [BBCS99].

The geometric reconstruction is
the basis for semantic information ex-
traction. A state-of-the-art overview of
this topic is summarized in “Multime-
dia Information Extraction” by MARK

MAYBURY [May11].
Aspects on the digital cultural

heritage libraries are discussed in
ALFREDO RONCHI’s book “eCulture
– Cultural Content in the Digital
Age” [Ron09].

Due to the complexity of the whole
pipeline from an archaeological dis-
covery into a digital cultural heritage
library, this short bibliography cannot
be complete. A starting point for cur-
rent research activities can be found
at the European Commission, unit
“Cultural Heritage and Technology
Enhanced Learning”. EU-funded re-
search (http://ec.europa.eu/research)
on cultural heritage, digital libraries
and digital preservation deals with
leading-edge information and com-
munication technologies for expand-
ing access to and use of Europe’s
rich cultural and scientific resources.
It also investigates how digital con-
tent created today will survive as the
cultural and scientific knowledge of
the future. This research contributes
to the i2010 Digital Libraries Initiative:
http://www.europeana.eu.

http://ec.europa.eu/research
http://www.europeana.eu

12 1 Introduction

13

2 Mathematical Basis

This chapter summarizes some fundamental concepts and introduces some nota-
tions. The definitions and notations of linear algebra are mainly derived from “Ge-
ometric Concepts for Geometric Design” [BP94] by WOLFGANG BOEHM and HARTMUT

PRAUTZSCH and “Wavelets for Computer Graphics” [SDS96] by ERIC J. STOLLNITZ, TONY

D. DEROSE, and DAVID H. SALESIN.
The recapitulation of probability calculus and statistics is excerpted from NORBERT

HENZE’s lecture notes on stochastics “Stochastik – Einführung in die Wahrschein-
lichkeitstheorie und Statistik” (english: Stochastics – Introduction to probability cal-
culus and statistics) [Hen95] and from “Stochastik für Einsteiger” (english: Stochastics
for Beginners) [Hen97].

Some numerical aspects of linear algebra and optimization theory com-
plete this chapter. The short introduction on numerical analysis is based
on THOMAS F. COLEMAN’s “Large-Scale Numerical Optimization: Introduction and
Overview” [Col91] and “Numerische Methoden der Analysis” (english: Numerical
Methods of Analysis) [HP10]. Further details on numerical algorithms can be found
in “Compact Numerical Methods for Computers: Linear Algebra and Function Min-
imisation” [Nas90] and in “Numerical Optimization” [NW99].

Last but not least ERIC WEISSTEIN’s “MathWorld”TM [Wei09] and “Taschenbuch der
Mathematik” (english: Handbook of Mathematics) [BSMM97] by IL’JA BRONŠTEIN et al.
acted as referee.

Contents

2.1 Linear Algebra 14

2.2 Probability and Statistics 32

2.3 Numerical Optimization 49

14 2 Mathematical Basis

2.1 Linear Algebra

Linear algebra introduces the fundamental concepts of vector spaces and is the foun-
dation of vector-based descriptions of geometric objects. The axiomatic definition of
the concept of vector spaces has been introduced by GIUSEPPE PEANO1 in 1888 [Dor95].

2.1.1 Vector Space

A set V is a vector space over a field F , if it is closed under finite vector addition and
scalar multiplication and if it meets the following conditions for all elements u,v,w ∈
V and any scalars a ,b ∈ F .

1. Commutativity of vector addition:

u+v= v+u (2.1)

2. Associativity of vector addition:

(u+v)+w=u+(v+w) (2.2)

3. Existence of zero vector:

∃o∈V : o+u=u (2.3)

4. Existence of additive inverse vector:

∀u∈V ∃−u∈V : u+(−u) = o (2.4)

5. Associativity of scalar multiplication:

a · (b ·u) = (a ·b) ·u (2.5)

6. Distributivity of scalar sums:

(a +b) ·u= a ·u+b ·u (2.6)

7. Distributivity of vector sums:

a · (u+v) = a ·u+a ·v (2.7)

8. Scalar multiplication identity:

1 ·u=u (2.8)

A module is abstractly similar to a vector space, but it uses a ring to define scalar
coefficients instead of a field. Therefore, the coefficients of modules are more general
algebraic objects.

A nonempty subset U of a vector space V over a field F is called a vector subspace,
if U is a vector space over F with the addition and multiplication defined on V .

1 GIUSEPPE PEANO (August 27, 1858 – April 20, 1932) Giuseppe Peano was an Italian mathematician and
a founder of mathematical logic and set theory. His axiomatization efforts are key contributions to
modern mathematics.

2.1 Linear Algebra 15

2.1.2 Bases and Dimension

Some vectors v1,v2, . . . in a vector space V are said to be linearly independent, if the
equation

c1 ·v1+ c2 ·v2+ . . .= o (2.9)

is satisfied, if and only if all coefficients equal zero

c1 = c2 = . . .= 0. (2.10)

A collection of linearly independent vectors vi of a vector space V form a basis for V ,
if every vector u∈V can be written as linear combination

u=
∑

i

c i vi (2.11)

for some coefficients c i . The c i are called coordinates of u with respect to the vi , while
the products c i vi are called components of u. If a basis for V has a finite number
of elements v1, . . . ,vn , then V is finite-dimensional and its dimension is dim V = n .
Occasionally, n is given as a superscript V n . A vector of a finite-dimensional vector

space w∈V n is often denoted by the vector of its coordinates w=
�

w1 . . . wn

�T
.

All linear combinations of some vectors v1, . . . ,vm ∈ V span a vector space. It is
called linear hull and is written

[v1, . . . ,vm] . (2.12)

The linear hull of a basis spans the whole vector space.
The so-called standard basis of the real, n-dimensional vector space Rn consists

of the n unit vectors e1, . . . en . The coefficients of the j thunit vector equal zero except
for the j thcoefficient, which equals one.

2.1.3 Change of Bases

If u1, . . . ,un and v1, . . . ,vn denote two bases of a vector space V n , then each vector ui

can be written in terms of the basis v1, . . . ,vn and vice versa:

ui = t1,i ·v1+ . . .+ tn ,i ·vn (2.13)

respectively in matrix notation

�

u1 . . . un

�

=
�

v1 . . . vn

�

·

t1,1 . . . t1,n
...

...
tn ,1 . . . tn ,n

︸ ︷︷ ︸

=T

. (2.14)

16 2 Mathematical Basis

For an arbitrary vector w with representations

w=
n
∑

i=1

a i ui =
n
∑

i=1

b i vi , (2.15)

it follows

b1
...

bn

= T ·

a 1
...

a n

. (2.16)

2.1.4 Transformations

A map φ : V →W , which preserves linear combinations for all vectors u,v ∈ V and all
scalars a ,b

φ(a ·u+b ·v) = a ·φ(u)+b ·φ(v) (2.17)

is called a linear map. The image φ(V) of V is a vector subspace of W . For a finite-
dimensional vector space V n the image’s dimension satisfies

dimφ(V)≤ n . (2.18)

The subspace of all vectors of V , which are mapped to the zero vector o ∈W , is the
kernel ofφ, K = kerφ. Using a basis of V which contains a basis of K one finds that

dimφ(V)+dim K = dim V. (2.19)

2.1.5 Inner Products and Orthogonality

An inner product < · | ·> of a vector space V is a map from V ×V to the scalar field F
that is

1. symmetric:

<u |v>=<v |u> (2.20)

2. bilinear:

<a ·u+b ·v |w>= a ·<u |w>+b ·<v |w> (2.21)

3. positive definite:

<u |v> > 0, ∀u 6= o (2.22)

for all vectors u,v,w∈V and all scalars a ,b ∈ F .

2.1 Linear Algebra 17

In the vector space Rn the inner product of two vectors u =
�

u 1 . . . u n

�T
and

v=
�

v1 . . . vn

�T
is usually defined by

<u |v>=
n
∑

i=1

u i ·vi . (2.23)

In the vector space of all functions that are continuous on the closed interval [0,1] the
“standard” inner product is defined as

< f | g >=
∫ 1

0

f (x) · g (x) dx . (2.24)

Two vectors are said to be orthogonal, if their inner product equals zero. As a result,
a collection of mutually orthogonal vectors u1, u2, . . . must be linearly independent.
An orthogonal basis is one that consists of pairwise orthogonal vectors. If V is an n-
dimensional vector space and W a vector subspace of V , then the orthogonal com-
plement is the vector space, which consists of all vectors in V that are orthogonal to
all vectors in W .

2.1.6 Projection

A vector space V , which is composed of subspaces Wi (i = 1, . . . ,m) that only have the
zero vector o in common

Wi ∩Wj = {o}, i 6= j (2.25)

is noted as

V =W1⊕ . . .⊕Wm . (2.26)

In this case, each vector v∈V has a unique representation by vectors wi ∈Wi

v=w1+ . . .+wn . (2.27)

A functionΠ, which maps a vector v on a subset of its components w1, . . . ,wn is called
projection; respectively, if all Wi are orthogonal to each other, Π is called orthogonal
projection.

2.1.7 Normalization

A function || · || from a vector space V to the real numbers R such that

1. ||u||> 0 when u 6= o and ||u||= 0, if and only if u= o,

2. ||a ·u||= |a | · ||u|| for any scalar a

3. ||u+v|| ≤ ||u||+ ||v||

for all vectors u,v∈V is called a vector norm or simply norm.

18 2 Mathematical Basis

In the vector space Rn the family of p -norms

||u||p =

n
∑

i=1

|u i |p
!1/p

(2.28)

is of particular importance; especially the absolute value norm (p = 1), the Euclidean
norm (p = 2) and the maximum norm (in the limit as p goes to infinity):

||u||1 =
∑

i

|u i | ||u||2 =
r

∑

i

u 2
i ||u||∞ =max

i
|u i | (2.29)

In the vector space of all functions that are continuous on [0,1] the Lp norms are
defined as

||φ||p =

∫ 1

0

|φ(x)|p dx

!1/p

. (2.30)

The maximum norm for functions on the interval [0,1] is given by

||φ||∞ = max
x∈[0,1]

|φ(x)|. (2.31)

A vector u whose Euclidean norm equals one is said to be normalized. The Euclidean
norm of a vector is called its length. In an arbitrary vector space V with an inner prod-
uct < · | ·> the norm induced by the inner product is defined by

||v||<· | ·> =
p

<v |v> (2.32)

for all v∈V .
An orthogonal basis of a vector space is called orthonormal, if it consists of nor-

malized, pairwise orthogonal vectors. Using the notation of the Kronecker symbol δ

δi ,j =

¨

1, if i = j
0, otherwise

(2.33)

an orthonormal basis u1,u2, . . . satisfies < ui |uj >= δi ,j . For each basis u1, . . . ,un of
Rn it is possible to construct an orthonormal basis v1, . . . ,vn using the Gram-Schmidt
orthonormalization. This process starts with a vector v1 = u1 and constructs vi suc-
cessively by subtracting the projections of ui in the directions of v1, . . . ,vi−1:

vi =ui −
i−1
∑

j=1

<vj |ui>

<vj |vj >
uj . (2.34)

Having normalized the vectors v1, . . . ,vn the resulting basis is orthonormal. To mea-
sure the angle α between arbitrary vectors u,v∈V the definition

cosα=
<u |v>
||u|| · ||v||

. (2.35)

is used.

2.1 Linear Algebra 19

2.1.8 Eigenanalysis

A vector v 6= o is said to be an eigenvector of a square matrix M with associated eigen-
value λ, if

M ·v=λv. (2.36)

The set of all eigenvalues is called spectrum of M. If and only if the the matrix M has n
linearly independent eigenvectors, then M is diagonalizable, i.e. it can be written on
the form

M= T ·D ·T−1, (2.37)

where D is a diagonal matrix with the n eigenvalues of M as its entries and T is an
invertible matrix consisting of the corresponding eigenvectors. In the special case of
a symmetric matrix M∈Rn×n with real entries,

• the matrix has exact n real eigenvalues according to multiplicity,

• the corresponding eigenvectors of two eigenvalues λi 6=λj are orthogonal,

• furthermore the matrix M has n real, orthogonal eigenvectors.

2.1.9 Principal Component Analysis

The principal component analysis is an application of eigenanalysis. The main idea
is to project given data points of an n-dimensional space into a lower dimensional
space while preserving as much “information” as possible.

A vector in an n-dimensional vector space, whose orthonormal basis consists of
u1, . . . ,un , can be described via its coefficients c i and its components c i ui . To describe
a set of N data vectors

{ x1,x2, . . . ,xN } ⊂Rn , N >> n (2.38)

an additional center vector x is used. Then, each data vector xi is described by the
center vector x and an offset

xi = x+ c i ,1u1+ c i ,2u2+ . . .+ c i ,n un . (2.39)

The principal component analysis determines the basis u1, . . . ,un , so that the sum of
quadratic errors of all offsets is minimal, if projected into a subspace of lower dimen-
sion m < n with basis u1, . . . ,um . As the orthogonal projection Π of a vector described
by an orthonormal basis u1, . . . ,un is simply

Π(x) =Π(c1u1+ c2u2+ . . .+ cm um + . . .+ cn un) (2.40)

= c1u1+ c2u2+ . . .+ cm um , (2.41)

20 2 Mathematical Basis

x1

x2

xN

x

u1

u2

e1

e2

Figure 2.1: The principal component analysis is an eigenvector-based multivariate analysis.
For a set of data vectors x1, . . . xN it determines an basis transformation from a given basis e1,e2
to a new, orthonormal basis u1,u2. Along the new coordinate axes the data set’s variance has
maximum amplitude.

the introduced error to minimize is

f PC A =
N
∑

i=1

||xi − (x+ c i ,1u1+ c i ,2u2+ . . .+ c i ,m um)||2 (2.42)

where

x=
1

N

N
∑

i=1

xi . (2.43)

In case of m = n , the error f PC A would be zero due to

f PC A =
N
∑

i=1

||xi − (x+ c i ,1u1+ c i ,2u2+ . . .+ c i ,m um)||2 (2.44)

=
N
∑

i=1

||c i ,m+1um+1+ c i ,m+2um+2+ . . .+ c i ,n un)||2 (2.45)

=
n
∑

j=m+1

N
∑

i=1

�

uT
j · (xi −x)

�2
=

n
∑

j=m+1

uT
j ·C ·uj (2.46)

2.1 Linear Algebra 21

with the so-called covariance matrix

C=
N
∑

i

(xi −x)(xi −x)T. (2.47)

Using Lagrangian multipliers to minimize uT ·C ·u subject to ||u||= 1 leads to a mini-
mization term

uT ·C ·u−λuT ·u (2.48)

whose gradient equals zero, if u is substituted by an eigenvector of C. Having sorted
the eigenvectors ui of C according to the absolute values of the corresponding eigen-
values λi justifies

f PC A =
n
∑

j=m+1

uT
j ·C ·uj =

n
∑

j=m+1

λj . (2.49)

2.1.10 Multiresolution Analysis

The starting point for the mathematical framework of multiresolution analysis is a
nested set of vector spaces

V 0 ⊂V 1 ⊂V 2 ⊂ (2.50)

The basis functions for the space V j are known as scaling functions. The orthogonal
complement of V j in V j+1 is called W j and contains all functions in V j+1 that are
orthogonal to all those in V j according to a chosen inner product. The basis functions
of W j are called wavelets.

In order to keep track of the different scaling functions φ
j
i of V j and the wavelets

ψ
j
i of W j , they are combined to vectors:

Φj =
�

φ
j
0 . . . φ

j
dim V j−1

�T
, Ψj =

�

ψ
j
0 . . . ψ

j
dim W j−1

�T
. (2.51)

As the subspaces V j are nested, the scaling functions are refinable; that means for all
j = 1,2, . . . exists a matrix Pj such that Φj−1(x) = Φj (x) · Pj . Since the wavelet space
W j−1 is also a subspace of V j , a matrix Qj exists satisfying Ψj−1(x) = Φj (x) ·Qj . In
block matrix notation this can be expressed by

�

Φj−1 |Ψj−1
�

=Φj
�

Pj |Qj
�

. (2.52)

Figure 2.2 illustrates the relations between vector spaces V and wavelet spaces W .

22 2 Mathematical Basis

V 0 V 1 V 2 . . .

W 0 W 1 W 2 . . .

=
�

φ0
0

�

=
�

ψ0
0

�

=
�

φ1
0 ,φ1

1

�

=
�

φ0
0 ,ψ0

0

�

=
�

ψ1
0,ψ1

0

�

=
�

φ2
0 ,φ2

1 ,

φ2
2 ,φ2

3

�

=
�

φ1
0 ,φ1

1 ,

ψ1
0,ψ1

1

�

=
�

. . .
�

⊂ ⊂ ⊂

Figure 2.2: The mathematical framework of multiresolution analysis is based on nested vec-
tor spaces V 0 ⊂ V 1 ⊂ V 2 ⊂ . . . and orthogonal vector spaces W 0, W 1, W 2, Therefore, a
vector in some vector space V j can be described by scaling functions φm , wavelets ψn , or a
combination of them.

A function in some approximation space V j can be expressed by its coefficients c
j
i in

terms of a scaling function basis

cj =
�

c
j
0 . . . c

j
dim V j−1

�T
. (2.53)

A low resolution version cj−1 with a smaller number of coefficients can be created by
downsampling – a filtering process describable by a matrix equation cj−1 =Aj ·cj . For
many choices of Aj , it is possible to capture the lost details as a vector dj−1, computed
by dj−1 = Bj · cj . If Aj and Bj (the so-called analysis filters) are chosen appropriately,
cj can be recovered from cj−1 and dj−1 using Pj and Qj , which are called synthesis
filters:

cj =Pj · cj−1 + Qj ·dj−1. (2.54)

As the matrices Aj and Bj satisfy the relation

�

Φj−1 |Ψj−1
�

·
�

Aj

Bj

�

=Φj , (2.55)

it follows
�

Aj

Bj

�

=
�

Pj |Qj
�−1

. (2.56)

2.1 Linear Algebra 23

x

φ(x)

1

1

0 x

φ
j
i (x)

1

0 i
2j

i+1
2j

Figure 2.3: The simplest wavelet functions are called Haar wavelets. Their corresponding
scaling functions φ j

i (x) are based on a piecewise constant function φ(x). This Figure shows

the function graphs ofφ (left) andφ j
i (right).

The simplest wavelet basis is named after ALFRÉD HAAR2. The scaling functions are a
set of scaled and translated box functions:

φ
j
i (x) =φ(2

j x − i), i = 0, . . . ,2j −1 (2.57)

where

φ(x) =

¨

1, if 0≤ x < 1
0, otherwise.

(2.58)

The support of a function refers to the region of the parameter domain over which the

function value is nonzero. The function plots in Figure 2.3 show that the functionsφ
j
i

are supported over a bounded interval. The wavelets corresponding to the box basis
are known as the Haar wavelets:

ψ
j
i (x) =ψ(2

j x − i), i = 0, . . . ,2j −1 (2.59)

with

ψ(x) =

1, if 0≤ x < 1/2
−1, if 1/2 ≤ x < 1
0, otherwise

(2.60)

The Figure 2.4 show the functions’ graphs.

2 ALFRÉD HAAR (October 11, 1885 – March 16, 1933) Alfréd Haar was a Hungarian mathematician. He
worked on analysis on groups, orthogonal systems of functions, partial differential equations and
Chebyshev approximations.

24 2 Mathematical Basis

x

ψ(x)

1

0

−1

1/2 1 x

ψ
j
i (x)

1

0

−1

i
2j

i+1/2
2j

i+1
2j

Figure 2.4: The piecewise constant functionψ(x) returns the values −1, 0, and 1. Using this
function the Haar wavelet functionsψj

i can be defined byψj
i (x) =ψ(2

j x − i).

The scaling functionsφ
j
i and the waveletsψ

j
i have some very important properties.

1. The vector space V j+1 can described by a basis of scaling functions φ
j+1
i as well

as by a combination of the bases of V j and W j .

2. Every waveletψ
j
i in W j is orthogonal to every scaling functionφ

j
i of V j .

3. If the scaling functionsφ
j
i and the waveletsψ

j
i are multiplied by a constant scal-

ing factor of
p

2j , both functions can be normalized; i.e.

p

2j φ
j
i

�

�

�

p

2j φ
j
i

·

= 1 and

p

2j ψ
j
i

�

�

�

p

2j ψ
j
i

·

= 1. (2.61)

2.1 Linear Algebra 25

x

f (x)

1

1

0 x

f (x)

1

0 1

Figure 2.5: A wavelet transformation describes a function via scaling and detail coefficients.
Using a reduced number of coefficients or setting some coefficients to zero approximates the
original function. This Figure shows the graph of a function f (x) (in red) and a sampling of it
(blue, left) as well as an approximation of it (blue, right). The approximation uses a reduced
number of detail coefficients.

The Haar wavelets form the simplest type of wavelets. This simplicity is revealed in the
transformation algorithms. A one-dimensional Haar wavelet decomposition is shown
in Algorithms 2.1 and 2.2; the corresponding reconstruction in Algorithms 2.3 and 2.4.
The multiresolution property of wavelets is shown in Figure 2.5. It shows a continuous
function, a discrete, regular sampling of it and its representation at a lower level of
details.

Depending on the purposes other wavelet functions may be more reasonable – for
example basis functions without discontinuity. INGRID DAUBECHIEShas derived and
analyzed various families of wavelet functions [Dau92].

26 2 Mathematical Basis

Algorithm 2.1 A single Haar wavelet decomposition step.

1 DECOMPOSITION-STEP

2 input c [1 .. 2j] : input coefficients

3 output d [1 .. 2j] : transformed coefficients

4

5 for i ← 1 to 2j−1

6 d [i]← c [2i−1]+c [2i]p
2

7 d [2j−1+ i]← c [2i−1]−c [2i]p
2

8 return d

Algorithm 2.2 Haar wavelet decomposition in 1D.

1 DECOMPOSE-1D

2 input c [1 .. 2j] : input coefficients

3 output d [1 .. 2j] : wavelet coefficients

4

5 d ← c/
p

2j

6 g ← 2j

7 while g ≥ 2

8 d [1 .. g]←DECOMPOSITION-STEP (d [1 .. g])
9 g ← g /2

10 return d

2.1 Linear Algebra 27

Algorithm 2.3 A single Haar wavelet reconstruction step.

1 RECONSTRUCTION-STEP

2 input d [1 .. 2j] : input coefficients

3 output c [1 .. 2j] : transformed coefficients

4

5 for i ← 1 to 2j−1

6 c [2i −1]← d [i]+d [2j−1+i]p
2

7 c [2i]← d [i]−d [2j−1+i]p
2

8 return c

Algorithm 2.4 Haar wavelet reconstruction in 1D.

1 RECONSTRUCT-1D
2 input d [1 .. 2j] : wavelet coefficients

3 output c [1 .. 2j] : reconstructed coefficients

4

5 c ← d

6 g ← 2

7 while g ≤ 2j

8 c [1 .. g]← RECONSTRUCTION-STEP (c [1 .. g])
9 g ← 2 · g

10 c ←
p

2j · c
11 return c

28 2 Mathematical Basis

For higher dimensional wavelet transformations different extensions are known. Two
main approaches for extension from one-dimensional signals represented by Rn to
two-dimensional signals in Rn×m exist: the standard approach and the nonstandard
approach.

transform rows

tr
an

sf
o

rm
co

lu
m

n
s

. . .

Figure 2.6: A two-dimensional data set such as an image can be Haar wavelet transformed
in various ways. The so-called standard approach performs a wavelet transformation on all
rows. Then it transforms all columns. The nonstandard approach, which is illustrated in this
diagram, performs the wavelet transformation steps on rows and columns alternately. As a
consequence down-scaled versions of the original image can be found in all intermediate
results on the diagonal.

Each subimage shows the absolute values of the signal mapped to gray values. In general,
the detail coefficients of a wavelet transformed signal have smaller values than the original
signal; the transformed images therefore are very dark.

2.1 Linear Algebra 29

Figure 2.7: In general the detail coefficients of a wavelet transformed signal have smaller
values than the original signal. Therefore the commonly-used linear gray map results in an al-
most black image. This Figure shows a color image of the input data set and its wavelet trans-
formation using a nonlinear color map from blue (negative values) to red (positive values) via
white (zero).

The standard approach decomposes Rn×m into (Rn)m and (Rm)n , whereas the non-
standard approach uses rectangular subregions. An implementation of the nonstan-
dard approach – see Algorithms 2.5 and 2.6 – transforms the rows and columns of the
input matrix alternately.

Figure 2.6 illustrates the wavelet transformation of an example data set via non-
standard approach. The example data set is a photograph of the Paderborn Cathedral
St. Liborius. The cathedral has been built in the 13th century. It is the Cathedral of
the Catholic Archdiocese of Paderborn. It is located in the city center of Paderborn,
Germany.

Each subimage shows the absolute values of the signal mapped to gray values. In
general, the detail coefficients of a wavelet transformed signal have smaller values
than the original signal; the transformed images therefore are very dark. To visualize
the wavelet transformed data more appropriately Figure 2.7 uses a nonlinear color
map from blue (negative values) to red (positive values) via white (zero).

30 2 Mathematical Basis

Algorithm 2.5 Nonstandard Haar wavelet decomposition in 2D.

1 DECOMPOSE-2D

2 input c [1 .. 2j][1 .. 2j] : input coefficients

3 output d [1 .. 2j][1 .. 2j] : wavelet coefficients

4

5 d ← c/2j

6 g ← 2j

7 while g ≥ 2

8 for row ← 1 to g

9 d [row][1 .. g]←DECOMPOSITION-STEP (d [row][1 .. g])
10 for col ← 1 to g

11 d [1 .. g][col]←DECOMPOSITION-STEP (d [1 .. g][col])
12 g ← g /2

13 return d

Algorithm 2.6 Nonstandard Haar wavelet reconstruction in 2D.

1 RECONSTRUCT-2D

2 input d [1 .. 2j][1 .. 2j] : wavelet coefficients

3 output c [1 .. 2j][1 .. 2j] : reconstructed coefficients

4

5 c ← d

6 g ← 2

7 while g ≤ 2j

8 for col ← 1 to g

9 c [1 .. g][col]← RECONSTRUCTION-STEP (c [1 .. g][col])
10 for row ← 1 to g

11 c [row][1 .. g]← RECONSTRUCTION-STEP (c [row][1 .. g])
12 g ← 2 · g
13 c ← 2j · c
14 return c

Wavelets for Image Compression

Uncompressed images need a high
amount of storage space. The aim of
compression techniques is to encode
images – or more general signals – in
a more efficient way. Wavelets offer a
way to store images in a condensed
form [Sah00]. The basic principle uses
the fact that a wavelet transformed
signal consists of many coefficients,
which are almost zero. If these values
are set to zero and if only the nonzero
values are stored, the number of coef-
ficients to store can be reduced signif-
icantly. The introduced error accord-
ing to L2-norm is proportional to the
sum of the absolute values of all co-
efficients set to zero. A lossy, wavelet-
based image compression uses this
fact and consists of three steps:

1. Perform wavelet transforma-
tion and reduce 2D data set
to 1D data set via standard,
non-standard [SDS96] or frac-
tal [Voo91] approach.

2. Sort absolute values of coeffi-
cients in decreasing order.

3. Set coefficients to zero starting
with the smallest ones as long
as the sum of absolute values of
exchanged coefficients is smaller
than a threshold.

The JPEG2000 image encoding stan-
dard [CS00] of the Joint Photo-
graphic Experts Group (JPEG) uses
Daubechies-5/3 wavelets for loss-
less compression and Daubechies-
9/7 wavelets for lossy compres-
sions [Dau92]. For the sake of simplic-
ity the following example uses Haar
wavelets.

The example image in Figure 2.8
shows the marble statue of councilor
JOAN FIVELLER created by JOSEP BOVER.
The statue is part of the principal
facade of the city hall in Barcelona,
Spain. Its image is shown in full reso-
lution (top) and with a reduced num-
ber of nonzero detail coefficients.

Figure 2.8: This sequence of images
shows a lossy compression based on Haar
wavelets using 100.0% (no compression),
1.0% and 0.5% of all coefficients. The
zoomed subimages of the head and the
official seal show the increasing compres-
sion artifacts.

32 2 Mathematical Basis

2.2 Probability and Statistics

Probability theory is concerned with random phenomena and stochastic processes.
As it is the mathematical foundation for statistics, probability theory is essential to
many fields of applications that involve quantitative analysis of data.

2.2.1 Probability Space

Let Ω be a nonempty set. ThenF is called aσ-algebra, if

1. F contains the empty set ; ∈F .

2. If A is inF , then its complement (in Ω) A =Ω\A also belongs toF .

3. For an arbitrary sequence (An)n of subsets ofF the union
⋃

i∈N A i is inF .

In a sample space Ω each subset A ⊂ Ω which belongs to F is called an event and is
associated with a probability measure P , which obeys the axioms of probability:

1. ∀A ∈F : P(A)≥ 0,

2. P(Ω) = 1,

3. P
�

∑∞
j=1 A j

�

=
∑∞

j=1 P
�

A j

�

for all sequences (An)n∈N of pairwise disjunct events.

The triple (Ω,F ,P) is called probability space. In each probability space the monotony
property

∀A,B ∈F : A ⊂ B⇒ P(A)≤ P(B) (2.62)

is valid. The conditional probability of an event A assuming that B has occurred is
denoted P(A |B). It can be calculated via

P(A |B) =
P(A ∩ B)

P(B)
=

P(A) ·P(B |A)
P(B)

. (2.63)

If the conditional probability P(A |B) of an event A assuming event B satisfies the
equation P(A |B) = P(A), the events A and B are called statistically independent. In
this case

P(A B) = P(A ∩ B) = P(A) ·P(B). (2.64)

More generally, if n events are independent, then

P

n
⋂

i=1

A i

!

=
n
∏

i=1

P(A i). (2.65)

2.2 Probability and Statistics 33

According to the total probability theorem the conditional probabilities P(B |A i) of an
arbitrary event B and n mutually exclusive events A1, dot s , An sum to

P(B) = P(B |A1) ·P(A1)+ . . .+P(B |An) ·P(An). (2.66)

Bayes’ theorem – named after THOMAS BAYES3 – describes the relation between a-
priori and a-posteriori probabilities. For a partition of Ω in mutually exclusive events
A1, . . ., An and an arbitrary event B Bayes’ theorem states

P(A i |B) =
P(B |A i) ·P(A i)

∑n
j=1 P(B |A j) ·P(A j)

=
P(B |A i) ·P(A i)

P(B)
. (2.67)

A real function whose domain is the probability space and for which

1. the set {X ≤ x } is an event for any real number x and for which

2. the probability of the events {X =−∞} and {X =∞} equals zero,

is called random variable. Its probability distribution describes the range of possible
values it can attain and the probability that the value of the random variable is within
any measurable subset of that range.

2.2.2 Discrete Probabilities

Aσ-algebraF is discrete, if a set of subsets (A i)i∈I of Ω exists with

1. the index set I is not empty ; 6= I ⊂N,

2. ∀ i 6= j : A i ∩A j = ;, and

3. Ω=
⋃

i∈I A i ,

so that every element A ∈F can be described by a union of some A j . Furthermore, if
the set {A i |i ∈ I } is finite, the probability space (Ω,F ,P) is called finite.

For random variables in discrete probability spaces the characteristic values of ex-
pectation and variance are of importance. If for a random variable X : Ω → R of a
discrete probability space (Ω,F ,P) the sum

∑

ω∈ΩX (ω) · P({ω}) < ∞ converges, the
expectation value of X is defined by

E (X) =
∑

ω∈Ω
X (ω) ·P({ω}). (2.68)

The variance of a probability variable X of a discrete probability space (Ω,F ,P) is

V (X) = E ((X −E (X))2). (2.69)

3 THOMAS BAYES (1702 – April 17, 1761) Thomas Bayes was a British mathematician and Presbyterian
minister.

34 2 Mathematical Basis

In stochastics and statistics it is convenient to omit brackets, if the short notation does
not cause any confusion. The variance is then written V (X) = E (X −E X)2. The square
root of V (X) is called standard deviation. It is noted

σ(X) =
p

V (X). (2.70)

To the vector space L(Ω,P) = {X : Ω→R|E (X) exists} of random variables with expec-
tation value the following equations apply:

E (a ·X) = a ·E (X), (a ∈R) E (1) = 1 (2.71)

E (X +Y) = E (X)+E (Y) E (X ·Y) = E (X) ·E (Y) (2.72)

E (|X |) = |E (X)| X ≤ Y ⇒ E (X)≤ E (Y) (2.73)

As a result the variance can also be calculated via

V (X) = E (X −E X)2 = E (X 2)− (E X)2. (2.74)

2.2.3 Discrete Distributions

The following description summarizes some important, discrete distributions which
can be found in various fields of applications.

Laplace The discrete Laplace distribution is named after PIERRE-SIMON LAPLACE. It
describes a discrete, uniform distribution. If Ω = {w1, . . . ,wn} and P({w i }) = 1/n ,
then for any set A ⊂ Ω the probability P(A) can be calculated by P(A) = |A |

|Ω| ,
whereas | · | denotes the cardinal number of a set. This distribution is normal-
ized, since the sum of all probabilities 1/n equals one. In case of X (w i) = i its
characteristics are

E (X) =
1

n

n
∑

i=i

x i =
n +1

2
(2.75)

and

V (X) =
1

n

n
∑

i=1

x 2
i −

1

n

n
∑

i=1

x i

!2

=

n 2−1

12
. (2.76)

Binomial In a sequence of n experiments, in which each experiment is true with
probability p and false with probability 1−p , the probability of a random vari-
able X to have exactly k successes is described by the binomial distribution

P(X = k) =
�

n

k

�

p k (1−p)n−k , k = 0,1, . . . ,n (2.77)

2.2 Probability and Statistics 35

with the binomial coefficient
�n

k

�

= n !
k !·(n−k)! . The notation for a random variable

of binomial distribution with parameters n and p is X ∼ Bi n (n ,p).

Due to the binomial theorem

n
∑

k=0

�

m

k

�

p k (1−p)n−k = 1, (2.78)

the binomial distribution is normalized. Its expectation value is

E (X) =
n
∑

k=0

k

�

n

k

�

k p (1−p)n−k (2.79)

= n ·p (2.80)

and its variance is

V (X) =
n
∑

k=0

k 2
�

n

k

�

p k (1−p)n−k −n 2p 2 (2.81)

= n ·p · (1−p). (2.82)

Geometric The geometric distribution for k = 0,1,2, . . . is defined by

P(X = k) = p · (1−p)k (2.83)

and can be interpreted as “waiting for the first event”, which occurs with proba-
bility p . The short notation expresses a geometric distribution as a special case of
a negative binomial distribution (N b). Therefore, its abbreviation is X ∼N b (1,p).

Using the geometric series
∑∞

k=0 r k = 1
1−r , (|r | < 1) its main characteristics can

be calculated easily. P is normalized

∞
∑

k=0

P(k) =
∞
∑

k=0

p · (1−p)k = p
∞
∑

k=0

(1−p)k =
p

1− (1−p)
= 1 (2.84)

and its expectation value and variance are

E (X) =
1−p

p
(2.85)

V (X) =
1−p

p 2 . (2.86)

36 2 Mathematical Basis

Hypergeometric In a set of r + s elements (r,s ∈ N), of which r elements are tagged,
the hypergeometric distribution describes the probability that of n randomly
chosen elements exactly k elements are tagged. This probability, with parame-
ters n , r , and s with short notation X ∼Hy p (n ,r,s), is

P(X = k) =

�r
k

�� s
n−k

�

�r+s
n

�
. (2.87)

Its expectation value and its variance are

E (X) =
n
∑

k=0

k ·
�r

k

�� s
n−k

�

�r+s
n

�
(2.88)

= n ·
r

r + s
(2.89)

V (X) =
n
∑

k=0

k 2 ·
�r

k

�� s
n−k

�

�r+s
n

�
−
�

n ·
r

r + s

�2
(2.90)

= n
r

r + s

�

1−
r

r + s

� r + s −n

r + s −1
. (2.91)

More commonly used distributions are presented in “A Compendium of Common
Probability Distributions” [McL99] by MICHAEL P. MCLAUGHLIN.

2.2.4 Continuous Probabilities

Theσ-algebra consisting of all open sets inRk is called the Borelσ-algebra B k . If P is
a probability measure on B 1, then the function

F :

¨

R → [0,1]
x 7→ F (x) = P((−∞,x])

(2.92)

is called distribution function. Any distribution function is

1. monotonic increasing; that means ∀x ,y ,∈R : x ≤ y ⇒ F (x)≤ F (y)

2. continuous from the right and

3. the limits limn→∞ F (−n) =: F (−∞) = 0 and limn→∞ F (n) =: F (∞) = 1 exist.

If a function F :R→ [0,1] has the these properties (1 – 3), then exactly one probability
measure P on B 1 exists with F (x) = P((−∞,x]), x ∈ R. A distribution function F and
its corresponding probability measure P on B 1 have the following properties:

• ∀a ,b ∈R,a <b : P ((a ,b]) = F (b)− F (a)

• ∀x ∈R : P(x) = F (x)− F (x−),
whereas F (x−) denotes to limit point at F (x) from the left.

• F is continuous at x , if and only if P(x) = 0.

• F has at most countable points of discontinuity.

2.2 Probability and Statistics 37

A Function f :R→R is called density function on R, if

• ∀x ∈R : f (x)≥ 0 and if

• the Riemann integral of f exists with
∫∞
−∞ f (x) dx = 1.

The function

F (x) =

∫ x

−∞
f (t) d t , x ∈R (2.93)

has codomain [0,1], is continuous and has the distribution function properties 1 – 3.
The corresponding probability measure P on B 1 is

P([a ,b]) =

∫ b

a

f (t) d t , (a ,b ∈R,a <b). (2.94)

The function f is called probability density function of P respectively density of F .
A random variable X with probability density function f has an expectation value, if
and only if

∫ ∞

−∞
|x | · f (x) dx <∞. (2.95)

In this case

E (X) =

∫ ∞

−∞
x · f (x) dx . (2.96)

Its variance can be calculated via

V (X) =

∫ ∞

−∞
(x −E X)2 · f (x) dx . (2.97)

The equations (2.71) – (2.74) do also apply to the continuous definition of expectation
value and variance.

Random Sample Consensus

A simple and elegant conceptual frame-
work to estimate parameters is the
Random Sample Consensus (RANSAC)
paradigm by MARTIN A. FISCHLER and
ROBERT C. BOLLES [FB81]. This tech-
nique is capable of extracting a variety
of different models out of unstructured,
noisy, sparse, and incomplete data.

RANSAC-based algorithms proceed
by randomly taking (ideally few) sam-
ples, calculating the free parameters of
a model (for example the four param-
eters of a plane). Then all samples of
the input data set “vote”, whether they
agree with the hypothesis (if they are
close enough to the suggested plane).
This procedure is repeated a few times,
and the hypothesis with the highest

RANSAC Iterations

Needed iterations of RANSAC algorithm until a consensus is found with
probability 95 % (p = 0.95) / 99 % (p = 0.99).

Noise Level Line (n = 2) Plane (n = 3) Sphere (n = 4)

10 % 2 / 3 3 / 4 3 / 5

20 % 3 / 5 5 / 7 6 / 9

30 % 5 / 7 8 / 11 11 / 17

40 % 7 / 11 13 / 19 22 / 34

50 % 11 / 16 23 / 35 47 / 72

60 % 18 / 27 46 / 70 116 / 178

70 % 32 / 49 110 / 169 369 / 567

80 % 74 / 113 373 / 574 1871 / 2876

90 % 299 / 459 2995 / 4603 29957 / 46050

Table 2.1: The number of iterations until a RANSAC algorithm detects a consensus with
probability p depends mainly on the number of samples n to generate a hypothesis and
the ratio of samples belonging to a hypothesis (r) to all samples (r + s). The total number
of samples plays a minor role. In this table the input data size is considered to be infinite.

acceptance rate wins by “consensus”.
Algorithm 2.7 outlines this principle.

Samples, which agreed to a hypothesis,
can be removed from the input data set
and the process can be started again,
basically until no samples remain.

The number of iterations which are
needed until a “good” hypothesis is
found can be determined stochastically.
Let the input data set consist of (r + s)
elements of which r belong to a model,
which shall be identified. If n samples
are needed to generate a model in-
stance, the probability that k randomly
chosen samples belong to this model
is distributed hypergeometrically; that
means P(X = k) can be calculated via
the formula

2.2 Probability and Statistics 39

P(X = k) =

�r
k

�� s
n−k

�

�r+s
n

�
. (2.98)

Therefore, the probability that at least
one sample does not belong to this
model is 1− P(X = n). If the process of
model generation and testing is done in
j times, the probability that always at
least one sample does not belong to the
current model is

(1−P(X = n))j (2.99)

respectively

1−
�r

n

�

�r+s
n

�

!j

. (2.100)

If p is the probability that the RANSAC
algorithm returns the correct result, the
probability of a failure is 1−p . The prob-
ability of such a failure is described by
the Term (2.100). Therefore this term
has to equal 1 − p . Solving the result-
ing equation for j returns the expected
number of needed iterations:

j =
ln(1−p)

ln
�

1− (
r
n)
(r+s

n)

� (2.101)

A simplified version of the equation,
which does not depend on the number
of data samples but on the ratio q of the
number of inliers in data to the number
of all data samples, leads to the simpli-
fied solution

j =
ln(1−p)

ln
�

1− (1−q)n
� . (2.102)

Table 2.1 lists some examples: let the in-
put data set consist of points in 3D and a
RANSAC-based algorithm shall identify
a line, a plane, or a sphere.

The number of iterations the algorithm
detects a model instance depends on
the noise level of the input data and
the number of samples n to generate a
model.

For example, if 20 % of all points
belong to a plane and the remaining
points are distributed randomly, then
the noise is at a level of 80 %. In this
case, the algorithm will need 373 itera-
tions to detect this plane with a prob-
ability p = 0.95; respectively 574 itera-
tions to ensure a probability of p = 0.99.

Algorithm 2.7 The random sample con-
sensus paradigm (RANSAC).

1 RANSAC

2 input data[1 .. (r + s)] : samples

3 n : generator

4 size

5 max : threshold

6 limit : threshold

7 output model : instance

8

9 error←∞
10 counter← 0

11 while error > limit

12 and counter <max

13 indices← CHOOSE (data, n)
14 hypothesis← GENERATE-MODEL (
,→ indices, data)

15 ratio← CHECK-MODEL (
,→ hypothesis, data)

16 if ratio < error

17 error← ratio

18 model← hypothesis

19 counter← counter +1

20 return model

40 2 Mathematical Basis

2.2.5 Continuous Distributions

Important continuous distributions with various fields of application are:

Uniform A uniform distribution has constant probability. The probability density func-
tion for a continuous uniform distribution on the interval [a ,b] is defined by

f (x) =

0 x < a
1

b−a a ≤ x ≤b
0 x >b.

(2.103)

The short notation for a random variable with uniform distribution, probability
density function f and distribution function F is X ∼ U ([a ,b]). Its expectation
value and its variance are

E (X) =
a +b

2
(2.104)

V (X) =
(b −a)2

12
. (2.105)

Exponential The exponential distribution is defined for every positive value λ> 0 by

f (x) =

¨

0 x < 0
λe−λx x ≥ 0.

(2.106)

The expectation value and the variance of a exponential distributed random
variable X ∼ E x p (λ) are

E (X) =
1

λ
(2.107)

V (X) =
1

λ2 . (2.108)

Normal A random variable is normal distributed with with mean µ and variance σ2

(in short: X ∼N (µ,σ2)), if it has a probability density function

f (x) =
1

σ
p

2π
e−(x−µ)

2/(2·σ2), (2.109)

respectively

f (x) =
1

σ
·ϕ
�x −µ
σ

�

, x ∈R (2.110)

with the bell-shaped, Gauss error distribution curve

ϕ(t) =
e−t 2/2

p
2π

. (2.111)

The standard normal distribution is given by taking µ= 0 and σ2 = 1. The prob-
ability density function of the standard normal distribution is plotted in Fig-
ure 2.9. Its cumulative distribution function is Φ(x) =

∫ x

−∞ϕ(t) d t . It is evaluated
in Table 2.2.

2.2 Probability and Statistics 41

Normal Distribution

Table of the integral Φ(x) = 1p
2π

x
∫

−∞
e−t 2/2 d t

x Φ(x) x Φ(x) x Φ(x)

0.000000 0.500000 1.000000 0.841345 2.000000 0.977250

0.050000 0.519939 1.050000 0.853141 2.050000 0.979818

0.100000 0.539828 1.100000 0.864334 2.100000 0.982136

0.150000 0.559618 1.150000 0.874928 2.150000 0.984222

0.200000 0.579260 1.200000 0.884930 2.200000 0.986097

0.250000 0.598706 1.250000 0.894350 2.250000 0.987776

0.300000 0.617911 1.300000 0.903200 2.300000 0.989276

0.350000 0.636831 1.350000 0.911492 2.350000 0.990613

0.400000 0.655422 1.400000 0.919243 2.400000 0.991802

0.450000 0.673645 1.450000 0.926471 2.450000 0.992857

0.500000 0.691462 1.500000 0.933193 2.500000 0.993790

0.550000 0.708840 1.550000 0.939429 2.550000 0.994614

0.600000 0.725747 1.600000 0.945201 2.600000 0.995339

0.650000 0.742154 1.650000 0.950529 2.650000 0.995975

0.700000 0.758036 1.700000 0.955435 2.700000 0.996533

0.750000 0.773373 1.750000 0.959941 2.750000 0.997020

0.800000 0.788145 1.800000 0.964070 2.800000 0.997445

0.850000 0.802337 1.850000 0.967843 2.850000 0.997814

0.900000 0.815940 1.900000 0.971283 2.900000 0.998134

0.950000 0.828944 1.950000 0.974412 2.950000 0.998411

1.000000 0.841345 2.000000 0.977250 3.000000 0.998650

Table 2.2: The cumulative distribution function Φ(x) of the standard normal distri-
bution N (0,1) is tabulated for semi-positive values x ≥ 0. Due to its point symmetry at
(0|1/2) (see Figure 2.9) negative values can be calculated using the symmetry condition
Φ(x)− 1/2 =−Φ(−x)+ 1/2.

42 2 Mathematical Basis

t

ϕ(t) = 1p
2π

e−t 2/2

1

1/2

0 4−4 x

Φ(x) =
x
∫

−∞
ϕ(t) d t

1

1/2

0 4−4

Figure 2.9: The probability density function of the standard normal distribution is the Gauss
error distribution curve ϕ(t) = 1p

2π
e−t 2/2. Its function plot (left) shows its characteristic bell-

shaped run. Its cumulative distribution function Φ(x) =
∫ x

−∞ϕ(t) d t (right) is used in various
contexts, e.g. in the next Section.

2.2.6 Inequalities and Limits

The theory of probability and statistics contains many theorems which allow approx-
imating various probability terms. According to the Tschebyshev4 inequality for any
random variable X with existing expectation value and variance, the equation

P (|X −E X | ≥ ε)≤
1

ε2 ·V (X), ε > 0 (2.112)

is satisfied.
The central limit theorem by JARL WALDEMAR LINDEBERG5 and PAUL LÉVY6 states

that the sum of independent random variables will approach a normal distribution
regardless of the distribution of the individual variables themselves. More precisely,

4 PAFNUTY LVOVICH TSCHEBYSHEV (May 16, 1821 – December 8, 1894) Pafnuty Lvovich Tschebyshev (al-
ternative spelling: “Chebyshev”) was a Russian mathematician. He worked on number theory, com-
plex analysis, and probabilistic theory.

5 JARL WALDEMAR LINDEBERG (August 4, 1876 – December 12, 1932) Jarl Waldemar Lindeberg was a
Finnish mathematician. He worked on partial differential equations, calculus of variations, proba-
bility theory and statistics. He is known for his work on the central limit theorem.

6 PAUL PIERRE LÉVY (September 15, 1886 – December 15, 1971) Paul Pierre Lévy was a French mathe-
matician who became famous for his work on probability theory.

2.2 Probability and Statistics 43

if (Xn)n≥1 is a sequence of independent and identically distributed random variables
with positive, finite varianceσ2 =V (X1) and expectation value µ= E X1, the limit

lim
n→∞

P

�

a ≤
∑n

i=1 X i −n ·µ
σ ·
p

n
≤b

�

=Φ(b)−Φ(a), (−∞≤ a <b <∞) (2.113)

converges to the differencesΦ(b)−Φ(a) of the cumulative Gaussian distribution func-
tion Φ(x) = 1p

2π

∫ x

−∞ e−t 2/2 d t . According to HANS BANDEMER and ANDREAS BELLMANN

this approximation by the standard normal distribution is practicable for sequences
with n > 30 [BB79].

A special case of the central limit theorem is the de Moivre-Laplace theorem by
ABRAHAM DE MOIVRE7 and PIERRE-SIMON LAPLACE.8 If each random variables X i de-
scribe a Bernoulli experiment (a random experiment whose outcome can either be
“positive” with probability p or “negative” with probability 1−p , p ∈ (0,1)), the central
limit theorem gives a normal approximation to the binomial distribution: Let Xn be a
random variable with binomial distribution with parameters n ∈N and p , 0< p < 1.
Then the central limit theorem can be rephrased to

lim
n→∞

P

a ≤
Xn −np

p

np (1−p)
≤b

!

=Φ(b)−Φ(a) (2.114)

and

lim
n→∞

P

Xn −np
p

np (1−p)
≤b

!

=Φ(b), (2.115)

with a <b , a ,b ∈R.
The same way the central limit theorem can be used to approximate a random

process by a normal distribution, the de Moivre-Laplace theorem can be utilized to
approximate the binomial distribution. For large values of n and k ,l ∈N,0≤ k < l ≤ n
the probability

P (k ≤Xn ≤ l) =
l
∑

j=k

�

n

j

�

p j (1−p)n−j (2.116)

of a binomial distributed random variable Xn can be approximated by

P(k ≤Xn ≤ l) = P

k −np
p

np (1−p)
≤

Xn −np

np − (1−p)
≤

l −np

np (1−p)

!

≈Φ(b)−Φ(a)

(2.117)

7 ABRAHAM DE MOIVRE (May 26, 1667 – November 27, 1754) Abraham de Moivre was a French mathe-
matician who pioneered the development of analytic geometry and the theory of probability.

8 PIERRE-SIMON LAPLACE (March 28, 1749 – March 5, 1827) Pierre-Simon Marquis de Laplace was a
French mathematician and astronomer. He worked on probability theory and differential equations.

44 2 Mathematical Basis

with

a =
k −np

p

np (1−p)
, b =

l −np
p

np (1−p)
. (2.118)

In many cases a better approximation can be achieved with a so-called continuity
correction (±1/2):

P (k ≤Xn ≤ l)≈Φ

l −np + 1
2

p

np (1−p)

!

−Φ

k −np − 1
2

p

np (1−p)

!

. (2.119)

The special case of a hypergeometric distribution Xn ,r,s with µ(n ,r,s) = n · r
r+s and

σ2(n ,r,s) = n · r
r+s ·

s
r+s ·

�

1− n−1
r+s−1

�

, a <b , a ,b ∈R reformulates to

lim
σ2(n ,r,s)→∞

P

a ≤
Xn ,r,s −µ(n ,r,s)
p

σ2(n ,r,s)
≤b

!

=Φ(b)−Φ(a) (2.120)

as well as

lim
σ2(n ,r,s)→∞

P

Xn ,r,s −µ(n ,r,s)
p

σ2(n ,r,s)
≤b

!

=Φ(b). (2.121)

2.2.7 Statistical Estimation

According to ERIC WEISSTEIN an estimate is an educated guess for an unknown quan-
tity or outcome based on known information. The making of estimates is an impor-
tant part of statistics, since care is needed to provide as accurate an estimate as pos-
sible using as little input data as possible. Often, an estimate for the uncertainty of
an estimate can also be determined statistically. A rule that tells how to calculate
an estimate based on the measurements contained in a sample is called an estima-
tor [Wei09].

More formal, the initial situation consists of a probability space (Ω,F ,P), a random
variable X and a realization (an observed value) x of X ; e.g. x = X (ω) for an element
ω∈Ω. The distribution is not known completely. The class of distribution is assumed
and its free parameters, which shall be estimated, are denoted by ϑ. To indicate the
dependency the distribution, its expectation value, its variance, etc. are written Pϑ,
Eϑ, and Vϑ. The set of all possible parameters ϑ is the parameter space Θ.

For some data x the probability Pϑ(X = x) can be interpreted as function of ϑ. This
function

Lx :

¨

Θ → [0,1]
ϑ 7→ Pϑ(X = x)

(2.122)

maps each parameter ϑ to the probability to obtain the observed data x . Lx is called
likelihood function. If Lx reaches a maximum value ϑ̂ for each x , the function ϑ̂(x) is
called maximum likelihood estimator.

2.2 Probability and Statistics 45

A maximum likelihood estimator is a so-called point estimator. Its estimate is a sin-
gle point / a single datum. As the estimated value T (x) of an estimator T and the
unknown parameter ϑ may differ significantly, confidence regions have been intro-
duced.

A confidence region C (x) for ϑ is a subset of all possible parameters Θ. Is C (x)
an interval in Θ ⊂ R with endpoints l (x) and L(x), it is called confidence interval.
Confidence intervals are a form of interval estimation. In contrast to point estimation
it indicates the precision with which the parameter ϑ is estimated.

A confidence interval C (x) = [l (x),L(x)] for ϑ is said to have confidence level 1−α,
0<α< 1, if

Pϑ ({x ∈Ω : ϑ ∈C (x)})≥ 1−α, ∀ϑ ∈Θ . (2.123)

For random variables with binomial or hypergeometric distribution point estimators
and confidence intervals can be derived explicitly. NORBERT HENZE [Hen95] derived
them as follows:

For stochastically independent and each binomially distributed random variables
X1, . . . ,Xn with parameters 1,ϑ, ϑ ∈Θ= (0,1), a point estimator is

Tn =
1

n

n
∑

j=1

X j . (2.124)

According to the theorem of de Moivre-Laplace (2.2.6)

lim
n→∞

Pϑ

�

�

�

�

�

p
n (Tn −ϑ)
p

ϑ(1−ϑ)

�

�

�

�

�

≤ h

!

=Φ(h)−Φ(−h), h > 0 (2.125)

the central limit theorem gives a normal approximation to the binomial distribution.

As
p

n |Tn −ϑ| ≤ h
p

ϑ(1−ϑ) leads to a quadratic inequality in ϑ

(n +h2) ·ϑ2− (2nTn +h2) ·ϑ+nT 2
n ≤ 0, (2.126)

the endpoints of the interval are

l n (X1, . . . ,Xn)≤ θ ≤ L n (X1, . . . ,Xn) (2.127)

with

l n (X1, . . . ,Xn) =
Tn + h2

2n −
hp
n ·
Æ

Tn (1−Tn)+ h2

4n

1+ h2

n

, (2.128)

L n (X1, . . . ,Xn) =
Tn + h2

2n +
hp
n ·
Æ

Tn (1−Tn)+ h2

4n

1+ h2

n

, (2.129)

and

h(α) = Φ−1
�

1−
α

2

�

(2.130)

using Φ(h)−Φ(−h) = 2Φ(h)−1.

46 2 Mathematical Basis

As the limit

lim
n→∞

Pϑ (l n (X1, . . . ,Xn)≤ ϑ≤ L n (X1, . . . ,Xn)) = 1−α. (2.131)

converges to 1−α the sequence

Cn (x1, . . . ,xn) = [l n (x1, . . . ,xn),L n (x1, . . . ,xn)] (2.132)

is an asymptotic confidence interval for ϑ at confidence level (1−α). Table 2.2 lists
some values of Φ. Corresponding inverse values can be used to calculate the values
of h(α) = Φ−1(1− α/2). A selection of values of the inverse function Φ−1 is listed in
Table 2.3.

Inverse Cumulative Density Function Φ−1

Table of the inverse cumulative density function Φ−1 of the

function Φ(x) = 1p
2π

x
∫

−∞
e−t 2/2 d t

α Φ−1(α) α Φ−1(α)

0.500000 0.000000 1− 1/102 2.326348

0.550000 0.125661 1− 1/103 3.090232

0.600000 0.253347 1− 1/104 3.719016

0.650000 0.385320 1− 1/105 4.264891

0.700000 0.524401 1− 1/106 4.753424

0.750000 0.674490 1− 1/107 5.199338

0.800000 0.841621 1− 1/108 5.612001

0.850000 1.036433 1− 1/109 5.997807

0.900000 1.281552 1− 1/1010 6.361341

0.950000 1.644854 1− 1/1011 6.706023

Table 2.3: Many estimations and approximations depend on values of the inverse function
of the cumulative density function of the standard normal distribution N (0,1). This Table lists
commonly used/needed values.

2.2 Probability and Statistics 47

In case of a hypergeometric distribution confidence intervals can be determined the
same way. The basic population Ωmay consist of N elements of which r are marked.
The quotient ϑ = r /N is unknown and shall be estimated. The relative frequency of
marked elements in a sample of size n will be denoted Tn . It is a point estimator for ϑ.

The central limit theorem for hypergeometric distributions provides a normal ap-
proximation for large values of n :

Pϑ

 p
n · |Tn −ϑ|

ϑ · (1−ϑ) ·
�

1− n−1
N−1

� ≤ h

!

≈Φ(h)−Φ(−h) (2.133)

with

h =Φ−1
�

1−
α

2

�

. (2.134)

Similar to the binomial distribution the interval endpoints are the solution of a
quadratic inequality. The lower, respectively upper bound is

Tn + h2

2n γ±
hp
n ·
Æ

Tn (1−Tn)γ+ h2

4n γ
2

1+ h2

n γ
. (2.135)

The resulting confidence interval for ϑ has confidence level 1−α, 0<α< 1. The term
γ = 1− n−1

N−1 is the finite population correction factor. The quotient n/N (≈ 1− γ) is
called sampling fraction.

Please note, the precision of the confidence – respectively the length of the confi-
dence interval – mainly depends on the sample size n and not on the sampling frac-
tion n/N .

Linear Algorithms in Sublinear Time

Many algorithms contain linear sub-
algorithms, which work on a large in-
put data set without modifying it, and
which calculate a “small” result; i.e. a
result whose size does not depend on
the input data set and which is con-
stant therefore [UF11b]. A typical ex-
ample is a for-loop which iterates on
all input samples (e.g. in the RANSAC
Algorithm 2.7) and performs a calcu-
lation on each input sample indepen-
dently (e.g. check a hypothesis). In
such a situation a sufficient result can
be obtained by an estimator in sublin-
ear – or even constant – time.

The RANSAC algorithm shall ex-
emplify the usage of an estimator.
In this setting the input data set
consists of N elements which “vote”
whether they agree to an hypothesis
or not. Calling an election needs O(N)
time; a forecast can be done much
faster [HN02]: an asymptotic estima-
tor may use the central limit theorems
to construct a confidence interval (see
Section 2.2.7). Omitting all negligible
terms of order O(1/n) leads to the in-
terval endpoints Tn± hp

n ·
p

Tn (1−Tn);
respectively to the interval length

∆=
2h
p

n
·
p

Tn (1−Tn). (2.136)

The term of the unknown estimate Tn

is limited
p

Tn (1−Tn) ≤ 1
2 and the

constant h = Φ−1(1 − α
2) does only

depend on the confidence level. Hav-
ing set the confidence level 1−α (see
Table 2.3 for reasonable values) and
the accuracy∆, the number of needed
samples to perform a forecast is

n =
Φ−1

�

1− α
2

�

∆2 . (2.137)

An example illustrates the efficiency.
The data set in Figure 2.10 consists of
19 400 points, of which 5 000 belong
to one plane. The remaining 14 400
points are distributed randomly in a
cube. With a noise level of almost 75 %
the expected number of iterations to
detect a plane with 95 % probability is
174. This results in 3 375 600 Point-In-
Plane tests.

As an estimator introduces an ad-
ditional error, its confidence level has
been set to 97.5 % and the RANSAC
algorithm shall detect a plane with a
probability of as well 97.5 %. Then the
overall system is able to determine the
correct result – due to stochastic inde-
pendence – with a probability of 0.975·
0.975 = 95.0626 %. In this situation
the expected number of RANSAC iter-
ations is 213 and the number of sam-
ples to take is 139. Therefore, the es-
timator reduces the number of Point-
In-Plane tests to 29 607 single tests. A
test implementation using the exam-
ple data set confirms this speed-up.

Figure 2.10: This example data set con-
sists of 5 000 points (red) in a plane and
14 400 points randomly distributed in a
cube. To determine the plane’s parame-
ters is a typical task for a RANSAC algo-
rithm.

2.3 Numerical Optimization 49

2.3 Numerical Optimization

An optimization problem can be represented in the following way: For a function f
from a set A to the real numbers, an element x0 ∈ A is sought-after, such that

∀x∈ A : f (x0)≤ f (x). (2.138)

Such a formulation is called an minimization problem and the element x0 is a global
minimum. Without loss of generality, it is sufficient to investigate minimization prob-
lems; maximization problems can be transformed to minimization problems via du-
ality.

The maximization of a real-valued function g (x) can be regarded as the minimiza-
tion of the transformed function

f (x) = (−1) · g (x). (2.139)

Depending on the field of application, f is called an objective function, cost func-
tion, energy function, or energy functional. A feasible solution that minimizes the ob-
jective function is called an optimal solution.

Typically, A is some subset of the Euclidean space Rn , often specified by a set of
constraints (equalities or inequalities) that the members of A have to satisfy. The do-
main A of f is often called search space or choice set, while the elements of A are
called candidate solutions or feasible solutions.

Generally, a function f may have several local minima, where a local minimum x?

satisfies the expression f (x?)≤ f (x) for all x∈ A in a neighborhood of x?:

||x−x?|| ≤δ, δ> 0. (2.140)

In other words, on some region around x? all function values are greater than or equal
to the value at x?. The occurrence of multiple extrema makes problem solving in (non-
linear) optimization very hard. The global (best) minimizer is difficult to obtain with-
out supplying global information, which in turn is usually unavailable for a nontrivial
case. Since there is no easy algebraic characterization of global optimality, global op-
timization is a difficult area, at least in higher dimensions.

As global optimization is not within the scope of this thesis, only a few represen-
tative techniques are summarized. Further explanations can be found in “Numerical
Methods” [BP93], “Numerical Optimization” [NW99], “Introduction to Applied Op-
timization” [Diw03], “Compact Numerical Methods for Computers: Linear Algebra
and Function Minimisation” [Nas90], as well as in “Numerische Methoden der Anal-
ysis” (english: Numerical Methods of Analysis) [HP10]. Besides these introductions
and overviews some books emphasize practical aspects – e.g. “Practical Optimiza-
tion” [GMW82], “Practical Methods of Optimization” [Fle00], and “Global Optimiza-
tion: Software, Test Problems, and Applications” [Pin02].

50 2 Mathematical Basis

Global optimization is a fast evolving research area. Current overviews on the latest
research results have been published in “Large-Scale Nonlinear Constrained Opti-
mization: A Current Survey Algorithms for continuous optimization: the state of the
art” [CGT94], “Numerical methods for large-scale nonlinear optimization” [GOT05],
and in “Robust optimization – A comprehensive survey” [BS07]. The following algo-
rithms and techniques do not give a complete overview. They just explain the main
principles of global optimization.

2.3.1 Quadratic Search

The main idea behind quadratic search is to approximate an objective function f
locally by a quadratic function, whose minimum can be calculated easily. In a one-
dimensional case, three vales x i , x i−1, x i−2 are used to define a parabola p (x) = a x 2+
bx + c with coefficients

a =
1

X
·
�

(f (x i−2)− f (x i−1)) ·x i

+(f (x i)− f (x i−2)) ·x i−1

+(f (x i−1)− f (x i)) ·x i−2

�

, (2.141)

b =
−1

X
·
�

(f (x i−2)− f (x i−1)) ·x 2
i

+(f (x i)− f (x i−2)) ·x 2
i−1

+(f (x i−1)− f (x i)) ·x 2
i−2

�

, (2.142)

c =
1

X
·
�

(f (x i−2) ·x i−1− f (x i−1) ·x i−2) ·x 2
i

+(f (x i) ·x i−2− f (x i−2) ·x i) ·x 2
i−1

+(f (x i−1) ·x i − f (x i) ·x i−1) ·x 2
i−2

�

, (2.143)

with X = (x i −x i−1) · (x i−1−x i−2) · (x i −x i−2). In an iteration the parabola’s minimum
at −b/2a (if it exists, resp. if a > 0) is used to calculate the next iteration step x i+1:

x i+1 =
(f (x i−2)− f (x i−1)) ·x 2

i +(f (x i)− f (x i−2)) ·x 2
i−1+(f (x i−1)− f (x i)) ·x 2

i−2

2 · ((f (x i−2)− f (x i−1)) ·x i +(f (x i)− f (x i−2)) ·x i−1+(f (x i−1)− f (x i)) ·x i−2)
(2.144)

In higher dimensions this approach is of limited use due to the complexity of its inher-
ent, inverse approximation problem. In this case, the method of the steepest gradient
can be utilized.

2.3.2 Gradient Descent

The steepest gradient method can minimize multivariate functions f (x),x ∈Rn . This
iterative algorithm determines the negative gradient

2.3 Numerical Optimization 51

di =−grad f (xi) (2.145)

and minimizes the one-dimensional optimization problem

min
t≥0

f (xi + t ·di). (2.146)

The minimum at t i sets the next iteration step

x i+1 = xi + t i ·di . (2.147)

The sequence x0, x1, x2, . . . converges, if f is bounded below and if its gradient grad f
meets the Lipschitz9 condition

||grad f (x)−grad f (x̃)|| ≤ L||x− x̃||, L ∈R (2.148)

for x and x̃ in a neighborhood of
�

x : f (x)≤ f (x0)
	

. (2.149)

In most cases the limit point of the sequence x0, x1, x2, . . . is a local minimum. The
inner, one-dimensional optimization is typically done using an approximation tech-
nique.

Interestingly, the convergence of the steepest gradient method can be shown with
very few requirements [SHS02]. The iteration

xi+1 = xi + t i ·di (2.150)

has to satisfy three conditions with α,β ,γ∈ (0,1) and β < γ:

1. The search direction di does not have to be the negative gradient. The angle may
vary up to π/2:

−dT
i grad f (xi)≥α||di ||||grad f (xi)||. (2.151)

This property reduces the objective function locally.

2. The objective function has to be bounded by a linear function:

f (xi+1)≤ f (xi)+β t dT
i grad f (xi). (2.152)

3. Finally, the step size may not be too small:

dT
i grad f (xi+1)≥ γdT

i f (xi). (2.153)

This method has a severe drawback. It requires many iterations, if the function – inter-
preted as a heightfield – has long, narrow valley structures. In such a case, a conjugate
gradient method is preferable.

9 RUDOLF OTTO SIGISMUND LIPSCHITZ (May 14, 1832 – October 7, 1903) Rudolf Otto Sigismund Lipschitz
was a German mathematician who worked in widely different fields on which he contributed. His
work in algebraic number theory led him to study the quaternions and generalizations such as Clif-
ford algebras. In fact Lipschitz rediscovered Clifford algebras and was the first to apply them to repre-
sent rotations of Euclidean spaces.

Automatic Differentiation

In many applications of scien-
tific computing, it is necessary
to compute derivatives of func-
tions. According to ROLF HAMMER,
MATTHIAS HOCKS, ULRICH KULISCH, and
DIETMAR RATZ [HHKR97] there are three
different methods to get the values of
the derivatives: numerical differentia-
tion, symbolic differentiation, and au-
tomatic differentiation.

Numerical differentiation uses dif-
ference approximations to compute ap-
proximations of the derivative values.
Symbolic differentiation computes ex-
plicit formulas for the derivative func-
tions by applying differentiation rules.
Automatic differentiation also uses the
well-known differentiation rules, but it
propagates numerical values for the
derivatives. This combines the advan-
tages of symbolic and numerical dif-
ferentiation [GW08]. Numbers instead
of symbolic formulas must be handled,
and the computation of the derivative
values is done automatically together

Automatic Differentiation

Differentiation arithmetic for ordered pairs.

Differentiation Arithmetic Real Arithmetic

(u ,u ′) + (v,v ′) = (u +v, u ′+v ′)

(u ,u ′) − (v,v ′) = (u −v, u ′−v ′)

(u ,u ′) · (v,v ′) = (u ·v, u ·v ′+u ′ ·v)
(u ,u ′) / (v,v ′) = (u /v, (u ′ ·v −u ·v ′)/v 2), v 6= 0

Table 2.4: Differentiation arithmetics uses the well-known rules for derivative values.
In contrast to symbolic differentiation only the algorithm or formula for the function is
needed. No explicit formulas for the derivatives are required.

with the computation of the function
value.

Automatic differentiation evaluates
functions specified by algorithms or for-
mulas where all operations are per-
formed according to the rules of a differ-
entiation arithmetic given by “C++ for
Verified Computing” [HHKR97]. In the
one-dimensional case, first order differ-
entiation arithmetic is an arithmetic for
ordered pairs: the first component con-
tains the value u (x) of the function u :
R → R at the point x ∈ R. The sec-
ond component contains the value of
the derivative u ′(x). The rules for the
arithmetic are listed in Table 2.4. The fa-
miliar rules of calculus are used in the
second component. The operations in
these definitions are operations on real
numbers.

An independent variable x and the
arbitrary constant c correspond to the
ordered pairs

(x ,1) and (c ,0), (2.154)

2.3 Numerical Optimization 53

x

x x 3
sin
t1

×
t2

×
t3

+
t4

Figure 2.11: The evaluation of the term
x 2 + 3 sinx at x0 = 1.3 using differentiation
arithmetic (see Table 2.4) does not only re-
turn its value but also its derivative value.
The computational complexity of this dif-
ferentiation arithmetic (forward method) is
at most a small multiple of the cost of eval-
uating the term itself.

since d x
d x = 1, and d c

d x = 0. If the inde-
pendent variable x of a formula for a
function f : R → R is replaced by X =
(x ,1), and if all constants are replaced by
their (c ,0) representation, then the eval-
uation of f using the rules of differenti-
ation arithmetic gives the ordered pair

f (X) = f ((x ,1)) (2.155)

= (f (x), f ′(x)). (2.156)

For example, Figure 2.11 shows an
abstract syntax tree. Its evaluation at
x0 = 1.3 illustrates the calculation of its
derivative values at intermediate sub-
terms. For elementary functions

s :R→R (2.157)

the rules of differentiation arithmetic
must be extended using the chain rule

s (U) = s ((u ,u ′)) (2.158)

= (s (u),u ′ · s ′(u)). (2.159)

This way the sine function is defined by

sinU = sin(u ,u ′) (2.160)

= (sin u ,u ′ · cos u). (2.161)

The result of this structure and its cor-
responding operators is the algebra of
dual numbers [Kel00], which can be im-
plemented in three ways:

Many programming languages of-
fer an overloading mechanism that re-
places each real number by a pair of
real numbers including the differen-
tial. Each elementary operation on real
numbers is overloaded, i.e. internally
replaced by a new one, working on pairs
of reals, that computes the value and its
differential. In this way the original pro-
gram is virtually unchanged.

Another approach uses source code
transformation. This technique adds
new variables, arrays, and data struc-
tures into the program that will hold
the derivatives and the new instructions
that compute them. This approach does
not depend on language features such
as operator overloading.

The third way to implement auto-
matic differentiation does not modify a
program or its source, but the platform
(e.g. Java Virtual Machine, .Net Com-
mon Language Runtime, etc.) it runs on.

Recent developments in the field of
automatic differentiation are summa-
rized in “Advances in Automatic Differ-
entiation” [BBH+08].

54 2 Mathematical Basis

2.3.3 Conjugated Gradients

The conjugated gradients method determines the minimum of a quadratic, convex
function, but ROGER FLETCHER and COLIN M. REVES generalized the algorithm to non-
linear optimization. It is used to find the local minimum of a nonlinear function using
its gradient and works, when the function is approximately quadratic near the mini-
mum, which is the case when the function is twice differentiable at the minimum.

Starting with

x0, (2.162)

g0 = grad f (x0), (2.163)

d0 =−g0 (2.164)

the iteration of conjugated gradients generates a sequence of approximations for a
local minimum via the recursion:

xi+1 = xi +αi di , (2.165)

gi+1 = grad f (xi+1), (2.166)

di+1 =−gi+1+βi di . (2.167)

In this recursion αi minimizes the one-dimensional optimization problem [GJH95]

min
αi>0

f (xi +αi di) (2.168)

and βi is defined by

βi =
gT

i+1gi+1

gT
i gi

. (2.169)

The parameters αi and βi can be set in various ways, e.g.

βi =
(gT

i+1−gT
i)gi+1

gT
i gi

(2.170)

as suggested in the article “Note sur la convergence de méthodes de directions con-
juguées” [PR69] or

βi =
(gT

i+1−gT
i)gi+1

(gT
i+1−gT

i)di
(2.171)

as proposed in “Methods of conjugate gradients for solving linear systems” [HS52].

2.3 Numerical Optimization 55

2.3.4 Genetic Algorithms

As most gradient based methods optimize locally, they most likely find local minima
of a nonlinear function but not its global minimum. To find a global minimum local
optimization algorithms can be combined with genetic algorithms [JM90], [Mic95],
[MS96] which have good global search characteristics [ONOT98]. These combina-
torial methods – such as simulated annealing [Ing93] – improve the search strategy
through the introduction of two tricks. The first is the so-called “Metropolis algo-
rithm” [MRRT53], in which some iterations that do not lower the objective function
are accepted in order to “explore” more of the possible space of solutions. The second
trick limits these explorations, if the cost function declines only slowly.

2.3.5 Differential Evolution

The differential evolution method is described in “Differential Evolution: A simple
and efficient heuristic for global optimization over continuous spaces” [SP97]. It is a
parallel, direct search method based on ideas of evolution strategies. It uses n vectors
xi ,k (i = 1, . . . ,n) as a population for each generation k .

The members of a new generation k + 1 are generated by a permutation and a
cross-over process. For each vector x i ,k a trial vector

∆= xα,k + F · (xβ ,k −xγ,k) (2.172)

with a constant F ∈ R, F > 0, and randomly chosen α,β ,γ ∈ {1, . . . ,n}\{i }, which do
not equal each other α 6=β 6= γ 6=α.

To increase the diversity of the parameter vectors, a cross-over process mixes xi ,k

with∆. The resulting vector y consists of a sequence of elements of xi ,k , whereas other
elements are copied from∆.

If the new vector y yields a smaller objective function value and its error value of
the minimization process is smaller than xi ,k , then xi ,k+1 is replaced by y otherwise
the old value xi ,k is retained.

The differential evolution method for minimizing continuous space functions can
also handle discrete problems by embedding the discrete parameter domain in a con-
tinuous domain. It converges quite fast and is inherently parallel, which allows an
execution on a network of computers.

56 2 Mathematical Basis

57

3 Geometry

Geometry is one of the oldest sciences [SS04]. Some of its main concepts – namely
basic topology, affine geometry, projective geometry, and differential geometry – are
introduced and recapitulated in this chapter.

The notations, definitions and theorems are excerpted from JOSEF HOSCHEK’s and
DIETER LASSER’s “Grundlagen der Geometrischen Datenverarbeitung” (english: Fun-
damentals of Computer Aided Geometric Design) [HL89], from “Geometric Con-
cepts for Geometric Design” by WOLFGANG BOEHM and HARTMUT PRAUTZSCH [BP94],
and from the textbook on computer-aided geometry by GÜNTER AUMANN and
KLAUS SPITZMÜLLER [AS93].

The section on differential geometry is based on the textbooks “Modern Differen-
tial Geometry of Curves and Surfaces with Mathematica” by ALFRED GRAY [Gra97] and
MANFREDO DO CARMO’s “Differential Geometry of Curves and Surfaces” [DC76].

Contents

3.1 Topology 58

3.2 Affine Geometry 60

3.3 Euclidean Geometry 63

3.4 Projective Geometry 68

3.5 Differential Geometry 78

58 3 Geometry

3.1 Topology

The theory of topology is based on set theory and concerns itself with structures of
sets. It generalizes many distance related concepts, such as continuity, compactness
and convergence and provides many elementary definitions.

3.1.1 Topological Space

A topological space consists of a set X and a collection of subsetsX that satisfy three
conditions:

1. The empty set ; and the set X belong toX ; i.e. ; ∈X , X ∈X .

2. The intersection of a finite number of sets inX is also inX .

3. The union of an arbitrary number of sets inX is also inX .

The elements ofX are called open sets.
A topological space (X ,X) is called Hausdorff space respectively to be Hausdorff,

if any two elements a , b in X have environments A,B ∈X with a ∈ A, b ∈ B which are
disjunct A ∩ B = ;. This property is named after FELIX HAUSDORFF1. If Y is a subset of
X in a topological space (X ,X), then the topology

X |Y = {U ∩Y : U ∈X } (3.1)

is induced by Y and (Y ,X |Y) is called topological subspace whereas a product topol-
ogy is the topology on the Cartesian productX ×Y of two topological spaces whose
open sets are the unions of subsets X ×Y , where X and Y are open subsets ofX and
Y , respectively.

3.1.2 Maps and Bases

A topological basis is a setB of open sets such that every other open set of the topo-
logical space can be written as unions or finite intersections ofB .

The theory of topology introduces the concept of continuity. A map or function
between two topological spaces is continuous, if and only if the preimage of any open
set is open.

A homeomorphism, also called a continuous transformation, is a bijective func-
tion between elements in two topological spaces that is continuous in both direc-
tions.

1 FELIX HAUSDORFF (November 8, 1868 – January 26, 1942) Felix Hausdorff was a German mathemati-
cian who founded point-set topology, Hausdorff spaces, and the concepts of metric and topological
spaces.

3.1 Topology 59

3.1.3 Manifold

The so-called natural topology ofRn consists of X =Rn andX n . A subset U ⊂Rn be-
longs toX n , if and only if every X = (x1, . . . ,xn)∈U is surrounded by an n-dimensional
Euclidean ball

B n (X) =
¦

(t1, . . . ,tn) : (t1−x1)2+ . . .+(tn −xn)2 < 1
©

, (3.2)

which lies completely in U . A manifold is a topological space that is locally Euclidean,
i.e. a topological space (M ,M) is an n-dimensional topological manifold, if

1. every point X ∈M has an open neighborhood U ⊂M , X ∈U ∈M , that is home-
omorphic to an n-dimensional open Euclidean ball B n

and if

2. M is Hausdorff.

M Rn

U
B n

X

Figure 3.1: A manifold is a topological space that on a small scale resembles an n-
dimensional Euclidean space; i.e. each point X has a neighborhood U that is homeomorphic
to an n-dimensional open Euclidean ball B n . Although the local structure is Euclidean, the
global structure of a manifold may be more complicated.

By definition it is impossible for a manifold to include its boundary points as these
points are not contained in open sets. A manifold with boundary is a Hausdorff space
in which every point has a neighborhood that is homeomorphic to an open subset of
Euclidean half-space

Rn
+ =

�

(x1, . . . ,xn)∈Rn : x1 ≥ 0
	

. (3.3)

An n-dimensional manifold with boundary can be divided disjunctively into a set
of points which form a manifold (without boundary) M and a set of points which
forms the boundary of M denotedδM . The boundaryδM itself is a manifold (without
boundary) of dimension n−1. If not explicitly stated otherwise, a manifold is defined
without border.

60 3 Geometry

3.2 Affine Geometry

Many concepts and tools in geometric design are based on affine structures in affine
spaces. An affine space is a point space with an associated linear space.

3.2.1 Affine Space

An affine space consists of

• a set A, whose elements {P,Q ,R , . . .} are called points,

• a vector space V over a field F and

• a mappingω :

¨

A×A → V

(P,Q) 7→ ω(P,Q) =
−→
PQ

with the compatibility properties

1.

∀P ∈A ∀v∈V ∃1Q ∈A :
−→
PQ = v (3.4)

2.

∀P,Q , R ∈A :
−→
PQ +

−→
QR =

−→
PR . (3.5)

These properties justify the notation of point-vector-additions for any point of an
affine space and any vector of its associated vector space.

In case of the field R and the real vector space Rn , A is called real affine space. A
point P of A and a vector subspace U ⊂V define an affine subspace

B=
n

X ∈A :
−→
PX ∈U

o

. (3.6)

The dimension of an affine space is the dimension of the underlying vector space

dimA= dim V. (3.7)

According to this definition a zero-dimensional, affine space consists of a single point.
A one-dimension space is a straight line, a two-dimensional space is a plane. If A is
an n-dimensional space – written as An , all n − 1-dimensional subspaces are called
hyperplanes.

If not mentioned otherwise, all affine spaces in the following text will be real, affine
spaces with a finite dimension. Furthermore, the underlying real vector spaces will
have an inner product < · | ·>.

3.2 Affine Geometry 61

3.2.2 Affine Coordinate System

A tuple of (n+1)points (P0, . . . ,Pn) of an affine space (An ,V (F),ω) is called a coordinate
system, if the vectors

−−→
P0P1, . . . ,

−−→
P0Pn ∈V (3.8)

are linearly independent. The point P0 is called origin, the points P1, . . . ,Pn are called
unit points and the straight line through P0 and Pi is the i thcoordinate axis. For any

point Q ∈A the position vector
−→
P0Q ∈V has a unique representation

−→
P0Q =λ1

−−→
P0P1+λ2

−−→
P0P2+ . . .+λn

−−→
P0Pn , λ1, . . . ,λn ∈ F. (3.9)

The values λ1, . . . ,λn are called coordinates of Q in the coordinate system (P0, . . . ,Pn).
The vector

�

λ1 . . . λn

�T ∈ F n is the coordinate vector of Q . A commonly used
notation is Q (λ1 | . . . |λn). A coordinate system P0, . . . ,Pn of an affine space is called
Cartesian, if the vectors

−−→
P0P1, . . . ,

−−→
P0Pn ∈V (3.10)

form an orthonormal basis of V .

3.2.3 Convex Hull and Barycentric Coordinates

A set of points P of a real, affine space A is called convex, if for all points P,Q ∈ P the
segment

n

P + t ·
−→
PQ : 0≤ t ≤ 1

o

(3.11)

is a subset of P. The convex hull of a set of points S is the intersection of all convex
sets containing S.

If (P0, . . . ,Pn) are a coordinate system of an affine spaceAn , any point Q ∈A can be

represented by the sum of the origin P0 and a unique, linear combination of
−−→
P0Pi :

Q = P0+λ1
−−→
P0P1+λ2

−−→
P0P2+ · · ·+λn

−−→
P0Pn . (3.12)

Rewriting
−−→
P0Pi = Pi −P0 and collecting subterms of Pi leads to

Q = 1 ·P0+λ1(P1−P0)+λ2(P2−P0)+ · · ·+λn (Pn −P0) (3.13)

= (1−λ1−λ2− · · ·−λn)
︸ ︷︷ ︸

=λ0

P0+λ1P1+λ2P2+ · · ·+λn Pn . (3.14)

62 3 Geometry

The final representation of the coordinate vector
�

λ0 . . . λn

�T
, λ0+ . . .+λn = 1

is called barycentric. In contrast to an affine coordinate system in a barycentric co-
ordinate system none of the points (P0, . . . ,Pn) has a special interpretation as origin.
Furthermore, the location of any point represented in barycentric coordinates can be
determined easily as illustrated in Figure 3.2. Using the concept of barycentric coor-
dinates the convex hull of a set of points P = {P0, . . . ,Pn} consists of all points whose
coordinates are semi-positive in the corresponding barycentric coordinate system.
More general, the convex hull of any finite set of points S= {S0, . . . ,Sm } ⊂An is

(

m
∑

i=1

λi Si : ∀λi ≥ 0 and
m
∑

i=1

λi = 1

)

. (3.15)

P

Q

R

(+ | + |+)

(+ | + |−)

(−| + |−)

(−| + |+)

(−| − |+)

(+ | − |+)

(+ | − |−)

Figure 3.2: The location of points can be described by a set of reference points which define
a so-called coordinate system. This illustration shows a barycentric coordinate system which
consists of three points P,Q ,R . Using this coordinate system the location of any point in this
plane can be expressed via its unique coordinates (λ0 |λ1 |λ2). Depending on the sign of its
coordinates a point belongs to one of the illustrated regions (±| ± |±). The convex hull of the
points P,Q ,R consists of all points of the closure of region (+ | + |+).

3.3 Euclidean Geometry 63

3.3 Euclidean Geometry

This Section discusses Euclidean geometry in order to introduce the mathematical
background for calculating a distance. Euclidean geometry is a mathematical system
attributed to EUCLID2, whose “Elements” [Hei07] is the most successful textbook and
one of the most influential works in the history of mathematics [Aum08].

3.3.1 Metric

A nonnegative function d : X ×X →R describing the “distance” between objects for a
given set X is called a metric, if it satisfies

d (x ,x) = 0 and d (x ,y) = 0⇒ x = y (3.16)

as well as the symmetry condition

d (x ,y) = d (y ,x) (3.17)

and the triangle inequality

d (x ,z)≤ d (x ,y)+d (y ,z) (3.18)

for all x ,y ,z ∈ X . The most simple example, which satisfies all conditions is the dis-
crete metric

d (x ,y) =

¨

1, x 6= y
0, x = y

(3.19)

In the field of computer-aided design (CAD) and computer graphics the Euclidean
metric is of particular importance. In the following text the Euclidean distance func-
tion will be used, if not mentioned otherwise. Two points X ,Y with corresponding

position vectors x=
�

x1 . . . xn

�T
and y=

�

y1 . . . yn

�T
of an n-dimensional

space have the Euclidean distance

d (X ,Y) = ||x−y||=
p

(x1− y1)2+ . . .+(xn − yn)2. (3.20)

In some cases it is convenient to use the maximum metric

µ(X ,Y) =max(|x1− y1|, . . . ,|xn − yn |) (3.21)

or the absolute value metric

σ(X ,Y) = |x1− y1|+ . . .+ |xn − yn |. (3.22)

The relationship between all these metrics in real space Rn is given by the inequality

∀X ,Y ∈Rn : d (X ,Y) ≤
p

n ·µ(X ,Y) ≤
p

n ·σ(X ,Y) ≤ n ·d (X ,Y). (3.23)

The special case n = 1 leads to

d (X ,Y) =µ(X ,Y) =σ(X ,Y) = |x−y|. (3.24)

2 EUCLID OF ALEXANDRIA (flor. 300 BC) Euclid was a Greek mathematician and is often referred to as the
“Father of Geometry”. He wrote “ Elements” – a mathematical and geometric treatise consisting of 13
books. It is the oldest axiomatic, deductive treatment of mathematics and was used as the basic text
on geometry throughout the Western world for about 2 000 years.

64 3 Geometry

3.3.2 Point Sets

The distance between a single point X and a point set Y can be defined using the
minimum of all distances between X and a point Y ∈ Y, respectively

d (X ,Y) =min
Y∈Y

d (X ,Y). (3.25)

For two point sets there are many different ways to define an oriented distance. Ori-
ented distances are characterized by d (X,Y) 6= d (Y,X). MARIE-PIERRE DUBUISSON and
ANIL K. JAIN have analyzed the following six distance functions [DJ94]:

d 1(X,Y) =min
X∈X

d (X ,Y) (3.26)

d 2(X,Y) =K 50
X∈X d (X ,Y) (3.27)

d 3(X,Y) =K 75
X∈X d (X ,Y) (3.28)

d 4(X,Y) =K 90
X∈X d (X ,Y) (3.29)

d 5(X,Y) =max
X∈X

d (X ,Y) (3.30)

d 6(X,Y) =
1

|X|

∑

X∈X

d (X ,Y) (3.31)

where | · | denotes the cardinal number of a set andK j
X∈X represents the ranked dis-

tance; i.e.K 0
X∈X corresponds to the minimum,K 50

X∈X to the median andK 100
X∈X to the

maximum of all distances d (X ,Y),X ∈X.
While it is sensible to use the minimum function for distances between a point

and a point set, nested minimum functions do not define a meaningful distance be-
tween two point sets. All point sets X and Y with non-empty intersections would have
a distance of zero. The oriented Hausdorff distance, named after FELIX HAUSDORFF,
does a better job. Its definition (d 5) utilizes the maximum function.

Taking the maximum of both oriented distances leads to a non-oriented distance;
e.g. the non-oriented Hausdorff distance between X to Y takes the maximum of both
oriented distances:

H (X,Y) =max (d 5(X,Y),d 5(Y,X)) (3.32)

=max
�

max
X∈X

d (X ,Y), max
Y∈Y

d (Y ,X)
�

. (3.33)

Figure 3.3 shows an illustrative example on Hausdorff calculations using d 5. The com-
bination of the other distance functions (d 1, . . ., d 4, d 6) results in

D1(X,Y) =max(d 1(X,Y),d 1(Y,X)) (3.34)

D2(X,Y) =max(d 2(X,Y),d 2(Y,X)) (3.35)

D3(X,Y) =max(d 3(X,Y),d 3(Y,X)) (3.36)

D4(X,Y) =max(d 4(X,Y),d 4(Y,X)) (3.37)

D6(X,Y) =max(d 6(X,Y),d 6(Y,X)) (3.38)

3.3 Euclidean Geometry 65

B0

B4

B8

R1

R5

R10

Figure 3.3: The Hausdorff metric defines the distance between two sets. For illustrative pur-
poses each point of one set is connected with its nearest neighbor of the other set. The ori-
ented Hausdorff distance from the blue points to the red ones can be found between B0 and
R1 (longest blue line). The oriented Hausdorff distance from the red points to the blue ones is
between R5 and B4 (longest red line). The maximum of both distances – the distance between
B4 and R5 – is the Hausdorff distance between these point sets.

Please note that these functions are not metrics in contrast to the Hausdorff distance.
D1, . . . , D4 do not fulfill the condition

D(X,Y) = 0⇒X= Y, (3.39)

which could be a problem for object matching. D6 violates the triangle inequality.
Nevertheless, D3, D4, and D6 have some importance in the field of computer vision.

3.3.3 Signed distance

If a closed surface in R3 defines an inner and an outer space, it is convenient to indi-
cate the location of a point in the sign of the measured distance. By convention points
in outer space have positive distance, points in inner space have negative distance.

Distance Visualization

While distance calculation itself is a
mathematical, algorithmic problem.
The visualization has to deal with col-
ors and color perception and – last but
not least – it is embedded into a context.

Without loss of generality, it is suf-
ficient to calculate distances between
point sets. Other geometric representa-
tions can be converted via dense sam-
pling. Methods for calculating distances
and errors between surfaces are pre-
sented in “Metro: Measuring Error on
Simplified Surfaces” [CRS98], “MESH:
Measuring Error between Surfaces us-
ing the Hausdorff distance” [ASCE02],
and “Abstand: Distance Visualization
for Geometric Analysis” [USF08a].

In order to speed up the calcula-
tion of a Hausdorff distance, which has
a quadratic runtime in a naive imple-
mentation, the samples can be stored
in kd-trees [GBY91] or grid structures.
These data structures and their al-
gorithms are described amongst oth-
ers by GERALD FARIN et al. [FHH03]
as well as HANS-CHRISTIAN HEGE and
KONRAD POLTHIER [HP02]. The nearest-
neighbor-search algorithm imple-
mented in our tool Abstandhas an av-
erage runtime of O(n · l o g (n)) and is
described in “An introductory tutorial
on kd-trees” [Moo91]. The calculation
of normal distances (i.e. the nearest
neighbor search restricted to points
inside a double cone as illustrated in
Figure 3.4) is based on grid hashing –
a technique presented in “Optimized
Spatial Hashing for Collision Detection
of Deformable Objects” [THM+03].

Depending on the context it is sen-
sible to classify the distance visualiza-
tion problem into two categories: the

asymmetriccase analyzes two geomet-
ric objects assuming that the first ob-
ject is the reference / nominal object.
The second object is the actual object to
be validated. Such a configuration can
be found e.g. in the context of qual-
ity management using a CAD model as
reference to check the resulting prod-
uct. The symmetriccase is characterized
by the absence of a reference model.
Both objects are on a par. In contrast
to the asymmetric case the results of
the symmetric one should not change,
if the order of the objects to analyze is
swapped. A typical, symmetric situation
is the comparison of two range maps of
a laser scanning process. If overlapping
regions of aligned scans are analyzed,
none of them can be considered to be
the ground truth.

α

n

Figure 3.4: In some cases it is sensible
to restrict the nearest-neighbor-search to
samples inside a double cone along nor-
mal direction. Undesired sample relations
at parts, which do not have a corresponding
counter part, can be avoided.

In Abstand the distance calculation re-
sults of an asymmetric setup can be lim-
ited to one-sided distances. As one sur-
face is considered as ground truth, the
visualization emphasizes the actual ob-
ject. The reference object plays a minor
role in the visualization.

3.3 Euclidean Geometry 67

Its main purpose is to provide orienta-
tion in 3D – especially if the actual ob-
jects (e.g. scanned remains of a vase)
are much smaller than the reference ob-
ject. The actual object may also be col-
orized according to the distances. Solid
cylinders (or prisms with a lower poly-
gon count) are generated to visualize
the distances. These distance visuals
are grouped using the calculated his-
tograms.

Figure 3.5: A color table should take hu-
man perception into account. For 2D data
many authors propose the Black-Body-
Radiation scheme (first row). According to
DAVID BORLAND et al. geometry should be
drawn in an isoluminant scheme (second
and third rows). Depending on the con-
text a neutral color scheme as proposed
by BERNICE E. ROGOWITZ et al. (third row) is
sensible. It does not use “signal colors” such
as red. A deceptive and misleading color
range is the rainbow color scheme (last row)
which is often used in various visualization
systems.

For a symmetric setup the two analyzed
meshes are colored in an unobtrusive
coloring. The transparency value may
vary according to the signed distance.
This technique enables to display inner
parts which would otherwise be cov-
ered by opaque surfaces.

The geometric objects / meshes as
well as the distance visuals can easily

be colorized using preconfigured color
scales. Most distance visualization
schemes use luminance-based scales,
for example the black-body radiation
spectrum. For surfaces isoluminant
color maps with opponent colors are
suggested (see Figure 3.5). These sur-
face colorizations do not compromise
the depth perception. Neutral color ta-
bles are also available, if extra high-
lighting of differences is not desired. If
the geometry is shown in a single color
(with possibly varying transparency),
the application Abstand proposes a
color which does not belong to the
color scale. Furthermore it automati-
cally generates a legend in an appropri-
ate range.

Having calculated the distances
our application offers predefined color
palettes. These schemes include color
maps with good order properties
in terms of human perception. An
overview on colors and color percep-
tion can be found in MAUREEN STONE’s
field guide to digital color [Sto03]. The
set of predefined color maps contains
the luminance-based maps, for exam-
ple the black-body radiation spectrum,
with only small variations in the hue
value [LH92], [BRT95] as well as the
maps proposed in “Rainbow Color Map
(Still) Considered Harmful” [BTI07]. For
surfaces isoluminant color maps with
opponent colors are suggested (see Fig-
ure 3.5). These surface colorizations do
not compromise the depth perception.
Neutral color tables are also available, if
extra highlighting of differences is not
desired. The selection of the neutral
color ranges are based on “How NOT
to lie with visualization” [RTB96].

68 3 Geometry

3.4 Projective Geometry

According to the Erlanger Programm of FELIX KLEIN3 projective geometry is the unify-
ing frame for all other geometries. He interprets affine, metric, and Euclidean geome-
tries as special cases of projective geometry.

3.4.1 Projective Space

A set P is a real projective space over the field R, if

1. a vector space V (R) over the field R and

2. a bijective mapping β between P and the set of one-dimensional vector sub-
spaces of V

exist. If V has dimension n+1, then the projective spaceP(V) is called n-dimensional,
which is abbreviated Pn . The elements of P are referred as points. Each point X ∈P(V)
has a corresponding one-dimensional vector subspace [x] = β (X), (x 6= o) in V . This
correspondence is commonly expressed by X = [x]. Any two points X = [x] and Y = [y]
have the following correlation

X = Y ⇔∃λ 6= 0 : x=λy (3.40)

with a homogeneous scaling factor λ.
A k -dimensional, real projective subspace S of a projective space P(V) is defined

by a k + 1-dimensional vector subspace U ⊂ V . S(U) consists of all one-dimensional
vector subspaces of U . This definition ensures that every real projective subspace is a
projective space.

• A projective subspace of dimension k = 0 of a projective space Pn is called point,

• a one-dimensional subspace (k = 1) is a projective line,

• a two-dimensional subspace (k = 2) is a projective plane and

• a k = n −1 dimensional subspace is called a projective hyperplane.

While the intersection of two projective subspaces is a projective subspace as well,
the union of two subspaces is normally not a projective subspace. For any finite-
dimensional projective subspaces S1 and S2 of P the theorem of dimensions is valid:

dimS1+dimS2 = dim (S1 ∩S2)+dim (S1+S2) (3.41)

3 FELIX CHRISTIAN KLEIN (April 25, 1849 – June 22, 1925) Felix Klein was a German mathematician,
known for his work in group theory, function theory, and geometry. His Erlanger Programm (1872),
classifying geometries by their underlying symmetry groups, was a hugely influential synthesis of ge-
ometry.

3.4 Projective Geometry 69

where the join space S1(U1)+S2(U2) is defined as

�

X ∈P : X = [x], x 6= o, x= p1+p2, p1 ∈U1, p2 ∈U2
	

. (3.42)

If not stated differently, all following projective spaces will have a finite dimension.

3.4.2 Projective Coordinates

Any k +1 points (k ≥ 0) of a projective space P are called linearly independent, if they
cannot be contained in a (k −1)-dimensional subspace of P.

k + 1 linearly independent points P0, . . . ,Pk ∈ P define exactly one k -dimensional,
projective subspace S of P with Pi ∈ S (i = 0, . . . ,k). Furthermore, S can be written as
join space

S= P0+ . . .+Pk . (3.43)

Consequently, the join space of n+1 linearly independent points of an n-dimensional
projective space P is the P itself. Therefore, an obvious approach to define projective
coordinates uses n +1 points:

An ordered (n +1)-tuple (x0, . . . ,xn) is called projective coordinates of a point X of
an n-dimensional, real projective space P(V)with X = [x] and x=

∑n
i=0 x i bi using the

vector space basis {b0, . . . ,bn} of V n+1.
Due to X = [x] = [λ · x](λ 6= 0) the coordinates are determined up to a scale fac-

tor which is normally omitted. The projective coordinates are unique (up to a scale
factor) in respect of the basis {b0, . . . ,bn}, but not of the points B0, . . . ,Bn .

Therefore, n +1 points are not sufficient to define a projective coordinate system.
In an n-dimensional projective space n+2 points are said to be in general position,

if any n +1 points are linearly independent. The n +2 points

B0 = [b0], . . . ,Bn = [bn],E =

n
∑

i=0

bi

∈Pn (3.44)

are in general position and form a projective coordinate system. The points Bi are
called fundamental points whereas the point E is called unit point. Using this coor-

dinate system the coordinate vector
�

x0 . . . xn

�T
represents the projective coor-

dinates of X in respect of the coordinate system {B0, . . . ,Bn ; E }. As in affine spaces, a
point X and its coordinate vector can be written X (x0 | . . . |xn).

70 3 Geometry

3.4.3 Affine Spaces↔ Projective Spaces

The interrelationship between affine spaces and projective spaces can be used in var-
ious contexts. The step from a projective space to an affine space is described by the
following theorem.

In a projective space P(V) of dimension n a hyperplaneHwith corresponding vec-
tor space U can be represented by a linear form h:

X = [x]∈H⇔ h(x) = 0⇔ x∈U . (3.45)

The set A of all points, which do not belong to the hyperplane

A=P\H, (3.46)

the mappingω

ω :

¨

A×A → U
(X ,Y) 7→ x−y

(3.47)

with X = [x],Y = [y],h(x) = h(y) = 1 and the corresponding vector space U define an
affine space (A,U ,ω). Its dimension is n .

In other words, removing a hyperplane from a projective space creates an affine
space with the same dimension. The points within the hyperplane are ideal points.
These points are sometimes interpreted as points at infinity. They do only depend on
the choice of the hyperplane.

The step from an affine space to a projective space is a projective completion.
It interprets an n-dimensional affine space An (V n) as a hyperplane of an (n + 1)-
dimensional, affine space An+1(V n+1). An arbitrary point O which does not belong
to the subspace An defines a hyperplane An which is parallel to An and which con-
tains O. This setting is illustrated in Figure 3.6.

Within the vector space V n+1 it is possible to select vectors b0,b1, . . . ,bn such that
{b0,b1, . . . ,bn} is a basis of V n+1 and {b1, . . . ,bn} forms a basis of V n . These vectors are
the foundation of a projective coordinate system

B0 = [b0], . . . ,Bn = [bn],E =

n
∑

i=0

bi

∈Pn . (3.48)

Within this system a point X (x1 | . . . |xn) which belongs to An has the projective co-
ordinates X (1 |x1 | . . . |xn) up to a scale factor. Points, which belong to the projective
completion, are ideal points with projective coordinates Y (0 |y1 | . . . |yn).

3.4 Projective Geometry 71

b0

b1

bn

An

An

X

O

Figure 3.6: In the interrelationship between affine spaces and projective spaces a distin-
guished hyperplane plays a prominent role. Removing a hyperplane from a projective space
creates an affine space of same dimension. Adding a hyperplane of ideal points to an affine
space completes the affine space projectively.

Consequently, for each affine coordinate system {B0, . . . ,Bn} of an affine space A ex-
ists a projective coordinate system {B0, . . . ,Bn ; E } in P such that

1. the ideal hyperplane can be described by the equation x0 = 0,

2. a point X (x1 | . . . |xn) in A with coordinates in the coordinate system {B0, . . . ,Bn}
has the projective coordinate vector

�

1 x1 . . . xn

�T
with respect to the co-

ordinate system {B0, . . . ,Bn ; E } in P,

3. a point X ∈ A with the projective coordinate vector
�

x0 x1 . . . xn

�T
has

the affine coordinate vector
�

x1/x0 . . . xn/x0

�T
.

To indicate the special interpretation of one coordinate axis in a projective comple-
tion the coordinate tuple (x0,x1, . . . ,xn) can be written (x1, . . . ,xn ,x0) – respectively
(x ,y ,z ,w) instead of (w ,x ,y ,z). In order to distinguish affine and projective coordinate
vectors, projective coordinates will be written x=λx in the subsequent text.

72 3 Geometry

3.4.4 Duality Principle

In a projective space P(V) of dimension n all points which belong to a hyperplane H
with corresponding vector space U satisfy a linear equation:

X (x0 | . . . |xn)∈H⇔ h0x0+ . . .+hn xn = 0. (3.49)

This equation is symmetrical in the hyperplane coefficients and the point coefficients

�

h0 . . . hn

�

·
�

x0 . . . xn

�T
= 0. (3.50)

Consequently, the interpretation of these coefficients can be interchanged, so that the
space of all hyperplanes can be considered to be another projective space called the
dual space of the original space P(V). By symmetry the dual space of a dual space is
the original space. This symmetry has a very important consequence known as dual-
ity principle. A theorem in projective geometry is a statement on figures (projective
subspaces) and configurations (incidence, union, intersection). Any theorem T in a
projective space P also holds in the dual space P? due to isomorphism.

The dual version of a theorem can be retrieved by exchanging the terms and con-
figurations in P by those of P? as listed in Table 3.1. Propositions and theorems which
are equivalent to their duals are said to be self-dual.

3.4.5 Projections

As the notation of a central projection is shorter in a projective formulation than its
corresponding affine version, it is convenient to use a projective completion to com-
bine both representations. GÜNTER AUMANN [AS93] derived the formula of a central
projection as follows.

A three-dimensional central projection consists of a center C (c0 |c1 |c2) and a pro-
jection plane, which shall be defined by an incident point P and a normal vector n,
||n|| = 1 pointing towards the half-space containing C . This situation is illustrated in
Figure 3.7.

If the orthogonal projection of C into the projection plane is called H , its position
vector h can be used to calculate the distance d between the projection center C and
the image plane

d = d (C ,H) =nT(c−h). (3.51)

As the image X ? of a projected point X has the position vector

x? = x+λ(x− c) (3.52)

and fulfills the image plane’s equation

nT(x?−p) = 0, (3.53)

3.4 Projective Geometry 73

Duality Principle

Statements on figures and configurations in an n-dimensional
projective space P and their dual versions

projective space projective dual space

Pn (V n+1) ;
hyperplane Xn−1 point X

k -dim. projective subspace (n −k −1)-dim. projective subspace

Xk Xn−k−1

.

line X 1 (n −2) plane Xn−2

point X hyperplane Xn−1

; Pn (V n+1)

join space intersection

Rk +Sl Rn−k−1 ∩Sn−l−1

intersection join space

Rk ∩Sl Rn−k−1+Sn−l−1

incidence incidence

⊂ ⊃

Table 3.1: All propositions and theorems in projective geometry occur in two version
which are dual to each other. The dual version can be inferred by interchanging the terms
listed in this table. If a proposition or theorem is equivalent to its dual, it is said to be self-dual.

74 3 Geometry

n

C

P

H

X

X ?

Figure 3.7: A central projection maps a point X to its image X ? whereas X ? is the intersection
of an image plane with a ray, which starts at the projection center C and passes X . The image
plane is defined by a point P and a normal vector n.

the parameter λ can be determined:

λ=
nT(x−p)
nT(c−p)

=
nT(c−p)
nT(c−x)

−1. (3.54)

Hence X ? has the position vector

x? =
nT(c−p)
nT(c−x)

(x− c)+ c. (3.55)

Points whose projection ray is parallel to the image plane have to be excluded, as for
those points the denominator nT(c− x) becomes zero. Rearranging Equation (3.55)
leads to

nT(c−x)x? =nT(c−x)z+nT(c−p)(x− c) (3.56)

= (nTc)c− (cnT)x+nT(c−p)x−nT(c−p)c (3.57)

= (nT(c−p)E3− cnT)x
︸ ︷︷ ︸

Ax

+(nTp)z
︸ ︷︷ ︸

t

(3.58)

with a 3×3 identity matrix E3.

3.4 Projective Geometry 75

If the point P coincides with H , the projection simplifies to

A= d E3− cnT, t= (nTh)c. (3.59)

Furthermore, with a coordinate system such that C has the coordinates C (0 |0 |d) and
the image plane is x3 = 0, the projection of a Q with projective coordinates q has the
homogeneous form

q ?1
q ?2
q ?3
q ?0

=ρ

d 0 0 0
0 d 0 0
0 0 0 0
0 0 −1 d

q1

q2

q3

q0

, ρ 6= 0. (3.60)

Hardware accelerated 3D rendering libraries, such as OpenGL [OA93], are also based
on the concepts of projective geometry and use projective/homogeneous coordinates
to describe geometric objects. The main advantage is the consistent representation of
affine transformations. Instead of 3×3 matrix and a 3-dimensional translation vector
to represent an affine transformation, a homogeneous representation uses a single
4×4 matrix. The consecutive transformations become a sequence of matrix multipli-
cations.

But in contrast to projective geometry, in which each projected point is mapped
into a plane, 3D rendering libraries use matrices, which preserve the depth value. The
z value is needed for clipping and depth testing.

Projector Calibration

The goal of virtual reality (VR) is the
synthesis of a convincing illusion within
a virtual environment. The most impor-
tant aspect in a VR system is the qual-
ity of vision because it has the great-
est and most immediate impact on the
human sensory system [BSdV01]. Be-
sides the displayed content the display
quality and especially its correct cali-
bration is of big importance. Current
calibration methods can be subdivided
into three groups. The first and most
frequently used method is the calibra-
tion by hand which is a non-practicable
method for large power walls. Con-
trary to manual calibration the second
group consists of methods with an auto-
matic approach using embedded cam-
eras [LS04], [RB01] or other sensor sys-
tems [LDMA+04]. These systems have
the great advantage to work out of the
box. Unfortunately, they need special-
ized or modified hardware and pro-
jectors. To overcome this disadvantage
the third group uses standard video
cameras that are neither embedded in
the projector nor rigidly attached to
it. These systems are not only suit-
able for mobile activities and applica-
tions [SSM01], but also for fixed in-
stallations [BMY05]. Especially in vir-
tual 3D environments in which cam-
eras are already installed – e.g. for track-
ing purposes – this approach is widely
used [SHVG02], [GWN+03].

The method by MARCEL LANCELLE et
al. [LOU+06] is a semi-automated cal-
ibration procedure without additional
hardware. The main difference to es-
tablished systems is its seamless inte-
gration into the render pipeline, which
is similar to an approach by RAMESH

RASKAR [Ras00] who also uses a projec-
tion matrix modification to implement
projector calibrations.

In a hardware accelerated 3D ap-
plication based on OpenGL [OA93]
a point P is transformed to q =
�

qx qy qz qw

�T
= P ·M · p with

the modelview matrix M and the pro-
jection matrix P. The perspective divi-
sion leads to the normalized screen co-
ordinates S (qx/qw |qy/qw). A 4× 4 calibra-
tion matrix C that is applied after all
other coordinate transformation matri-
ces but before the perspective division
can correct distorted displays, if for at
least four reference points Qi the user
specifies corrected points Ri . The cali-
bration matrix

C=

a b 0 d
e f 0 h
i j 1 0

m n 0 1

(3.61)

is calculated such that all Qi will be pro-
jected as close as possible to the target
positions Ri . This matrix is a combina-
tion C=CT ·CSh ·CS ·CTr ·CR of the ma-
trices shown in Figure 3.8.

a , b , e and f need to be optimized
to correct for scaling, shearing and rota-
tion, d and h belong to the translation.
Using m and n it is possible to correct
for scaling depending on the screen co-
ordinates which represents a trapezoid
distortion.

The latter case is more complex than
the previous ones. The distortion is not
affine and additional scaling and trans-
lational effects occur when m 6= 0 or
n 6= 0 [FH05a].

3.4 Projective Geometry 77

E4 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

CTr =

1 0 0 d Tr

0 1 0 hTr

0 0 1 0
0 0 0 1

CS =

aS 0 0 0
0 fS 0 0
0 0 1 0
0 0 0 1

CSh =

1 bSh 0 0
eSh 1 0 0

0 0 1 0
0 0 0 1

CR =

a R bR 0 0
eR f R 0 0
0 0 1 0
0 0 0 1

CT =

a T 0 0 d T

0 f T 0 hT

i T jT 0 0
mT n T 0 0

Figure 3.8: Matrices to handle translation, scaling, shearing, rotation and trapezoid de-
formation. These effects occur when projecting on a planar surface and can be corrected
with calibration methods [LOU+06].

Also the depth values are affected dur-
ing perspective division so that prob-
lems with the clipping planes may oc-
cur. Since a shearing of the near clip-
ping plane is undesired in most applica-
tions, one solution to this problem is to
set i and j to m and n respectively to re-
align the near clipping plane (which in
turn increases distortions of the far clip-
ping plane).

With introducing m and n in the
calibration matrix the resulting depth
value will be changed from qz /qw to
qz /(m ·qx +n ·qy +qw). RAMESH RASKAR

addresses this problem by introducing
k = 1− |m | − |n | into

CT =

? ? ? ?
? ? ? ?
0 0 k 0

m n 0 1

(3.62)

to keep the whole visible range from the
case without calibration. But still the
near clipping plane is sheared result-
ing in strong artifacts with intersecting
objects, especially with multiple projec-
tors.

78 3 Geometry

3.5 Differential Geometry

This section analyzes local aspects and properties of curves and surfaces in Euclidean
space E3 using the methods of differential and integral calculus.

3.5.1 Differential Geometry of Curves

If I ⊂R is an interval (the parameter domain) and

ϕ :

¨

I → E3

u 7→ X (u) =X (x1(u)|x2(u)|x3(u))
(3.63)

a function of differentiability class C r (r ≥ 1), then the point set

c = {X (u) : u ∈ I } (3.64)

is called a C r -curve with parametrical representation ϕ. For a fixed parameter u 0 ∈ I
a tangent vector of c in X (u 0) is defined by

ẋ(u 0) =

ẋ1(u 0)

ẋ2(u 0)

ẋ3(u 0)

=

dx1
d u (u 0)
dx2
d u (u 0)
dx3
d u (u 0)

=
d x

d u
(u 0). (3.65)

The point X (u 0) is a regular point with respect to ϕ, if ẋ(u 0) 6= 0. Otherwise it is a
singular point. If all points X (u) of a curve c are regular with respect to ϕ, c itself is
called regular. Each regular point X (u 0) has a tangent line. This line passes X (u 0) in
direction of tangent vector ẋ(u 0).

As the definition above does not requireϕ to be an injection, a C r -curve may have
self-intersections. A point, which is traversed at least twice, i.e. u 1,u 2 ∈ I with u 1 6= u 2

and X (u 1) = X (u 2), is called double point. A regular curve, which does not have any
double points, is called a simple curve.

3.5.2 Change of Parameter

A C r -curve c : x(u),u ∈ I may have different parametrizations. A surjective C m func-
tion

f :

¨

J → I
v 7→ f (v) = u = u (v)

(3.66)

3.5 Differential Geometry 79

(m ≥ r)which maps onto the domain I is called an allowable change of parameter of

class C m , if it has m continuous derivatives, and if d f
d v =

d u
d v is nonzero for all v in J . If

d f
d v is positive for all v , then it is called an orientation preserving change of parameter.

In this case the points of the curve are traversed in the same order both by x(u) and

x(u (v)); i.e. both representations have the same orientation. If d f
d v < 0 for all v , the

two representations of a curve have opposite orientation. Note that since d f
d v 6= 0, the

function u (v) is one-to-one so that the inverse v (u) exists and is an allowable change
of parameter.

The terms “regular”, “simple” and “tangent line” (but not “tangent vector”) are in-
variant under allowable changes of parameter.

3.5.3 Arc Length Parametrization

For a regular C 1 curve c : x(u),u ∈ I and a fixed parameter u 0 ∈ I , the integral

s (u) =

∫ u

u 0

||ẋ(ξ)|| dξ (3.67)

is the arc length of c . The map s 7→ u (s) is an allowable, orientation-preserving change
of parameter. If x′ is defined as differential of arc length

x′ =
d x

d s
, (3.68)

the transformed tangent vector has normalized length ||x′|| ≡ 1. Furthermore, the
length of the curve c between two points P , Q with parameters p respectively q can
be calculated via

Lq
p = s (q)− s (p). (3.69)

In the following text the parameter s of a curve will always be its parametrization with
respect to the curve’s arc length.

3.5.4 Local Coordinate System

In any point X (s) of a regular C 2-curve c with x′′(s) 6= o the Frenet4 frame

{X (s); t(s),n(s),b(s)} (3.70)

defines a local coordinate system. It consists of a tangent vector t(s), a normal vector
/ curvature vector n(s), and a binormal vector b(s)

4 JEAN FREÉDÉRIC FRENET (February 7, 1816 – June 12, 1900) Jean Freédéric Frenet was a French mathe-
matician, who is best remembered for the Serret-Frenet formulas for a space-curve. These formulas
have been discovered by Jean Freédéric Frenet, in his thesis of 1847, and Joseph Alfred Serret in 1851.

80 3 Geometry

t(s) = x′(s), n(s) =
x′′(s)
||x′′(s)||

, b(s) = t(s)×n(s). (3.71)

For a curve which is not parametrized with respect to its arc length the following
equivalent formulas hold:

t(u) =
ẋ(u)
||ẋ(u)||

(3.72)

b(u) =
ẋ(u)× ẍ(u)
||ẋ(u)× ẍ(u)||

(3.73)

n(u) = b(u)× t(u) (3.74)

Figure 3.9 shows an illustrative example. These three vectors span three planes which
pass X (s). The osculating plane at the X (s) is the plane spanned by the tangent vector
t and the normal vector n; the normal plane is spanned by the normal vector n and
the binormal vector b; the rectifying plane is spanned by the tangent vector t and the
binormal vector b.

The curvature κ(s) of a regular C 2-curve c : x(s),s ∈ I is defined via the second
derivation

κ(s) = ||x′′(s)||=
||ẋ(u)× ẍ(u)||
||ẋ(u)||3

, (3.75)

whereas its torsion can be expressed via the third derivation

τ(s) =
|x′(s) x′′(s) x′′′(s)|

x′′(s)2
=
|ẋ(u) ẍ(u)

...
x (u)|

(ẋ(u)× ẍ(u))2
(3.76)

using the scalar triple product of three vectors

|a b c| ≡ a · (b× c) = b · (c×a) = c · (a×b) = det(a b c). (3.77)

The determinant expression shows that the scalar triple product is a pseudoscalar as
it reverses the sign under inversion.

3.5.5 Frenet Formulas

The inherent properties of a parametrized curve – namely curvature and torsion – and
the vectors t(s), n(s), b(s)meet differential equations, which can be written in matrix
form

t′(s) = κ(s) ·n(s)
n′(s) = −κ(s) · t(s) +τ(s) ·b(s)
b′(s) = −τ(s) ·n(s)

(3.78)

3.5 Differential Geometry 81

Figure 3.9: The curve X (u) = ((8+3 cos 5u) · cos 2u | (8+3 cos 5u) · sin 2u | 5 sin(5u)) with
parameter domain u ∈ [−π,π] is a so-call (2,5)-torus knot. A (p ,q)-torus knot is a closed space
curve that is looped through the hole of a torus p times with q revolutions [Gra97]. The free
parameters p and q have to be relatively prime. The curve lies on an elliptical torus. For illus-
tration purposes the circular torus along the minor axis is included.

The curve’s tangent vector (green) indicates the flow direction. The normal respectively
curvature vector points towards the center of the circle that approximates the curve in X (u)
best.

with a skew symmetric matrix

0 κ(s) 0
−κ(s) 0 +τ(s)

0 −τ(s) 0

. (3.79)

As a consequence, a curve with curvature κ 6= 0 is planar, if and only if τ= 0.
The fundamental theorem of space curves in E3 states that the curvature function

κ(s) and the torsion function τ(s) along a curve c determine the space curve c up to
an orientation-preserving isometry.

82 3 Geometry

u

τ(u)

3−3 0

2/5

u

κ(u)

3−3 0

2/5

Figure 3.10: The periodicity of a (2,5)-torus knot (see Figure 3.9) is reflected in its torsion
(left) and curvature (right) plots.

3.5.6 Differential Geometry of Surfaces

Analogous to the theory of curves and the previous definitions, a surface is defined
over a region (an open, connected set) G ⊂R2 by a C r map (r ≥ 1)

ϕ :

¨

G → E3

(u ,v) 7→ X (u ,v)
(3.80)

The region is sometimes called parameter domain. The point set

Φ= {X (u ,v) : (u ,v)∈G } (3.81)

is called C r -surface with parameter representation ϕ. A surface point X (u 0,v0) is a
regular point, if the vectors

xu (u 0,v0) =
∂ x

∂ u
(u 0,v0) xv (u 0,v0) =

∂ x

∂ v
(u 0,v0) (3.82)

are linearly independent. Otherwise it is called singular point. The surface Φ is called
regular with respect to ϕ, if all of its points are regular. Furthermore, Φ is a simple
surface, if the map ϕ is an injection.

3.5 Differential Geometry 83

During the analysis of surfaces, curves are of particular importance. A parameter rep-
resentation ϕ of a surface includes the definition of parameter lines, for which one
parameter (u or v) is constant. More generalized, any C r map

u :

¨

I ⊂R → G
t 7→ (u (t),v (t))

(3.83)

into the parameter domain of a regular C r -surface Φ : x(u ,v),(u ,v)∈G with

�

d u

d t
(t),

d v

d t
(t)
�

6= (0,0) ∀t ∈ I (3.84)

defines a regular C r curve – a surface curve – of Φ

c : y(t) = x(u (t),v (t)), t ∈ I . (3.85)

The parameter lines are defined by the maps u = t and v = cons t respectively u =
cons t and v = t . The resulting surface curves can be used to define tangent vectors
xu ,xv and tangent planes. For any regular C 1 surface Φ : x(u ,v),(u ,v)∈G the plane

T (X (u ,v),Φ) =
¦

Y ∈E3 : y= x(u ,v)+λxu (u ,v)+µxv (u ,v) ; λ,µ∈R
©

(3.86)

at X (u v) is called tangent plane. For a regular, but not simple C 1-surface it is not pos-
sible to identify a unique tangent plane for a point X (u ,v) ∈ Φ due to possible self-
intersections of Φ. In this case the surface should be limited to a simple subsurface or
the parameters (u ,v) need to be specified.

The vector

n(u ,v) =
xu (u ,v)×xv (u ,v)
||xu (u ,v)×xv (u ,v)||

(3.87)

is the so-called unit normal vector of Φ at X (u ,v). As the vector is normalized

<n(u ,v) |n(u ,v)>≡ 1, (3.88)

its partial derivatives hold

<nu (u ,v) |n(u ,v)>= 0, <nv (u ,v) |n(u ,v)>= 0, (3.89)

i.e. the vectors nu (u ,v) and nv (u ,v) are parallel to the tangent plane T (X (u ,v),Φ).
If Φ : x(u ,v),(u ,v) ∈D is a simple C 1-surface and c ⊂ Φ a regular curve containing

the point X ∈ Φ, then the tangent vector of c in X is called surface vector and the
tangent of c in X is a surface tangent of Φ in X . These definitions are illustrated in
Figure 3.11.

84 3 Geometry

Figure 3.11: The parametrization of a surface defines two families of surface curves: the pa-
rameter lines. These surface curves (black) are often used to generate so-called wireframe
representations of a surface. Furthermore, the parametrization defines the tangent vectors
(blue). The corresponding tangent plane and its associated normal vector (red) do not de-
pend on the surface’s parametrization.

3.5.7 Change of Parameter

Just like curves, surfaces may have different parametrizations. The process of switch-
ing between different parametrizations is a change of parameter.

Let Φ : x(u ,v),(u ,v) ∈G be a regular C 1-surface and R ⊂ R2 a region. A surjective
C r -map

f :

¨

R → G
(r,s) 7→ (u (r,s),v (r,s))

(3.90)

is an allowable C r -change of parameter, if the determinant of functionals
�

�

�

�

�

�

∂ u
∂ r (r,s) ∂ u

∂ s (r,s)

∂ v
∂ r (r,s) ∂ v

∂ s (r,s)

�

�

�

�

�

�

(3.91)

is not zero for any (r,s) ∈ R . If the determinant is always positive, the map f is an
orientation-preserving change of parameter, otherwise not.

3.5 Differential Geometry 85

3.5.8 Fundamental Forms

The three fundamental forms of a surface determine its metric properties – namely
line element, area element, curvature. As the third fundamental form can be expressed
in terms of the first and second one, it is less important.

3.5.9 First Fundamental Form

If Φ : x(u ,v),(u ,v)∈G is a regular C 1-surface, then the coefficients

g u u (u ,v) =<xu (u ,v) |xu (u ,v)> g u v (u ,v) =<xu (u ,v) |xv (u ,v)> (3.92)

g v u (u ,v) =<xv (u ,v) |xu (u ,v)> g v v (u ,v) =<xv (u ,v) |xv (u ,v)> (3.93)

exist and are called first fundamental form coefficients. Due to the symmetry of a
scalar product the coefficients g u v and g v u are equal. The determinant of these coef-
ficients is

g =

�

�

�

�

g u u g u v

g v u g v v

�

�

�

�

= g u u g v v − g 2
u v = (xu ×xv)2. (3.94)

With these coefficients the first fundamental form can be defined: Let Φ : x(u ,v),
(u ,v)∈D be a simple C 1-surface. A surface vector in tangent space of Φ at point X ∈Φ
has the representation

a= a u xu +a v xv . (3.95)

Then the first fundamental form5 is

I(a) = g u u a u a u + g u v a u a v + g v u a v a u + g v v a v a v . (3.96)

The coefficients g u u , g u v = g v u , g v v depend on the surface’s parametrization in con-
trast to the first fundamental form. As it maps each surface vector a to the square of
its length I(a) = a2, the first fundamental form is independent of the parametrization
of the surface Φ.

5 In differential geometry the Einstein6notation is used. The parameters of a surface are written with
indices X (x 1,x 2) instead of X (u ,v). The tangent vectors are written the same way xu , xv . The coef-
ficients of the first fundamental form are then g i j =< xi |xj > (i ,j = 1,2). According to the Einstein
summation convention, the summation sign can be omitted, if an index variable appears in super-
script as well as in subscript position. It implies that the summation comprises all possible values.
The first fundamental form is then abbreviated I(a) =

∑2
i=1

∑2
j=1 g i j a i a j = g i j a i a j .

6 ALBERT EINSTEIN (March 14, 1879 – April 18, 1955) Albert Einstein was a theoretical physicist. He is
best known for his theories of special relativity and general relativity. In 1921/1922 he received the
Nobel Prize in Physics.

86 3 Geometry

A change of parameter

f :

¨

R → D
(r,s) 7→ (u (r,s),v (r,s))

(3.97)

transforms the coefficients of the first fundamental form according to the chain rule
to g u u , g u v , g v u , g v v :

g u u g u v

g v u g v v

!

=MT

g u u g u v

g v u g v v

!

M, (3.98)

whereas M denotes the fundamental matrix of the parameter transformation.
The first fundamental form of a surface can be used to perform length and angle

calculations on a regular C 1-surface Φ : x(u ,v),(u ,v)∈G :

1. The arc length s of a curve c ⊂Φ defined by parameter (u (t),v (t)), t ∈ I between
a and b (a ,b ∈ I) is

s (b)− s (a) =

∫ b

a

||ẋ(t)|| d t (3.99)

=

∫ b

a

r

I

�

xu
d u

d t
+xv

d v

d t

�

d t . (3.100)

2. The angle α between two surface vectors a= a u xu +a v xv and b= bu xu +bv xv

at X (u ,v) can be calculated via

cosα=

�

a u

a v

�T�
g u u g u v

g v u g v v

��

bu

bv

�

s

�

a u

a v

�T�
g u u g u v

g v u g v v

��

a u

a v

�

s

�

bu

bv

�T�
g u u g u v

g v u g v v

��

bu

bv

�

.

(3.101)

3. The area of a surface patch Ψ = {X (u ,v) : (u ,v)∈ P} with closed, bounded pa-
rameter domain P ⊂D is

A(Ψ) =

∫∫

P

p

g (u ,v) d u d v. (3.102)

Metric properties of maps between surfaces can also be described by the first funda-
mental form coefficients. If Φ : x(u ,v) and Φ? : x?(u ,v) are two C 1-surfaces with the
same parameter domain G and if

α :

¨

Φ → Φ?

X (u ,v) 7→ X ?(u ,v)
(3.103)

is a function which maps points with equal parameters (u ,v) to each other, then α
has the following metric properties:

3.5 Differential Geometry 87

1. α is length-preserving (i.e. a curve segment and its α-mapped image have the
same length), if and only if for all (u ,v) ∈ D the first fundamental form coeffi-
cients are equal

g u u (u ,v) = g ?u u (u ,v), g u v (u ,v) = g ?u v (u ,v), (3.104)

g v u (u ,v) = g ?v u (u ,v), g v v (u ,v) = g ?v v (u ,v). (3.105)

2. α is angle-preserving (i.e. the angle between a pair of intersecting curves at the
intersection point and the angle between the curves’ images are equal), if and
only if the first fundamental form coefficients

g u u (u ,v) =λ(u ,v)g ?u u (u ,v), g u v (u ,v) =λ(u ,v)g ?u v (u ,v), (3.106)

g v u (u ,v) =λ(u ,v)g ?v u (u ,v), g v v (u ,v) =λ(u ,v)g ?v v (u ,v). (3.107)

are equal for all (u ,v)∈D up to a function λ : D→R.

3. α is area-preserving (i.e. a surface patch and its α-image have the same area),
if and only if the determinant of the first fundamental form determinants (see
Equation (3.94)) are equal

g (u ,v) = g ?(u ,v) (3.108)

for all (u ,v)∈D.

Map Projections

Geography has been an important field
of differential geometry applications for
over 2 000 years [Sny97]. As maps and
atlases are omnipresent, they are a good
example to illustrate basic concepts of
differential geometry.

To simplify matters the earth is re-
garded as a sphere and the unit length is
set to the earth’s mean radius 6 371 km.
In this way the earth’s surface has the
parametrization of a unit sphere

Σ : x(u ,v) =

cos(v) · cos(u)
cos(v) · sin(u)

sin(v)

(3.109)

Σ

Ψ Ψ̃

[−π,π]

[−π/2,π/2]

Figure 3.12: The earth can be parametrized as a unit sphere over the domain [−π,π]×
[−π/2,π/2]. The projection by ARCHIMEDES maps all points on the sphere to points on a
cylinder (see Figure 3.13). This kind of map is area-preserving. About 1 800 years later
MERCATOR modified this mapping to create the first angle-preserving map of earth (see
Figure 3.14) – a valuable tool in navigation.

over the domain [−π,π] × [−π/2,π/2].
To flatten earth the greek mathemati-
cian ARCHIMEDES7 proposed a cylin-
drical projection [Pea90] which maps
each point on earth to the intersec-
tion of a cylinder, which is tangent to
the equator, and the perpendicular to
earth’s rotation axis through the point
to map. This mapping is illustrated in
Figure 3.12. Using the same parame-
ter domain the cylinder may have the
parametrization

Ψ : x?(u ,v) =

cos(u)
sin(u)
sin(v)

.

(3.110)

3.5 Differential Geometry 89

An analysis of both surfaces reveals
the coefficients of the first fundamental
form:

g u u = cos2 v, (3.111)

g u v = g v u = 0, (3.112)

g v v = 1, (3.113)

and

g ?u u = 1, (3.114)

g ?u v = g ?v u = 0, (3.115)

g ?v v = cos2 v (3.116)

for Σ and Ψ respectively. As the deter-
minants are equal g u u g v v − g u v g v u =
g ?u u g ?v v − g ?u v g ?v u = cos2 v the
ARCHIMEDEAN map is area-preserving
(see Equation (3.108)).

For navigation purposes an angle-
preserving map is more important than
an area-preserving one. Unfortunately,
the condition for angle-preserving
mappings is not met: There is no func-
tion λ(u ,v), which fulfills the equations

g u u =λ(u ,v)g ?u u , (3.117)

g u v =λ(u ,v)g ?u v , (3.118)

g v u =λ(u ,v)g ?v u , (3.119)

g v v =λ(u ,v)g ?v v . (3.120)

Figure 3.13: This ARCHIMEDEAN map of the
earth preserves areas; i.e. if two regions
have the same size, then their images also
have the same size.

In 1569 the cartographer GERARDUS

MERCATOR8presented the first world
map that is angle-preserving. He intro-
duced a modified, cylindrical mapping

Ψ̃ : x?(u ,v) =

cos(u)
sin(u)

ln tan(v2 +
π
4)

(3.121)

whose coefficients g̃ u u , . . . ,g̃ v v meet
the conditions (Equation (3.117) –
(3.120)) for angle-preserving maps. As
the poles are mapped to infinity a
MERCATOR map is clipped along a cir-
cle of latitude < 90◦. The construction
is illustrated in Figure 3.12 whereas the
result is shown in Figure 3.14. A draw-
back of the result is its area distortion.
It exaggerates the size of areas far from
the equator.

Figure 3.14: The MERCATOR map is an an-
gle preserving map; i.e. angles measured in
real world and measured in the map are
equal. This is an important property for
navigation.

90 3 Geometry

3.5.10 Second Fundamental Form

For any regular C 2-surface Φ : x(u ,v),(u ,v) ∈D the product of the second derivatives
with the normal vector can be calculated:

hu u (u ,v) =<xu u (u ,v) |n(u ,v)> (3.122)

hu v (u ,v) =<xu v (u ,v) |n(u ,v)> (3.123)

hv u (u ,v) =<xv u (u ,v) |n(u ,v)> (3.124)

hv v (u ,v) =<xv v (u ,v) |n(u ,v)> (3.125)

These are the functions of the second fundamental form of Φ. Their determinant is
denoted h. Another possibility to calculate h i j for any combination u u , u v , v u and
v v is

h i j =
1
p

g

�

�xi j xu xv

�

� . (3.126)

Analogue to the definition of the first fundamental form, the second fundamental
form is defined for a surface vector a= a u xu +a v xv of a surface Φ in X ∈Φ:

II(a) = hu u a u a u +hu v a u a v +hv u a v a u +hv v a v a v . (3.127)

Under an orientation-preserving change of parameter the second fundamental form
behaves the same way as the first fundamental form. Therefore, it is also invariant to
these parameter changes.

To analyze a surface with respect to curvature it is convenient to start with the
curvature of surface curves. If Φ : x(u ,v),(u ,v) ∈ D is a simple C 2-surface and c ⊂ Φ
a regular C 2 curve with signed curvature κ in X (u 1(t0),u 2(t0)) ∈ c , then the so-called
normal curvature κn of c in X is

κn = κcosθ = κ <nΦ |nc> (3.128)

with angle θ between the unit normal vector nΦ of Φ and the curvature vector nc of c
in X . If h does not exist, κn shall be zero.

It is obvious that all regular C 2 curves of a simple C 2-surface, which intersect in
one point and which have the same tangent line in this point, have the same nor-
mal curvature. The maximum and minimum of all possible values of κn are called
principal curvatures κ1, κ2. The corresponding tangents are the principal curvature
tangents. Figure 3.15 illustrates this setting.

7 ARCHIMEDES OF SYRACUSE (287 BC – 212 BC) Archimedes was a Greek mathematician, physicist, engi-
neer, inventor, and astronomer. Although few details of his life are known, he is generally considered
to be the greatest mathematician of antiquity.

8 GERARDUS MERCATOR (March 5, 1512 – December 2, 1594) Gerardus Mercator was a Flemish cartog-
rapher. He is remembered for the Mercator projection world map, which became the standard map
projection for nautical purposes because of its ability to represent lines of constant course, known as
rhumb lines or loxodromes, as straight segments.

3.5 Differential Geometry 91

Figure 3.15: The intersection of all planes, which contain a point P and its surface normal
(red) is a family of curves. All curves pass P and be ordered by increasing angles α to a surface
tangent. If each curve has a signed curvature κ(α), then maximum and minimum values can
be determined. These values are the principal curvatures κ1 and κ2.

3.5.11 Euler Curvature Formula

On a simple C 2-surface Φ : x(u 1,u 2),(u 1,u 2) ∈ G the normal curvature κn in a point
X ∈Φ in direction t can be calculated via

κn = κ1 cos2θ +κ2 sin2θ , (3.129)

where θ is the angle between t and the principal curvature tangent that corresponds
to κ1. This theorem by EULER9 does not apply for umbilic points, i.e. points on a sur-
face at which the curvature is the same in any direction, and for points with vanishing
functions of the second fundamental form, i.e. hu u = hu v = hv u = hv v = 0.

9 LEONHARD PAUL EULER (April 15, 1707 – September 18, 1783) Leonhard Euler was a Swiss mathemati-
cian who made enormous contributions to a wide range of mathematics and physics including ana-
lytic geometry, trigonometry, geometry, calculus and number theory.

92 3 Geometry

3.5.12 Mean Curvature and Gaussian Curvature

Let κ1 and κ2 be the principal curvatures, then their mean

H =
1

2
(κ1+κ2) (3.130)

is called the mean curvature. The product

K = κ1 ·κ2. (3.131)

is named after CARL FRIEDRICH GAUSS10 The Gaussian curvature K and mean curva-
ture H satisfy

H 2 ≥ K , (3.132)

with equality only at umbilic points, since

H 2−K =
1

4
(κ1−κ2)2. (3.133)

The mean and Gaussian curvatures can be calculated directly. The formulas

K =
h

g
(3.134)

and

H =
1

2
(g I

u u hu u + g I
u v hu v + g I

v u hv u + g I
v v hv v) (3.135)

with

�

g I
u u g I

u v
g I

v u g I
v v

�

=

�

g u u g u v

g v u g v v

�−1

=
1

g

�

g v v −g u v

−g v u g u u

�

. (3.136)

According to Gauss’s THEOREMA EGREGIUM the Gaussian curvature of a simple surface
does only depend on the coefficients of the first fundamental form (including their
derivatives).

10 JOHANN CARL FRIEDRICH GAUSS (April 30, 1777 – February 23, 1855) Carl Friedrich Gauß was a German
mathematician who worked in a wide variety of fields in both mathematics and physics including
number theory, analysis, differential geometry, geodesy, magnetism, astronomy and optics. His work
has had an immense influence in many areas.

3.5 Differential Geometry 93

Local Shape of a Surface

The Gaussian curvature K = κ1 ·κ2 characterizes the local shape of a surface.

principal curvature local shape

K < 0 hyperbolic point

K > 0 elliptic point

K = 0, parabolic point

but κ1 or κ2 not zero

Table 3.2: All nonplanar points can be characterized according to the local shape of the
surrounding surface.

Curvature on Discrete Structures

A large number of applications in com-
puter graphics and computer-aided de-
sign exists that require an accurate
estimation of differential-geometrical
quantities – such as principal direction,
mean curvature, etc. – at arbitrary ver-
tices on a triangulated surface.

As differential geometry operates
on continuous manifolds and sur-
faces [DC76], its results need to be
discretized to be applicable. There
are many methods for approximating
differential-geometrical quantities of
an underlaying surface based on its tri-
angulation [BSSZ08]. If all methods are
grouped according to their concept, two
clusters can be identified.

One possibility to determine
differential-geometrical quantities us-
ing a triangulated surface is to com-
bine several theorems on curvature
and to discretize the result. In this way
MARK MEYER et al. [MDSB03] derived a
discrete mean curvature normal opera-
tor based on the integral representation
of mean curvature

H =
1

2π

∫ 2π

0

κn (θ) dθ (3.137)

and the Euler-Lagrange equation for
surface area minimization. This equa-
tion relates the area minimization and
the mean curvature flow:

2H ·n= lim
diam(A)→0

∇A

A
, (3.138)

where A is an infinitesimal area around
a point P on the surface, diam(A) is its
diameter, and ∇A is the gradient with
respect to the coordinates of P .

The resulting mean curvature normal
operator K is

K(xi) =
1

2 ·A

∑

j∈N1(i)

(cot αi j + cot βi j) · (xi −xj)

(3.139)

with N1(i) is the set of indices of 1-ring
neighborhood of the i thvertex. The an-
gles αi j , βi j and the Voronoi-based cal-
culation of the area A around the vertex
xi are illustrated in Figure 3.16.

The operator K returns an approxi-
mation of the surface normal vector n in
xi . Its magnitude is twice the mean cur-
vature value H in xi .

xi

xj

αi j

βi j

Figure 3.16: The mean curvature nor-
mal operator K is presented in “Discrete
Differential-Geometry Operators for Trian-
gulated 2-Manifolds” [MDSB03] . It uses
a Voronoi-based construction in the 1-
neighborhood of a vertex xi to approximate
the mean curvature H .

In this way many operators for
differential-geometrical quantities have
been derived.

3.5 Differential Geometry 95

The second cluster of methods
to calculate curvature and prin-
cipal directions uses scattered
data interpolation and fitting tech-
niques [DB02]. JACK GOLDFEATHER and
VICTORIA INTERRANTE developed such
an algorithm [GI04]. For each point of
interest pi its k -nearest neighbors are
transformed into a coordinate system
whose origin is pi . In the next step, a
21/2-d surface

f (x ,y) =
A

2
x 2+ Bx y +

C

2
y 2

+Dx 3+E x 2y + F x y 2+G y 3

(3.140)

is fitted to the points and their normals.

Figure 3.17: The cubic order algorithm for approximating principal curvature vectors
by JACK GOLDFEATHER and VICTORIA INTERRANTE [GI04] calculates a new coordinate sys-
tem, in which the vertex whose principal curvature vectors shall be calculated (blue) is
the origin. Its k -nearest neighbors are also transformed into the new coordinate sys-
tem. Then a surface f is fitted to approximate the underlaying surface of the samples.
Then approximation f is used to calculate differential-geometrical quantities (principal
curvature vectors, Gaussian curvature, etc.).

Having determined the best coefficients
to approximate the points and their
normals, all differential-geometrical
quantities can be calculated based on
the continuous approximation of the
underlaying surface. As in the local co-
ordinate system the curvature only de-
pends on the second degree terms with
the coefficients A, B , C . For example,
the mean curvature of f in (0,0) is

H =
A +C

2
(3.141)

whereas the Gaussian curvature is

K = AC − B 2. (3.142)

96 3 Geometry

97

4 Computer-Aided Geometric Design

Using the geometric concepts presented in the previous chapter, computer-aided ge-
ometric design is concerned with 3D object representation and manipulation. Recent
3D object descriptions which are used in popular modeling approaches are based
for example on points [ZPKG02], polygonal meshes [JLM02], NURBS-Patches [PT97],
subdivision surfaces [Ma05], etc.

These descriptions can be ordered by their “description level”. As a rule of thumb
the more geometric primitives are needed to represent an object, the lower the “de-
scription level” of a representation type.

As a representative of a low level description the first part of this chapter analyzes
heightfields whereas the second part concentrates on subdivision surfaces. Both ob-
ject representations will be inspected with respect to distance calculation and colli-
sion detection – mathematical subproblems of semantic enrichment and geometric
reconstruction. The creation of such CAD objects is called modeling. The modeling
process – interactive and generative – will finalize this chapter.

Contents

4.1 Heightfields and Polygonal Surfaces 98

4.2 Collision Detection 112

4.3 Subdivision Surfaces 130

4.4 Generative Modeling 178

98 4 Computer-Aided Geometric Design

4.1 Heightfields and Polygonal Surfaces

Heightfield data sets are required in various applications – for example to encode ter-
rain models. Digital terrain models can be represented in two forms, as a triangulated
irregular network and as a rectangular height grid. With the acquisition by airborne
light detection and ranging (LIDAR) or stereo-photogrammetry especially the latter
are available in good resolutions1. Triangular irregular networks can be generated
from rectangular height grids by simplification for compact storage and for efficient
rendering by computer graphics. The distance measure used for simplification is of
special importance for the application [BMMKN04]. Many simulation and planning
problems for electromagnetic wave propagation are based on the ray tracing model
like signal strength prediction [FS97], [SW06] and antenna placement [ACN+05]. In
these models, the main paths of wave propagation are evaluated by rays (geometric
optics), and special wave effects are added at the intersection points of the rays with
the terrain surface. Of course, the line-of-sights from the antennas account for the
main propagation paths. So efficient line-of-sight (LOS) computation is an important
means for terrain interrogation.

Figure 4.1: The values in a heightfield are acquired by measuring terrain heights with far-
field photogrammetry or laser scanning systems [KBAP04]. From these discrete measure-
ments, terrain surfaces can be reconstructed of various orders of continuity and of polyno-
mial type. In this illustration both diagrams (left / right) show the same heightfield data. The
question which one represents the terrain best for a special application is of considerable in-
terest [KDS99].

1 Earth Resources Observation and Science (EROS) Center (http://eros.usgs.gov/)

http://eros.usgs.gov/

4.1 Heightfields and Polygonal Surfaces 99

4.1.1 Line-Of-Sight Calculation

Basic data structures used for the line-of-sight computation problem are the grid
structure and several tree-structured schemes. The grid structure is a sampled rep-
resentation, directly storing height/distance values to a reference plane or reference
surface. There have been several approaches of compressing the grid data, among
them spatial hashing [THM+03] and wavelet transform [Yan00]. The kd-tree is a bi-
nary tree with splits cycling through the d dimensions. It has been invented for orga-
nizing point sets for nearest neighbor searching [Ben75] and stores data for rectan-
gular spatial cells in its nodes. SARAH FRISKEN et al. [FPRJ00] use simultaneous splits
of all dimensions resulting in a 2d-ary tree and store data for the cell corners. With
bilinear interpolation on the space region, they represent a continuous scalar func-
tion. SYLVAIN LEFEBVRE and HUGUES HOPPE [LH07] covers the problem of encoding the
tree topology and the tree data with a combination of techniques suitable for random
access.

The most straightforward line-of-sight computation approach traverses the pro-
jection of the query ray on the domain plane and checks the ray’s height against the
heightfield’s height at a number of points per cell [PG04]. An exact line-of-sight test
requires a specific test, which depends on the terrain reconstruction and the field of
application (see Figure 4.1). Possible reconstructions for non-integer grid positions
include: Point reconstruction, double linear interpolation and bilinear interpolation.
By checking a number p of discrete points per grid cell, large low-height regions can-
not be exploited. The approach requires always l ·p height evaluations regardless of
the terrain traversed, where l is the ray length in cells.

Lately, also graphics processing units (GPU) have been used to determine line-
of-sight on a terrain [SGS+05], [TSHM05]. These approaches render both the terrain
surface and the ray and test, whether all line fragments are above the terrain surface.
If this is the case, the query ray is a line-of-sight up to the image resolution used for
rendering and for terrain reconstruction. A special hardware occlusion test is used for
counting the number of visible fragments.

There is also work on slightly extended visibility problems like computing the hori-
zon for each grid point and direction sector [Max88], [RBB01]. Originally, the result-
ing horizon map was invented for self-shadowing the terrain surface. In “Fast Horizon
Computation at All Points of a Terrain with Visibility and Shading Applications” [Ste98]
the horizon map computation is optimized for a large number of points using an al-
gorithm of runtime O(s ·k (log2 k + s)) for s horizon sectors per point on k points.

4.1.2 KD-Tree Ray Casting

As a ray is defined by an origin point O and a direction vector d, a ray gives an implicit
search order on the data domain. So if the data domain is partitioned into several
parts, then these parts can be searched according to the ray. Line-of-sight computa-
tion is a problem of this kind. Additionally, the parameter interval of the ray inside a
domain part is available during traversal.

100 4 Computer-Aided Geometric Design

The simplest partition tree for a two-dimensional domain is a binary tree with domain-
orthogonal partitioning planes. The parameter interval [0,∞] is subdivided by the ray-
plane intersection point at parameter

λ=
n · (p−o)

n ·d
(4.1)

into the near interval [0,λ] and the far interval [λ,∞]. The plane is defined by an arbi-
trary incident point p and a normal vector n. For axis-orthogonal partitioning planes
the ray-plane intersection computation

λ= (px −ox)/dx resp. λ= (py −oy)/dy (4.2)

is simple and therefore especially fast to compute.

Figure 4.2: A partitioning structure like a binary tree subdivides a heightfield (blue) into
small parts. It also subdivides a ray into several line segments (black / red).

The resulting partitioning tree with alternating x - and y -orthogonal planes is called
kd-tree of dimension 2 [dBCvKO08]. The traversal of the kd-tree can be adapted for
ray segments restricted to a parameter interval [tnear,t far]. The traversal visits the near
node, if and only if

[0,λ]∩ [tnear,t far] = [tnear,λ] (4.3)

is not empty and it visits the far node, if and only if

[λ,∞]∩ [tnear,t far] = [λ,t far] (4.4)

4.1 Heightfields and Polygonal Surfaces 101

is not empty. This way the interesting parameter interval of the ray is always available
for the current node. The special cases, where the ray is parallel to the partitioning
plane (λ=∞) or pointing away from the partitioning plane (λ< 0), are easy to handle.

So far the traversal of a 2-dimensional domain (the heightfield plane) by a kd-tree
of 2 does not evaluate the height value. For a 2.5-dimensional heightfield, which is
a real height function on the 2-dimensional domain, the approach can be extended.
As the domain part represented by a kd-tree node shrinks with each subdivision, each
leaf node of the tree represents a single entry of the heightfield grid. If each (inner) kd-
tree node has the maximum height of the subtree it represents, it can be used to prune
subtrees of the kd-tree from traversal. For a ray with parameter interval [tnear,t far] and
height

z near = oz + tneardz (4.5)

at entry and height

z far = oz + t fardz (4.6)

at exit, it can intersect a node with maximum height hmax only if

z near < hmax or z far < hmax. (4.7)

This simple extension requires only one additional real value per inner node of the
kd-tree.

A heightfield uses discrete measurements and its terrain surface can be recon-
structed in various ways. The question which one represents the terrain best for a
special application has received considerable interest [KDS99], [PG04]. In “Empirical
Comparison of Data Structures for Line-Of-Sight Computation” [FUFB07], [FUFB09]
we have concentrated on point reconstruction which represents the surface as a con-
stant within its grid cell and on bilinear reconstruction which is a degree-two surface
with linear x -parallel or y -parallel intersections. Figure 4.3 shows plots of both recon-
structions for samplings of the function

f (x ,y) =−8x 3−12x 2+3x y 2+3y 2+ y 3, (x ,y)∈ [−2,2]× [−2,2]. (4.8)

Both reconstructions can be efficiently incorporated into a kd-tree. The key to effi-
ciency here is that the grid environment required for the reconstruction is exactly
available in one node of the kd-tree. For point reconstruction, the environment is
small, 1×1. For bilinear reconstruction, it is larger, 2×2. This has some effect on the
tree construction described below. For the intersection computation between the lin-
ear ray and the bilinear surface the intersection points with the 2×2 domain rectangle
are calculated. The surface heights are added there by bilinear interpolation. From
these values the parabola in the ray plane is uniquely determined. By equating the
ray segment and the parabola the intersection problem can be solved. For intersec-
tion testing, is is computationally faster and more robust not to compute all possible
(two) solutions but to compute the parameter value of the parabola apex and test the
ray height against the apex height just there.

102 4 Computer-Aided Geometric Design

Figure 4.3: This data set has been generated by the function f (x ,y) =−8x 3− 12x 2+ 3x y 2+
3y 2+ y 3 over the domain [−2,2]2. The resulting samples are the input of a heightfield recon-
struction. Different reconstruction types may have significant height differences as illustrated
by the bilinear reconstruction (gray surface) and the maximum point reconstruction (colored
quads). The question which one represents the terrain best has to be answered by the field
of application [PG04] and has an important influence on the heightfield intersection test and
the overall line-of-sight computation efficiency.

In principle, there are two approaches for tree construction, recursive top-down con-
struction and iterative bottom-up construction [Ben75]. Its simplicity makes a recur-
sive top-down construction especially impressive. It chooses a split index along a split
axis which alternates between x - and y -axis. For a perfectly balanced tree, the split in-
dex is chosen at the center. A data-dependent tree construction could take the height
values in the current kd-tree node into account. One could choose the split index

4.1 Heightfields and Polygonal Surfaces 103

which creates two boxes of minimum sum of volumes. Due to the restriction of split-
ting planes to axis-aligned orientations, the separation of small and large heights is
not so good, and the data-dependent construction is usually not worth it. For bilinear
reconstruction, we process each value together with its left and lower neighbor (2×2
neighborhood). This can be achieved by creating a one row respectively one column
overlap when splitting the current node (overlapped splitting). Compared to disjoint
splitting, it generates four times as many nodes.

With disjoint splitting the height of the kd-tree for a heightfield of size n ×m is
log2(n ·m), and the number of nodes is 2(n ·m). With overlapped splitting the height
is log2(n ·m) + 2 and the number of nodes is 5(n ·m). Please note, that the n ·m leaf
notes are reused in 3(n ·m) places for the overlap. The data per node consist of two
pointers (4 bytes each on a 32-bit architecture), the real maximum height (8 bytes
in double precision), and the real split value (8 bytes in double precision). So that
the memory requirements sum up to 20 bytes per node. For comparison, the given
heightfield array consists of n ·m height values with 8 bytes per entry.

4.1.3 Nonstandard Decomposition in Max-Plus-Algebra

The wavelet-like, compressed grid for a heightfield of size n ×m has the same mem-
ory requirements as the square grid of side length max(ñ ,m̃) respectively 2·max(ñ ,m̃)
with overlapped splitting whereas x̃ denotes the smallest power of two greater than
or equal to x .

The inefficiency for non power-of-two and non-square formats can be eliminated
for example by tiling techniques (as done in JPEG2000 [CS00] by the Joint Photo-
graphic Experts Group (JPEG)) or by a boolean sequence, which gives the orienta-
tion of the split, horizontal or vertical. In this way, the wavelet-like compressed grid
is a different storage scheme for the kd-tree. But if sufficient memory is available, the
square, power-of-two format with its implicit, 4-ary splitting is beneficial for caching
and runtime efficiency.

Using the notation introduced in Section 2.1.10, the heightfield decomposition
can be described by

c
j−1
k =max(c j

2k , c
j
2k+1) (4.9)

and

d
j−1
k = c

j
2k − c

j
2k+1 (4.10)

using maximum coefficients c
j
k and the corresponding detail coefficients d

j
k . The re-

construction step is then calculated by

c
j+1
2k = c

j
k +min(0 , d

j
k) (4.11)

and

c
j+1
2k+1 = c

j
k −max(0 , d

j
k). (4.12)

104 4 Computer-Aided Geometric Design

Figure 4.4 illustrates the results of a non-standard decomposition to a quadratic height-
field of size 220×220. In the non-standard decomposition, the application of the filter
alternates between columns and rows.

The analysis filter can be described in a short manner using operations in Rmax

max-plus algebra [ACG+90]. In this way the filter process is very similar to one of Haar
wavelets. As the algebra Rmax is only an idempotent semiring, the maximum filter
does not satisfy the wavelet-filter definition.

4.1.4 Nonstandard Decomposition in Real Algebra

The previous section describes a wavelet-like decomposition where the maximum
value of a region is directly available in the representation. Alternatively, a maximum
computation is possible using a linear combination of scalar basis functions on the
domain. The nonstandard approach of wavelet transformation to generate two-di-
mensional basis functions combines two one-dimensional basis functions in a ten-
sor product. While a one-dimensional wavelet transformation decomposes a vector
space V i into

W i−1⊕V i−1 = . . .=W i−1⊕W i−2⊕ . . . W 0⊕V 0, (4.13)

Max Plus Algebra

The extensive use of the mini-
mum and maximum functions in-
spires to utilize the max-plus algebra
Rmax [ACG+90].

The basic operations of Rmax are
maximization and addition, which are
denoted ⊕ and ⊗ respectively:

x ⊕ y =max(x ,y) (4.14)

x ⊗ y = x + y (4.15)

for x ,y ∈ R∪ {−∞}. The zero element
for ⊕ is ε = −∞ and the inverse el-
ement of x ∈ R with respect to ⊗ is
−x . The rules for the order of evalua-
tion of the Rmax operators correspond
to those of conventional algebra. So
⊗ multiplication has a higher priority
than ⊕ addition.

This formalism is often used
to describe discrete event sys-
tems [DSVdB08]. Such an event sys-
tem with only synchronization and
no concurrency can be modeled by
a max-plus-algebraic model the fol-
lowing form:

xk = A ⊗xk−1⊕ B ⊗u k (4.16)

yk =C ⊗xk (4.17)

with A ∈ (R ∪ {−∞})n×n , B ∈ (R ∪
{−∞})n×m and C ∈ (R ∪ {−∞})l×n ,
where m is the number of inputs and
l the number of outputs. The vector
x represents the state, u is the input
vector, y is the output vector of the
system, and the counter k is an event
counter.

4.1 Heightfields and Polygonal Surfaces 105

the tensor product V i V i is decomposed into

W i−1W i−1⊕W i−1V i−1⊕V i−1W i−1⊕V i−1V i−1 = . . .= (4.18)

W i−1W i−1⊕W i−1V i−1⊕V i−1W i−1⊕ . . . ⊕V 0V 0. (4.19)

...

Figure 4.4: A two-dimensional heightfield (upper left) can be visualized by a gray-scale im-
age. Its nonstandard decomposition uses a filter based on maximum operations. In each de-
composition step the detail coefficients are represented by red and green pixels. Red pixels
mark negative coefficients d j

k whereas green pixels mark positive ones. A pixel’s intensity en-
codes the difference magnitude (consequently, small differences are almost black).

106 4 Computer-Aided Geometric Design

A function f in space V i V i can be represented as

f (x ,y) =
∑

(k ,l)

c (k ,l)b
i
k (x)b

i
l (y) (4.20)

with appropriate basis functions b i
k ∈ V i . Due to the finite small support of basis

functions, it is possible to express the maximum over the rectangular domain D1×D2

max
(x ,y)∈D1×D2

f (x ,y)≤
∑

(k ,l)∈P(D1,D2)

c (k ,l) ·maxbk |D1 ·maxb l |D2 (4.21)

+
∑

(k ,l)∈N (D1,D2)

c (k ,l) ·minbk |D1 ·minb l |D2 (4.22)

as a linear combination of the basis function’s minima and maxima. Thereby, the
union P(D1,D2) ∪N (D1,D2) consists of all index pairs, for which the support of bk

intersected with D1 is not empty (support bk ∩D1 6= ;) and support b l ∩D2 6= ;, and
P(D1,D2) are the index pairs with positive coefficients and N (D1,D2) are the index
pairs with negative coefficients, respectively. As the spaces V j and W j are highly
structured, the minima and maxima of its basis functions on their support can be pre-
computed from a prototype impulse and systematically tabulated. The sum (4.21)–
(4.22) incorporates an increasing number of basis functions at higher levels of the
decomposition, starting with the value corresponding to V 0V 0. At level j , there are
3 ·2j ·2j basis functions, and altogether, there are 1+3

∑

j=0,...,n 2j 2j summands.

For efficiently computing a lower and an upper bound, the maximum c
j
max 1 of all

positive coefficients corresponding to space W j V j and the minimum c
j
min 1 of all neg-

ative coefficients corresponding to space W j V j at level j can be precomputed. Sim-

ilarly, c
j
max 2 and c

j
min 2 denote the maximum and minimum corresponding to space

W j W j and c
j
max 3 and c

j
min 3 corresponding to space V j W j . With these values a weaker

upper bound with only 6n +1 summands can be formulated:

max
(x ,y)∈D1×D2

f (x ,y)≤ c (0,0)max
¦

b0

�

�b0 ∈W j V j
©

+
n
∑

j=1

c
j
max 1 max

¦

b1

�

�b1 ∈W j V j
©

+
n
∑

j=1

c
j
min 1 min

¦

b1

�

�b1 ∈W j W j
©

+
n
∑

j=1

c
j
max 2 max

¦

b2

�

�b2 ∈W j W j
©

+
n
∑

j=1

c
j
min 2 min

¦

b2

�

�b2 ∈W j W j
©

+
n
∑

j=1

c
j
max 3 max

¦

b3

�

�b3 ∈V j W j
©

+
n
∑

j=1

c
j
min 3 min

¦

b3

�

�b3 ∈V j W j
©

.

(4.23)

Figure 4.5 sketches the domain sections for which minimum /maximum values are
precomputed.

4.1 Heightfields and Polygonal Surfaces 107

c 4
max 2c 4

max 1

c 4
max 3

c 3
max 2c 3

max 1

c 3
max 3

c 2
max 2c 2

max 1

c 2
max 3

c 1
max 2c 1

max 1

c 1
max 3

Figure 4.5: Maximum and minimum values of the basis functions can be precomputed.
Based on these values an upper bound of the heightfield can be determined.

4.1.5 Optimizations and Empirical Comparison

For efficiency, some conceptual optimizations are also possible. A ray usually has
more than one intersection with a heightfield. In the worst case, the query time is
O(l +l o g 2(n ·m))which is mainly determined by the traversal length l of the ray up to
the first intersection. So it is reasonable to traverse from origin to destination forward,
if an intersection is nearby the origin, and backward, if one is nearby the destination.
This can be exploited, if there are hints available, for example, from results of queries
to the same destination point in the neighborhood (spatial coherency).

We have implemented the kd-tree data structure and its compressed variant with

108 4 Computer-Aided Geometric Design

line-of-sight computation. Implementation details and a comprehensive comparison
can be found in “Empirical Comparison of Data Structures for Line-Of-Sight Compu-
tation” [FUFB07] and in “Terrain and Model Queries Using Scalar Representations
With Wavelet Compression” [FUFB09].

Line-Of-Sight Computations (Heightfield Representation)

Timings of line-of-sight computations depend on the implementation, the
heightfield resolution and the number of query points. In this comparison
queries to two ground stations per heightfield pixel are answered.

resolution kd-tree, kd-tree, wavelet, wavelet,

constant bilinear constant bilinear

220×220 311 463 q/s 178 676 q/s 298 808 q/s 183 242 q/s

256×256 308 214 q/s 179 615 q/s 289 764 q/s 172 219 q/s

512×512 255 696 q/s 179 332 q/s 255 636 q/s 165 277 q/s

1 024×1 024 262 440 q/s 143 456 q/s 224 383 q/s 140 322 q/s

2 048×2 048 245 386 q/s 131 769 q/s 237 468 q/s 118 410 q/s

Table 4.1: Depending on the heightfield representation and the heightfield interpretation
(piecewise constant / bilinearly interpolated) the performance of a line-of-sight algorithm
(measured in queries per second) differs.

Table 4.1 lists the computation times for different resolutions of the same heightfield
data set. All timings were taken on the same hardware and software platform. The
point reconstruction is fastest as it needs to access only a single height value at the
leaf level. For bilinear approximate and bilinear reconstruction, we try to keep the
four leaf nodes required for the reconstruction sequentially in memory. The resulting
performance is roughly 3/4 of that of point reconstruction. In particular, it is notable
that the wavelet-based storage scheme is nearly as fast as the kd-tree with fully stored
inner nodes. For the more complex bilinear reconstruction in leaf nodes, the differ-
ence is even smaller.

The tests comparing search directions in Table 4.2 show that using the information
where the intersection point was in the last query (at a different height or in a hori-
zontal or vertical neighbor) is most successful. In addition, this information is very
easy to exploit. Note that it is not easy to predict, if a forward or backward search has
a shorter search length up to an intersection as it requires carrying out the search.

4.1 Heightfields and Polygonal Surfaces 109

Line-Of-Sight Computations (Search Direction)

A well-known optimization technique, not only in computer graphics, uses
spatial coherence. In this context the information where the last intersection
point was located is reused to set the search direction.

search direction kd-tree, kd-tree, wavelet, wavelet,

point bilinear point bilinear

forward 308 084 q/s 163 273 q/s 281 024 q/s 151 095 q/s

backward 316 837 q/s 179 889 q/s 291 051 q/s 177 482 q/s

last-fastest 317 766 q/s 177 758 q/s 293 648 q/s 183 242 q/s

Table 4.2: The tests concerning search direction (forward, backward or based on which one
was faster in last query) on a heightfield of resolution 220× 220 show that the information
where the intersection point lied in the last query at a different height or in a horizontal or
vertical neighbor is most successful.

Laser Scanning

A laser scanner is a device to capture
and to measure the surface of an object.
Most laser scanning systems are active
and non-contact system [tHCMV05];
i.e. they use an active light source and
detect its reflection in order to probe an
object or environment:

• A time-of-flight system measures
the time of a round-trip (scanner –
object – scanner) of a pulse of light
to calculate the distance of an ob-
ject.

• A triangulation system uses a cam-
era to detect the reflection of the
laser and to determine the 3D
point where the laser hit the ob-
ject. Figure 4.6 illustrates this pro-
cess.

Each 3D scanner has a limited field of
view and can only scan surfaces that are
not obscured. The result of a single scan
– a so-called range map – is a heightfield
in spherical coordinates.

Figure 4.6: A triangulation-based laser
scanner uses a camera to detect the reflec-
tion of a laser and to determine the 3D
point where the laser hit the object. The
NextEngineTM laser scanner uses a multi-
laser precision technique to achieve a high
accuracy.

The scanning device is located at the
origin and the azimuthal angle θ the
polar angle φ describe the field of view.
The measured distance from a point to
the origin is the radius (r,θ ,φ). These
spherical coordinates describe the 3D
position of each point in a local coordi-
nate system relative to the scanner.

In general, a single scan cannot cap-
ture the surface of a complete object.
Therefore, multiple scans from different
directions are needed to obtain enough
information to describe the whole ob-
ject. Normally, a change of position or
orientation of either the scanning de-
vice or the object to scan is not re-
spected by the local coordinate sys-
tem. As a consequence, each range map
has its own coordinate system and all
range maps have to be aligned to each
other [PFC+05]. This alignment step is
one of the first steps of the scanning
pipeline [BR02]. It consists of

• alignment and registration steps to
transform all range maps into one
reference coordinate system,

• a clean-up step to remove un-
wanted points from a range map,

• a fusing step to merge all scans to
one mesh and

• an optional polish step to fill holes
and to simplify the final mesh.

The point clouds produced by 3D scan-
ners are usually not the final object rep-
resentation.

4.1 Heightfields and Polygonal Surfaces 111

As most applications use polygonal 3D
models, NURBS surfaces, or subdivi-
sion surfaces, the scanning pipeline is
followed by a reconstruction or model-
ing pipeline to create a computer-aided
design (CAD) representation.

Figure 4.7: To capture a complete, non-trivial object several single scans are needed. This
chess piece has been scanned in thirteen single scans: seven circular scans of a 360◦scan
and two bracket scans from above and from below. Each bracket scan consists of three sin-
gle scans. The triangulation-based laser scanner projects a raster onto the object to scan.
The two range maps (left, middle) which are part of the 360◦scan show the characteristic
pattern [Nex09].
At the end of the acquisition pipeline all range maps are merged to a final, polygonal mesh.
A cleaned and simplified mesh (right) is the input data set of many computer-aided design
tasks.

Figure 4.7 shows two range maps of a se-
ries of scans (left, middle) and the final
result (right) – a polygonal mesh, which
can be used in further reconstruction
and modeling steps.

112 4 Computer-Aided Geometric Design

4.2 Collision Detection

In many 3D acquisition pipelines, the first measurements are stored in heightfields
and range maps. The result of the 3D acquisition pipeline is a “high-level” geometry
description – a CAD model. The less parameters a CAD model has, the “higher” its
description. Therefore, research in computer-aided geometric design has always fo-
cused on model representations, which describe a complete 3D object only by a few
parameters, control vertices, etc. While these descriptions are suitable for modeling,
in the context of collision detection they are often too complex. In this case, optimized
spherical heightfields [FUF06], which are similar to the ones used at the beginning of
the acquisition pipeline, can be utilized to solve the collision detection problem at a
later stage.

The problem of collision detection between objects is fundamental in many dif-
ferent communities including CAD, robotics, computer graphics, and computational
geometry. The general problem of collision detection consists of three categories:

• collision detection, which tests whether two or more objects collide;

• collision determination, which determines which parts of some objects inter-
sect; and

• collision response, which answers the question, Which action should be taken in
response to a collision?

For practical collision detection, all approaches first consider enclosing, simplified
model representations, so-called bounding volumes, of all participating models. This
broad phase only extracts potential collision pairs [LM03]. The following narrow phase
performs a precise collision detection for each potential collision pair with the model
representation. A general approach for all model representations uses hierarchies of
simple bounding volumes containing model parts again.

Researchers have proposed several bounding volumes including spheres, axis-a-
ligned bounding boxes (AABB), oriented bounding boxes (OBB), and discrete ori-
entation polytopes [LM03]. Here the performance depends on the tightness of the
bounding volume, the efficiency of the intersection test for the bounding volume, and
the strategy for hierarchy generation. STEFAN GOTTSCHALK, MING C. LIN, and DINESH

MANOCHA give a complete description of the tree construction and collision test us-
ing oriented bounding boxes in “OBB-Tree: A Hierarchical Structure for Rapid Inter-
ference Detection” [GLM96].

Recently, researchers have modified the approaches using bounding volume hi-
erarchies for time-critical collision handling [Eri04]. Bounding volume hierarchies
with deformable models require additional time for refitting [TKH+04], and optimiza-
tions exist for special deformations [KZ05]. In the area of deformable models, re-
searchers commonly use simpler structures like Cartesian grids and 1D arrays ac-
cessed by hashing. WILLIAM A. MCNEELY et al. built up a voxel grid for the static model,
where the points of a small movable model are queried against [MPT99]. This ap-
proach guarantees the high feedback rate needed by a haptic feedback device, and it

4.2 Collision Detection 113

is tailored to the haptic application domain. ARNUPH FUHRMANN et al. also use a grid
to store the Cartesian distance field for a static model draped with a deformable cloth
model [FSG03]. Here, as with MCNEELY’s approach, one model is completely static.
Problems of these approaches are the large memory consumption and the necessity
to choose the grid resolution beforehand. Accessing rotated Cartesian grids is a costly
operation, if done randomly and without exploiting coherence. Cartesian grids classi-
cally serve as a spatial data structure for the simulation domain. MATTHIAS TESCHNER

et al. use hashing as a grid compression technique and perform collision detection
between points and tetrahedral elements directly on the hashed array [THM+03]. The
performance strongly depends on a uniform distribution of tetrahedral elements and
points within the hashed array.

Other researchers consider image-space techniques for collision detection using
graphics hardware [HTG04]. One approach is to perform ray casting through the vol-
ume of interest. It can be implemented on rasterizing graphics hardware using or-
thogonal projection with the depth and stencil buffers. The resulting layered depth
representation can be made robust against vanishing depth intervals, but requires
slow buffer read-backs in multiple passes [HTG04]. Alternative approaches avoid buffer
read-backs. They detect edge points of one object inside another object by counting
ray-surface intersections [KP03]. This approach is quite fast, but it is not robust in
case of occluded edges. NAGA GOVINDARAJU et al. use hardware-accelerated occlusion
queries instead [GRLM03]. The visibility tests allow for sorting out objects or object
primitives, which do not participate in any collision within the set. Although the setup
is complex it can report detailed collision information. The approaches using graph-
ics hardware previously were fast at collision detection or point-in-volume tests, but
had difficulties with collision determination, like extracting all colliding object parts.

4.2.1 Spherical Distance Fields

In contrast to multiresolution representations with wavelets [VP04] or progressive
meshes [Hop98], the approach by CHRISTOPH FÜNFZIG, TORSTEN ULLRICH and DIETER

W. FELLNER [FUF06] is simpler and does not reproduce the model topology exactly,
but generates conservative bounding volumes for model parts efficiently.

The spherical sampling according to a single center point requires a spherical
parametrization such as one with six charts derived from the box sides [PH03b]. A
spherical representation allows fast model rotation and the on-the-fly generation of
spherical shell bounding volumes for model parts. Others have already used spherical
shells as bounding volumes for spline models [KPL98]. SHANKAR KRISHNAN et al. use
this bounding volume in an oriented bounding box hierarchy (tree) to bound spline
model parts more tightly [KGL+98]. The robotics literature has called the same bound-
ing volume bi-sphere.

Axis-Aligned Bounding Boxes

The preprocessing step of a collision de-
tection based on axis-aligned bound-
ing boxes determines a model’s bound-
ing box with axes that align with those
of the coordinate system. This is an
easy minimum/maximum search over
all (control) vertices in many commonly
accepted model representations. After-
wards, the bounding box is split at its
longest edge into two bounding boxes
that are refitted to the model. This sub-
division process is called recursively by
all boxes down to the desired granu-
larity. This process is illustrated in Fig-
ure 4.8. The bounding boxes are stored
in a tree structure.

A single bounding box is typically
stored using two points. The intersec-
tion test uses these two points to de-
termine the boxes’ projection onto the
coordinate axes. The enclosing intervals
on the coordinate axes can be read off
easily. Two bounding boxes overlap, if
and only if all coordinate intervals of
both bounding boxes intersect. A two-
dimensional configuration is shown in
Figure 4.9. The algorithm uses the pre-
sented data structure to exclude irrel-
evant candidates as fast as possible. A
collision check of two models starts by
checking the root bounding boxes.

Figure 4.8: The preprocessing recursively
subdivides the bounding box (left) down to
the desired granularity (right).

Figure 4.9: The AABB intersection test can
be reduced to some interval checks.

If these boxes do not overlap, a collision
is not possible. Otherwise, descending
the AABB tree, both bounding volumes
are refined and checked again. The last
refinement level has to work on the
model’s primitive representation.

The AABB-based collision detection
has many advantages. The algorithm is
easy to understand and to implement.
A simple AABB collision detection nor-
mally consists of a few lines of code.
The implementation of this algorithm
is numerically stable. Even the use of
floating-point values is extremely sta-
ble in combination with a bounding box
offset within the magnitude of floating-
point precision. Furthermore, the al-
gorithm has no restrictions concerning
the underlying model representation.

Regrettably, the algorithm also has
some inherent disadvantages. The
alignment of all bounding boxes ac-
cording to the coordinate system sim-
plifies the intersection test, but it has
suboptimal tightness in the general
case. There can be a big difference be-
tween the optimal bounding box and
the axis-aligned bounding box of an ob-
ject as shown in Figure 4.10.

4.2 Collision Detection 115

Figure 4.10: The fixed orientation of a
bounding volume does not result the op-
timal bounding box. This figure shows the
optimal orientation in contrast to the orien-
tation in Figure 4.8.

Another problem is the inability to
reuse the AABB data structure during
object rotations. If an object is rotated
along an arbitrary axis, its bounding
boxes have to be realigned (using the
object’s bounding box) as illustrated in
Figure 4.9 or even recalculated from the
object’s points.

The expected running time of an al-
gorithm is the measure of its quality. To
answer a collision query of two objects,
the AABB-based collision detection al-
gorithm traverses both bounding vol-
ume hierarchies. The required time to
answer the query consists of the initial
setup costs, the costs of a single bound-
ing volume/bounding volume overlap
test (multiplied by the expected number
of overlap tests), and the costs of a sin-
gle primitive/primitive intersection test
(multiplied by the expected number of
intersection tests).

In an asymptotic analysis, the num-
ber of overlap tests N defines the run-
ning time, where n denotes the num-
ber of bounding volumes each of the
two query objects owns. The condi-
tional probabilities that a pair of bound-
ing volumes overlap can be estimated
using geometric reasoning [WKZ06]. As-
suming that the two root-bounding vol-
umes overlap, the expected number of

overlap tests only depends on scaling
factors that relate the size of a bounding
volume to the size of its children. For the
sake of clarity and simplicity, these scal-
ing factors αx , αy , and αz along each
axis shall be constant throughout the
hierarchies of the query objects. Then
the expected number of overlap tests
can be estimated by

N (n)≤
lg n
∑

i=1

4i ·αi
x ·α

i
y ·α

i
z (4.24)

∈O
�

n l g (4αxαy αz)
�

. (4.25)

Plugging this estimation into a cost
function T (n) yields an overall time es-
timate that is illustrated in Table 4.3.
The frequently used implementation,
which divides a bounding volume in
the middle of its longest edge into two
parts (with a small overlap), has a scal-
ing product of αx · αy · αz ≈ 1/2 i.e., the
expected running time is linear to the
number of bounding volumes.

Expected Running Time

The effect of the scaling factor
product on the query time.

αx ·αy ·αz T (n)

< 1/4 O(1)
1/4 O(logn)
1/2 O(n)
3/4 O(n 1.58)

1 O(n 2)

Table 4.3: The expected runtime costs of a
AABB collision test.

116 4 Computer-Aided Geometric Design

GREGORY J. HAMLIN, ROBERT B. KELLEY, and JOSEP TORNERO present an algorithm for
distance computation between bi-spheres and more general convex hulls of a finite
number of spheres (S-topes) [HKT92], which resembles the Gilbert-Johnson-Keerthi
algorithm for convex polytopes [GJK88]. The spherical shell bounding volumes at
each level of the hierarchical spherical distance field discard the parts in certain sphere
sectors from further consideration. Depending on the application requirements, the
algorithm can report at the leaf level a single triangle per spherical shell, a triangle per
model layer inside a spherical shell, and all triangles inside a spherical shell.

4.2.2 Spherical Model Representation

Like most collision detection algorithms, the approach by CHRISTOPH FÜNFZIG, DIETER

W. FELLNER and myself [FUF06] consists of two parts: a preprocessing step and a test-
ing routine that represents the intrinsic collision test. A simple 2D example outlines
the main idea.

During the preprocessing step, the algorithm takes an initial model and deter-
mines a model center. According to this center point, the model is transformed into
spherical coordinates and sampled into several intervals. As a result, the algorithm
stores the maximum radius and the minimum radius for each sample. The basic con-
cept used in the preprocessing step works analogously to a wavelet transform. It starts
with the high-resolution object and derives objects of lower resolution by storing
the differences in detail coefficients to reverse this operation. For correctness, a low-
resolution model must bound all higher resolution models. Therefore, the Haar ba-
sis functions – which are used e.g. in image processing and describe an averaging
and differencing process – are unsuitable. In this context, maximizing and minimiz-
ing functions have to be taken as Figure 4.11 (top) shows. Therefore, each object will
be transformed into an inscribed circle and a circumference in the lowest resolution.
Having transformed all objects this way, we can perform a simple and fast collision
test (see Figure 4.11 (bottom)). For clarity, we use solid objects with zero minimum
radius in the illustration.

At runtime, the intersection test starts with the model representation at its lowest
resolution and tests whether both models collide at this resolution. If this test is pos-
itive, the algorithm will increase the level of detail. Therefore, it is important for per-
formance that only intersecting sectors are considered further on. Figure 4.11 (bot-
tom), which shows the various stages during a collision test, illustrates this principle.
As long as there are intersecting sectors of different objects, the algorithm refines the
objects. If the algorithm reaches the highest resolution of an object, the collision test
is performed on the object primitives, which results in collision determination.

4.2 Collision Detection 117

Figure 4.11: Hierarchical spherical distance fields can be used to solve the collision detec-
tion problem. During the preprocessing step (top) the distance field-based algorithm uses a
spherical sampling of an object (top left) and applies maximum filters to it. The results of
these filters are shown in the top rows. At the lowest level a bounding sphere encloses the
whole object.
At runtime, the intersection test starts with the bounding volume at lowest resolution. As long
as different bounding volumes intersect, the volumes are refined. Sectors that do not collide
with other sectors are not considered further on. At highest resolution, only model parts be-
longing to colliding sectors have to be checked for collision. Depending on the model repre-
sentation, appropriate algorithms have to be used.

118 4 Computer-Aided Geometric Design

4.2.3 Spherical sampling

A model is described in spherical coordinates (r,θ ,φ)with respect to its center, an ar-
bitrarily chosen point. The choice of the center point and its position is important for
the sampling process. A center point, with respect to which the model is star-shaped,
is preferable. But even if such a star exists, it is expensive to determine. Heuristic
choices such as the center of an enclosing sphere or the model’s mass center are
good enough to serve as a sampling center. The result of the sampling is a spheri-
cal heightfield r (θ ,φ) over the parameter domain [0,2π]× [−π/2,π/2], which encloses
the whole object. As in this parametrization, all meridians coincide with each other at
the poles, an intersection test in a near-pole region would lead to many descending
tests and a bad performance. Therefore, we use another sphere parametrization (see
Figure 4.12). It subdivides a sphere into six separate, congruent regions and applies
an angle-based parametrization to each side. A simple projection of a bounding box
upon a sphere would be sufficient, but it also has some disadvantages. The projection
of a bounding box grid onto a sphere results in patches of an unequal area [PH03b].
This problem can be eased by an angle-based parametrization

d(x ,y) =
1

p

1+ tan2 π
4 x + tan2 π

4 y

tan π
4 x

tan π
4 y

1

(4.26)

with (x ,y) ∈ [−1,1]2, which delivers much better results, as Figure 4.12 shows. Having
discretized and sampled the models at the beginning of the preprocessing step, the

Figure 4.12: A typical sphere parametrization (left) is not preferable for a hierarchical, refin-
able data structure. As all meridians converge at the poles, a refinement in a near-pole region
would lead to many descending paths. A box-based parametrization (middle) consists of six
congruent regions and eliminates this problem. Each region has an angle-based (right, grid)
parametrization. A simple cube projection (right, crosses) would result in distortions.

4.2 Collision Detection 119

resulting heightfields have to be transformed to get the lower resolution representa-
tions. The algorithm can handle subsampling the six charts of the spherical represen-
tation analogous to a discretized Cartesian heightfield explained above.

4.2.4 Intersection Test

Having transformed all objects this way, it is possible to perform a simple and fast
collision test. At runtime, the intersection test starts with the model representation at
the lowest resolution and tests whether they collide or not. If this test is positive, the
level-of-detail will be increased. Thereby, it is important for performance purposes
that only intersecting sectors are considered further on.

As long as there are intersecting sectors of different objects, the algorithm refines
the objects. If the algorithm reaches the highest resolution of an object, the collision
test is performed on the object primitives, which determines the colliding subparts.
The most relevant part concerning performance is the intersection test routine. With-
out a doubt, the test has to report an intersection, if there is one. However, if there is
no intersection, the test may report one by mistake. The less faulty positive results
are reported, the faster the algorithm works, as unnecessary refinements are omitted.
Therefore, balancing accuracy and efficiency is essential.

At level zero, both objects to test are enclosed by tight spheres. The test, whether
two spheres intersect each other, requires no simplification. But at all other levels of
detail, the algorithm has to check two sphere sections, which it analyzes using three
methods.

• So-called bounding volume tests enclose the objects to test within geometrically
simpler objects. For example, a polygonal frustum might be used to enclose a
sphere section. Although the intersection test of two polygonal frustums is rather
simple, the number of tests increases and the enclosing quality is rather bad.

• A totally different approach to check for intersections uses interval/affine arith-
metics [Bühler01]. In theory, this approach offers an exact and fast intersection
test. Although such a test might exist, a practical test has not been implemented
yet.

• The intersection test presented elsewhere [KPL98], [KGL+98] for spherical shells
distinguishes several configurations. For each configuration, the authors derive
an algebraic test for intersection. This test is suitable for our purposes, but due to
its complexity and computational expense, we prefer a computationally cheaper
alternative.

The following geometrical test shows reasonable performance. The objects to inter-
sect are considered as cones as previously described with a center C , a normalized
axis vector a, a length u , and an opening radius r measured at height C +a. If the ob-
jects, on which the intersection tests are performed, are not considered as volumetric
objects but as surfaces, they are handled as truncated cones of which the cone end is

120 4 Computer-Aided Geometric Design

cut off at height l , 0 ≤ l ≤ u . In the following, both cones and their cone parameters
are distinguished by indices 1 and 2. Subject to the orientation of the cone axes, the
implementation analyzes two cases. The first case deals with nonparallel axes a 1, a 2;
the second one deals with parallel lines. A heuristically chosen threshold

min
�

<) (a1,a2),<) (−a1,a2)
�

<αmax (4.27)

separates the nonparallel case from the parallel one:

Nonparallel axes In the nonparallel case for both axes, we will determine the short-
est distance and the respective perpendicular points P1, P2. Let s and t be the
corresponding parameters on the axis lines. If a perpendicular point lies out-
side the clipped cone, it is moved toward the cone. The algorithm computes the
other point as the nearest point on the axis of the other cone. In the special case
where both perpendicular points are outside, we move the one that is nearest to
its clipped cone.

As a quick rejection test we consider the cones as cylinders, that is, if the distance
between P1 and P2 is greater than the sum of the maximum radii (u 1 · r1+u 2 · r2)
of both cones, then an intersection is impossible.

Next, for a quick acceptance test we consider the spheres with center P1 respec-
tively P2 and radius equal to the cone radius there, that is, if the distance between
P1 and P2 is smaller than the sum of sphere radii (s · r1+ t · r2), then we have an
intersection.

C1

C2

P1

P2

P?1
P?2

Figure 4.13: The nonparallel cone-cone intersection can be reduced to an intersection of a
line and a conic section (an ellipse or a parabola; hyperbola cannot occur).

4.2 Collision Detection 121

If neither a quick rejection nor a quick acceptance occurs, the algorithm per-
forms an exact test based on a cone section. The second cone is intersected
with a plane containing the first cone’s center C1 and the line through P1 and
P2 as illustrated in Figure 4.13. This results in a well-known cone section. The
first cone is reduced to a line that passes its center C1 and the point P1 moved
within the considered plane toward the cone section’s focus by length s · r1. The
intersection test is then reduced to a 2D intersection test between a cone section
and a line. The cone section of a hyperbola cannot occur here, as the consid-
ered plane always has an intersection with the other cone’s axis by construction.
The correctness proof can be found in “Hierarchical Spherical Distance Fields
for Collision Detection” by CHRISTOPH FÜNFZIG, TORSTEN ULLRICH and DIETER

W. FELLNER [FUF06].

Parallel axes In this case, the algorithm analyzes the projection of one cone onto the
other cone’s axis, as sketched in Figure 4.14, and vice versa. For each projection,
two distance checks of points against their according radii are performed, which
results in a total of four checks. The special case of parallel lines is handled sepa-
rately for optimization – in this case, the whole test can be done by some interval
checks, which are much faster.

L 1 U1

L 2

U2

Π(L 1)
Π(U1)

Figure 4.14: The cone-cone intersection test for parallel or “near-parallel” cases can be per-
formed using interval checks. For these checks a cone is projected onto the other cone’s axis.

122 4 Computer-Aided Geometric Design

Although the intersection test might give the impression that it takes a lot of time, it
only moderately does so. Due to the fact that the used spherical representation allows
for easy rotation and translation, the intersection test can keep up with, for example,
discrete orientation polytopes (k-DOPs), if the tested objects are in arbitrary orienta-
tion to each other.

4.2.5 Technical Details

We implemented our collision detection algorithm for arbitrary models in the OpenSG
scene graph system [RVB02], where the general model representation is a polygon
soup.

The center point C of a model is its center of mass. For the model sampling two
arrays l i ,j , and u i ,j of power-of-two resolution (i ,j = 0, . . . ,2m−1), are filled for each of
the six sides. The first array l contains the minimum distance values of model points,
whereas the second array u contains the maximum distance values. The entries l i ,j ,
u i ,j represent the distance for model points in the infinite cone

(C ,d(x i ,y j),rm) (4.28)

with axis

d(x i ,y j), x i ,yi =−
2m−1− 1/2

2m−1 , . . . ,
2m−1− 1/2

2m−1 (4.29)

and opening tan(rm) – see Equation (4.26).
Both the opening angles and the corresponding circle radii rn for cones at level

n ,(n = 0, . . . ,m), containing rectangular subparts (see Figure 4.15), can also be derived
from Equation (4.26).

r0

r1

r2

Figure 4.15: The cone radii rn at different levels n with n = 0, . . . ,m enclose the subdivided
parameter square.

4.2 Collision Detection 123

d(x i ,y j)

nu (x i ,y j)

nl (x i ,y j)

u i ,j

l i ,j

C

Figure 4.16: Each sphere sector is defined by its center point C and its axis d(x i ,y j). During
the preprocessing step it is sampled to determine the minimum and maximum distances l i ,j
and u i ,j .

We can compute these arrays in two different ways. First, we can use ray casting.
For each direction d(x i ,y j) with domain parameter x i , y j , we cast two rays (see Fig-
ure 4.16). The first ray is toward the center point – that is, with origin C +∆ ·d(x i ,y j)
using a sufficiently large∆, so that the ray origin lies outside the model, and direction
−d(x i ,y j). The second ray is from the center point outward. We continue casting rays
outward to build a list of faces, pierced by the sampling direction.

During model preprocessing we collect face neighborhoods and store these as a
mesh with at least partial connectivity. We do not require any special topology here.
For each intersected face we visit neighboring faces until the outer face points lie out-
side the sampling cone. From the nearest and farthest model layers we determine the
minimum and maximum distances l (i ,j) respectively u (i ,j). The list of triangles is
sorted in descending order according to the triangle distance. Additionally, we store
with each triangle the diameter of a bounding circle.

In the second approach, we rasterize the model triangles onto the six sides, rather
than sampling the model with rays. First, we calculate the side k , k = 1, . . . ,6 for each
point Pi of the triangle (P1,P2,P3). Then we rasterize the triangle in the parameter do-
main (θ ,φ) for side k with a classical scanline algorithm along the coordinate φ. The
parameters of the triangle point Pi are:

θi = arctan

�

(Pi −C)k+1 mod 3

(Pi −C)k mod 3

�

(4.30)

φi = arctan

�

(Pi −C)k+2 mod 3

(Pi −C)k mod 3

�

(4.31)

For each point met by the scanline algorithm, the distance value d (θ ,φ) has to be
calculated. We can interpolate the distances d i = ||Pi −C || of the triangle points into

124 4 Computer-Aided Geometric Design

point (θ ,φ) by the spherical barycentric coordinates b1, b2, b3 of this point [CM05].
The distance d (θ ,φ) is

1

d (θ ,φ)
=b1 ·

1

d 1
+b2 ·

1

d 2
+b3 ·

1

d 3
. (4.32)

With these values, we then update the minimum and maximum distance values in
the two arrays.

The ray casting approach is usually faster than rasterizing the triangles onto the
six sides, although it can miss small model parts (of projected size corresponding
to a leaf cone). For the rasterization, large triangles sticking out of a side have to be
clipped beforehand. After initialization, the model representation (6× 2 distance ar-
rays) is nonstandard transformed as a heightfield using maximum and minimum fil-
ters. Given the transform data, we can implement the collision test for two objects.
Each side i , (i = 1, . . . ,6), of the first object is tested for intersection against each side
j , (j = 1, . . . ,6), of the second object. The intersection method maintains a queue of
spherical shell pairs

�

(C1,d(x1,y1),l 1,u 1),(C2,d(x2,y2),l 2,u 2)
�

(4.33)

to test for intersection. This test processes the queue in a breadth-first manner. If
the intersection test for the front element of the queue is true, then one of the two
cones is refined into four subcones. In our current implementation, we alternate the
refinement of cones for the first model with those for the second model. When all
cone pairs of this round are tested and the queue is still not empty, then we do one
reconstruction step on the corresponding distance arrays. At this time, the cone pairs
in the queue build a subset, where each test partner comes from the same refinement
level in the corresponding distance arrays.

If we reach the leaf levels for both models, then we have to consider the lists of
contained triangles for collision determination. In the simplest case of a star-shaped
model, we can report an intersection and return one of the contained triangles. In
the general case, all triangle pairs have to be checked for intersection. This can be
optimized by using the bounding circle of the first triangle to prune the sorted list of
inside triangles of the other model. During the intersection tests from different, ad-
jacent shells, the amount of overlap between bounding circles should be as small as
possible. This avoids repeating triangle intersection tests and potential duplicates in
the collision result, which is important for the overall performance. Eliminating du-
plicates in the collision result afterwards is expensive. As an alternative approach we
can also report a single triangle per layer of each model. The model layers are imme-
diately defined by the ray casting precomputation. Each time we continue ray casting,
the layer number is increased by one. But the model can also be classified into layers
in a separate pass by comparing triangle distance differences with a given threshold
value. The threshold value has to be chosen according to model parameters for the
result with the average triangle diameter as the threshold value. Therefore, we can
customize the collision determination according to the application’s requirements.

4.2 Collision Detection 125

4.2.6 Benchmark

To show the new collision detection method’s efficiency, we ran a series of tests. Bench-
marking collision detection algorithms realistically is a difficult task. This is because
there is a wealth of models with different characteristics and motions relative to each
other.

GABRIEL ZACHMANN proposes a benchmarking scheme for two models each con-
tained in a unit box, where the second object performs a number of full-z rotations
(in 1 000 frames) at decreasing distances relative to the first one [Zac98]. Through-
out all benchmarks, we used ray casting for model sampling with 8× 8 and 16× 16
samples per side. For collision determination, each sample uses a sorted list of inside
model triangles (with their bounding circle radii), and the information subdividing
the list into layers. The benchmark Transform Single (S)reports a single triangle pair
in a colliding shell pair, Transform Single Layer (SL)reports a single triangle pair per
layer of a colliding shell pair, and Transform reports all triangle pairs in collision (with-
out elimination of duplicates). To compare this approach with well-known collision-
detection methods, we included timings using 18-DOP. bounding volumes [Zac98]
and oriented bounding volumes as in the publicly available library Rapid (Robust and
Accurate Polygon Interference Detection2). These approaches also report all triangle
pairs in collision.

Figure 4.17: The test models of the first benchmark consist of 6 667 (ant) and 5 162 (spider)
triangles. Their shapes are non-convex and non-star-shaped.

2 UNC Research Group on Modeling, Physically-Based Simulation and Applications,
http://gamma.cs.unc.edu/OBB/

http://gamma.cs.unc.edu/OBB/

126 4 Computer-Aided Geometric Design

Figure 4.17 shows the collision test for the models ant and spider. Both models con-
sist of a rather small amount of triangles, but they are highly non-convex and non-
star-shaped. The model ant consists of 1.7 layers per shell on average, and the spider
consists of 1.8 layers on average. In the right part of the figure, the model samplings
are sketched by the clipped axes of the spherical shells. For the triangle sizes in these
models, the approximation with 8× 8 samples per side is already sufficient. Up to
the center distance of 1 unit, the few collision situations can be verified with spher-
ical shells only. The timings (plotted in Figure 4.19) are comparable to hierarchies of
18-DOP bounding volumes. and slightly better than oriented bounding boxes in this
case.

Figures 4.18 and 4.20 contains the collision test results for a tree model (1.9 layers
per shell on average) colliding with a Volkswagen Beetle car model (1.6 layers per shell
on average). This test demonstrates the algorithm’s ability to handle all model types.
Even absolutely unstructured polygon soups, as used for the leaves within the tree
model, can be handled the same way as with all other types of representations without
any problems.

Figure 4.18: The second benchmark uses a tree model (4 316 triangles) and a Volkswagen
Beetle model (57 243 triangles).

4.2 Collision Detection 127

Dynamic Realign 18-DOP
Rapid
Transform 8×8
Transform 8×8 SL
Transform 8×8 L
Transform 16×16
Transform 16×16 SL
Transform 16×16 L

0 1/2 1 11/2 2 d

15

30

t

Figure 4.19: The corresponding collision time timings t [ms] of the “ant-spider” collision
tests with varying distance d .

Dynamic Realign 18-DOP
Rapid
Transform 8×8
Transform 8×8 SL
Transform 8×8 L
Transform 16×16
Transform 16×16 SL
Transform 16×16 L

0 1/2 1 11/2 2 d

70

140

t

Figure 4.20: The corresponding collision time timings t [ms] of the “tree-beetle” collision
tests with varying distance d .

128 4 Computer-Aided Geometric Design

The last benchmark series performs a collision test between the Statue of Liberty
model (7.8 layers per shell on average) and the Tower of Pisa (8.4 layers per shell on
average). These results (see Figures 4.21 and 4.22) should be compared with those for
the tree/Beetle model. If reporting just a single triangle per spherical shell, the tim-
ings do not vary much, although the model complexity is much higher. In this mode
of collision determination, collision times are independent of the triangle count. Col-
lision time depends only on the sampling density and the volume between the inner
and outer bounding shell. The models have their largest extent along the y-axis but
none of the bounding volume hierarchy approaches can take advantage of this in the
close-proximity situation (center distance 0). For center distance 1/2, there are fewer
spherical shell tests and more triangle to triangle tests compared to center distance 0.
It is interesting that the transition from center distance 1/2 to 0 can be used to assess
the sampling density.

Figure 4.21: The “Statue of Liberty” model consists of 42 225 triangles. In the third bench-
mark it is tested against the “Tower of Pisa” (153 495 triangles).

4.2 Collision Detection 129

For the triangle sizes in the models tree and Beetle the approximation with 16× 16
samples per side is sufficient. For the small triangle sizes in the models Liberty and
Tower of Pisa and testing all triangle pairs, the approximation with 8×8, 16×16 sam-
ples per side is not sufficient, and 32×32 samples still gives better results.

Dynamic Realign 18-DOP
Rapid
Transform 8×8
Transform 8×8 SL
Transform 8×8 L
Transform 16×16
Transform 16×16 SL
Transform 16×16 L

0 1/2 1 11/2 2 d

100

200

t

Figure 4.22: The corresponding collision time timings t [ms] of the “statue-tower” collision
tests with varying distance d .

130 4 Computer-Aided Geometric Design

4.3 Subdivision Surfaces

An important research topic in computer-aided geometric design (CAGD) is model
representation. The less parameters a model has, the “higher” its description is. Con-
cerning this aspect subdivision surfaces, which are based on Bézier and B-spline tech-
niques, play an important role.

4.3.1 Bézier and B-Spline Techniques

A simple modeling approach uses interpolation, which is a method of fitting a curve
to a discrete set of known data points; i.e. for a set of points {P0, . . . ,Pn} ⊂ E3 with
parameters t i , an interpolating curve c fulfills the condition

c(t i) = Pi , i = 0, . . . ,n . (4.34)

This interpolation problem can be solved by the Lagrange3 interpolation formula. It
constructs polynomials

Ln
i (t) =

(t − t0) · (t − t1) · . . . · (t − tn)
(t i − t0) · . . . · (t i − t i−1) · (t i − t i+1) · . . . · (t i − tn)

, (4.35)

which satisfy

Ln
i (tk) =δi k . (4.36)

Therefore, the curve

c(t) =
n
∑

i=0

Pi Ln
i (t) =

n
∑

i=0

Pi

n
∏

j=0,j 6=i

t − t j

t i − t j
(4.37)

solves the interpolation problem. Unfortunately, Lagrangian polynomials tend to os-
cillate. The more data points Pi the interpolation uses, the higher the degree of the re-
sulting polynomial. A polynomial of high degree exhibits a great oscillation between
the data points and is sensitive to changes or noise in the input data set (see Fig-
ure 4.23). Consequently, Lagrangian polynomials are not appropriate for CAGD mod-
eling. To overcome these disadvantages PIERRE BÉZIER4 and PAUL DE CASTELJAU5 de-
veloped a polynomial curve representation suitable for geometric modeling.

3 JOSEPH-LOUIS DE LAGRANGE (January 25, 1736 – April 10, 1813) Joseph-Louis de Lagrange, born
Giuseppe Lodovico Lagrangia in Turin, was an Italian mathematician and astronomer who made sig-
nificant contributions to analysis, number theory, and to classical and celestial mechanics.

4 PIERRE ÉTIENNE BÉZIER (September 1, 1910 – November 25, 1999) Pierre Étienne Bézier was a French
engineer working for Renault from 1933–1975. His contributions to computer graphics and interac-
tive techniques has influenced computer-aided design significantly [Rab02].

5 PAUL DE FAGET DE CASTELJAU (November 19, 1930) Paul de Faget de Casteljau is a French physicist and
mathematician. During his time at Citroën [dC99] he developed an algorithm for the computation of
a Bézier curve.

4.3 Subdivision Surfaces 131

−5 0 +5

5

10

x

f (x)

Figure 4.23: Lagrangian polynomials solve the interpolation problem; i.e. it constructs a
function f such that f (x i) = yi for a set of data points (x i ,yi),i = 0, . . . ,n (blue). The result-
ing polynomial has a high degree, exhibits a great oscillation between the data points and is
sensitive to changes within the input data set. The red curves are the Lagrangian interpola-
tions, if the point at the origin (blue) is exchanged by the red point.

The polynomials

B n
i (t) =

�

n

i

�

t i · (1− t)n−i , t ∈ [0,1] (4.38)

of degree n are called Bernstein polynomials. For i = 0, . . . ,n the n + 1 polynomials
B n

i form a basis for the power polynomials of degree n and have a number of useful
properties.

Positivity Each polynomial B n
i (t) is greater than or equal to zero over the parameter

domain [0,1]:

∀ t ∈ [0,1] : B n
i (t)≥ 0. (4.39)

Partition of Unity For t ∈ [0,1] the Bernstein polynomials are normalized:

∀ t ∈ [0,1] :
n
∑

i=0

B n
i (t) = 1. (4.40)

Symmetry The Bernstein polynomials meet a symmetry equation:

∀ t ∈ [0,1] : B n
i (t) = B n

n−i (1− t). (4.41)

Recursion Each Bernstein polynomial of degree n can be expressed via polynomials
of degree n −1:

∀ t ∈ [0,1] : B n
i (t) = t · B n−1

i−1 (t)+ (1− t) · B n−1
i (t). (4.42)

132 4 Computer-Aided Geometric Design

Bernstein polynomials are the mathematical foundation of Bézier curves, which are
defined by

p(t) =
n
∑

i=0

bi B n
i (t) (4.43)

with parameter domain t ∈ [0,1]. The vectors bi describe the positions of the control
points / Bézier points that form the control polygon respectively the Bézier polygon.
These curves have important properties, which can be deduced from the Bernstein
polynomials’ properties.

• A Bézier curve approximates its control polygon.

• As to the Bernstein polynomials partition the unity, the Bézier curves are invari-
ant to affine transformations.

• Any point p (t), t ∈ [0,1] lies within the convex hull of the Bézier points.

Vector Fonts

In typography, a font is a complete
character set of a typeface. In com-
puter science two font concepts are
used: bitmap fonts and vector fonts. A
bitmap font describes each character
by a matrix of pixels, whereas a vector
font uses stroke definitions or Bézier
curves.

A PostScript font [Inc85] uses cu-
bic Bézier curves; i.e. a glyph is de-
fined by its outline via a set of Bézier
curves (see Figure 4.24). Therefore,
each curve consists of four control
points, of which the first (red) and the
last (red) one are interpolated. The in-
ner points (blue) define the tangents
at the start respectively at the end.

The main advantage of vector fonts

is its resolution independence. In con-
trast to bitmap fonts, vector images
can be rendered at arbitrary resolution
without artifacts.

Figure 4.24: A vector font describes a
character via its outline. This letter ‘a’ con-
sists of 23 cubic Bézier curves.

4.3 Subdivision Surfaces 133

• The derivation of a Bézier curve is a polynomial and can be written in Bézier
form as well:

p(k)(t) =
n !

(n −k)!

n−k
∑

i=0

∆k bi B n−k
i (t), (4.44)

t ∈ [0,1], whereas the forward difference∆k is defined recursively by

∆0bi = bi , (4.45)

∆k bi =∆k−1bi+1−∆k−1bi . (4.46)

• Consequently, the curve interpolates the first control point (p(0) = b0) and the
last one (p(1) = bn) and the tangent vectors at these positions are simply

p′(0) = n · (b1−b0), p′(1) = n · (bn −bn−1). (4.47)

b4 = b0
4

b3 = b0
3

b2 = b0
2

b1 = b0
1

b0 = b0
0

b1
3

b1
2

b1
1

b1
0

b2
2

b2
1

b2
0

b3
1

b3
0

b4
0 = p(t)

b0

b1 b2

b3

b4

p(t)

Figure 4.25: The de Casteljau algorithm uses the recursion of Bernstein polynomials to eval-
uate a Bézier curve at parameter t ∈ [0,1]. This process subdivides each line segment of the
control polygon in a fixed ratio t : (1− t) and introduces a new point. All generated points
form a new control polygon, which is subdivided itself. This subdivision process is repeated
until only the last control polygon is reduced to one point p(t). The original control polygon
and all intermediate points form the de Casteljau scheme (upper left).

134 4 Computer-Aided Geometric Design

A Bézier curve can be evaluated by the de Casteljau algorithm, which is based on the
recursion

b0
i (t) = bi (4.48)

br
i (t) = t ·br−1

i+1 (t)+ (1− t) ·br−1
i (t). (4.49)

For any parameter t ∈ [0,1] the algorithm determines bn
0 (t) = p(t). A geometric inter-

pretation of the de Casteljau scheme is illustrated in Figure 4.25. The scheme does not
only evaluate a parameter, but it also subdivides a Bézier curve into two subcurves.
Their control vertices are in the bottom line and in the diagonal line of the evaluation
scheme. As the control polygons of the subdivided curves converge quickly towards
the original curve, the subdivision process is a fast alternative to naive evaluation.

If, during the modeling process, more control vertices, respectively more degrees
of freedom, are needed, it is helpful to increase the degree of a Bézier curve without
changing its shape. The control vertices b?i of a degree elevated curve are:

b?0 = b0, (4.50)

b?j =
j

n +1
bj−1+

�

1−
j

n +1

�

bj , j = 1, . . . ,n (4.51)

b?n+1 = bn . (4.52)

As Bézier curves can be interpreted geometrically, which allows a modeler to predict
its shape easily, they are widely used in computer graphics to model smooth curves.
An undesirable property of Bézier curves is the fact that moving a single control point
changes the global shape of the curve. This can be avoided with a generalization of a
Bézier curve: the B-spline.

Its basis functions are defined recursively. Let n�m and

T = {t0 ≤ · · · ≤ tn ≤ · · · ≤ tn+m+1} (4.53)

be a nondecreasing sequence of knots, then the basis functions of degree n are

N 0
i (t) =

¨

1, if t i ≤ t < t i+1

0, otherwise
(4.54)

N r
i (t) =

t − t i

t i+r − t i
N r−1

i (t)+
t i+1+r − t

t i+1+r − t i+1
N r−1

i+1 (t) (4.55)

for 1 ≤ r ≤ n . If knots coincide, a common convention is to evaluate 0
0 = 0, so that

the definition remains valid without having to formulate special rules. These basis
functions have important properties.

• N n
i (t) consists piecewise of polynomials of degree n .

• Each basis function N n
i (t) has local support; i.e.

∀ t 6∈ [t i ,t i+n+1) : N n
i (t) = 0 (4.56)

and is semi-positive

∀ t ∈ [t0,tm+n+1) : N n
i (t)≥ 0. (4.57)

4.3 Subdivision Surfaces 135

• The basis functions are normalized and sum up to unity.

• If t j is a simple knot (t j−1 < t j < t j+1), then N n
i (t j) is C n−1-continuous. In case

of a non-simple knot with multiplicity µ (s = t j+1 = · · · = t j+µ) the normalized
B-spline N n

i of degree n is at least C n−µ-continuous.

• As a generalization of Bernstein polynomials, B-splines are downwardly com-
patible. Setting

T = (0, . . . ,0
︸ ︷︷ ︸

n+1

, 1, . . . ,1
︸ ︷︷ ︸

n+1

) (4.58)

turns B-splines into Bernstein polynomials over T .

Using the knot vector T = (t0 ≤ · · · ≤ tn ≤ · · · ≤ tm+n+1), and the basis functions N n
i a

B-spline curve of degree n is defined by

p(t) =
m
∑

i=0

di N n
i (t), t ∈ [tn ,tm+1]. (4.59)

The control points d0, . . . ,dm ∈R3 are called de Boor points named after CARL DE BOOR6.
B-splines whose knots meet the condition t0 = 0 and

t i+1 = t i or t i+1 = t1+1, (i = 0, . . . ,n +m) (4.60)

are called uniform. The properties of the basis functions result in fundamental prop-
erties of B-splines.

• Due to the limited support of N n
i , the i thde Boor point affects the B-spline curve

only within the parameter domain [t i ,t i+n+1). Conversely, the shape of the curve
over the parameter domain [t i ,t i+1) is only affected by the points di−n , . . . ,di .

• For the parameter t l ≤ t ≤ t l+1 the curve p(t) lies within the convex hull of the
n +1 de Boor points dl−n , . . . ,dl .

• If n control points dl−n+1 = · · · = dl = d coincide, then the curve passes these
points p(t l+1) = d.

• If n knots t l+1 = · · ·= t l+n = t coincide, then the curve passes the de Boor point
p(t) = dl . Especially, if the knot vector starts and ends with multiplicity n+1, the
curve interpolates the control polygon tangentially at its ends.

6 CARL WILHELM REINHOLD DE BOOR (December 3, 1937) Carl R. de Boor is a German-American math-
ematician and professor emeritus at the University of Wisconsin–Madison. He made fundamental
contributions to the theory of splines and numerous applications of splines.

136 4 Computer-Aided Geometric Design

Similar to Bézier curves B-splines can be evaluated via a recursion. Any B-spline curve

p(t) =
m
∑

i=0

di N n
i (t) (4.61)

of degree n with the knot vector T = (t0, . . . ,tm+n+1) can be evaluated for t l ≤ t ≤ t l+1

by

d0
i (t) = di , (4.62)

i = 0, . . . ,m , and

dr
i (t) =

�

1−
t − t i+r

t i+n+r − t i+r

�

dr−1
i (t)+

t − t i+r

t i+n+r − t i+r
dr−1

i+1 (t), (4.63)

i = l−n , . . . ,l−r and 0≤ r ≤ n . The curve point is then p(t) = dn
l−n . This algorithm, the

de Boor algorithm, is visualized in Figure 4.26 for a cubic B-spline. As cubic, uniform
B-splines are very common, it is convenient to simplify and unroll the recursion. The
basis functions simplify to

Ni = 1/6t 3, (4.64)

Ni−1 = 1/6(−3t 3+3t 2+3t +1), (4.65)

Ni−2 = 1/6(3t 3−6t 2+4), (4.66)

Ni−3 = 1/6(1− t)3. (4.67)

Together with the de Boor points di−3, di−2, di−1, and di a simplified matrix represen-
tation of the B-spline curve is

p(t) =

t 3

t 2

t
1

T

·
1

6

−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0

·

di−3

di−2

di−1

di

(4.68)

Using a projective space B-splines can be generalized to non-uniform rational B-
splines (NURBS) [FLS04], [Far99].

4.3.2 Tensor Product Surfaces

Based on the theory of curves, a surface can be constructed by sweeping a curve
through space such that its control points move along curves. As shown in “Bézier and
B-Spline techniques” [PBP02], these tensor product surfaces have properties analo-
gous to the curves used for construction.

4.3 Subdivision Surfaces 137

Figure 4.26: The de Boor algorithm generalizes the de Casteljau algorithm as B-spline curves
generalize Bézier curves. The illustration of the evaluation process shows the local influence
of control points (blue) on the resulting curve point (red). For each parameter interval only
a subset of control points is used. Similar to the de Casteljau algorithm the line segments of
the control polygon are subdivided, but the de Boor algorithm does not use a fixed ratio. It
depends on the knot vector and the recursion level of the evaluation (lower left diagram).

In technical terms a surface is described by a curve

c(u) =
m
∑

i=0

ai A i (u), (4.69)

with functions A i (u),u ∈ [u 0,u 1]whose control points ai = ai (v) are defined by other
curves

ai (v) =
n
∑

j=0

bi ,j B j (v), (4.70)

with parameter domain v ∈ [v0,v1]. Consequently, a surface is defined by

s(u ,v) =
∑

i

∑

j

bi ,j A i (u)B j (v), (4.71)

(u ,v)∈ [u 0,u 1]× [v0,v1]. (4.72)

138 4 Computer-Aided Geometric Design

If the functions A i and B j are Bernstein polynomials, then the resulting tensor prod-
uct surface is called Bézier surface. In the same manner, a B-spline surface consists of
basis functions N n

i .
One disadvantage of tensor product surfaces is that all patches are based on a rect-

angular topology (see Equation (4.71), (4.72), and Figure 4.27).

Figure 4.27: A tensor product surface is based on a curve representation. Consequently, this
Bézier surface shares many properties (end point interpolation, convex hull property, etc.)
with its corresponding curve type. A negative aspect of tensor product surfaces is the limita-
tion to strictly rectangular topology (control mesh in red).

4.3 Subdivision Surfaces 139

A common technique for more flexibility is trimming. A trimmed surface consists of
the surface itself and an additional trimming curve in parameter space. A trimming
curve is a closed 2D curve, which separates the parameter space into two parts: a
valid part and an invalid part. The invalid part is removed from parameter space,
respectively from 3D space [HT96]. Handling trimmed NURBS surfaces is quite dif-
ficult [LC09]. A mathematically more esthetic approach using subdivision has been
presented by EDWIN CATMULL and JIM CLARK: “Recursively generated B-spline surfaces
on arbitrary topological meshes” [CC78].

Figure 4.28: A trimmed Bézier / B-spline / NURBS surface consists of a parameter domain
(upper left) and a set of control points. Furthermore, a closed curve (blue) within the param-
eter domain separates the domain into two parts: a valid part and an invalid part. The final
surface in 3D only consists of those points whose parameters are valid [HT96].

140 4 Computer-Aided Geometric Design

4.3.3 Catmull-Clark Subdivision Surfaces

The Catmull-Clark subdivision scheme generalizes the evaluation of a bicubic B-spline
patch to arbitrary topological meshes. A uniform, bicubic B-Spline patch consists of
16 control points

P =

P0,0 P0,1 P0,2 P0,3

P1,0 P1,1 P1,2 P1,3

P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3

(4.73)

and can be written

s(u ,v) = u M P M T vT (4.74)

with monomial vectors

u= (1 u u 2 u 3), (4.75)

v= (1 v v 2 v 3), (4.76)

(u ,v)∈ [0,1]× [0,1] and the coefficient matrix

M =
1

6

1 4 1 0
−3 0 3 0

3 −6 3 0
−1 3 −3 1

. (4.77)

The subpatch corresponding to (u ,v)∈ [0,1/2]× [0,1/2] can be reparameterized by u ′ =
u/2 and v ′ = v/2. The resulting surface is a bicubic B-spline patch. Its control points P ′

can be expressed in terms of the 16 control points P :

s
�

u/2,v/2
�

=
�

1 u
2 (u2)

2 (u2)
3
�

M P M T
�

1 v
2 (v2)

2 (v2)
3
�T

=
�

1 u u 2 u 3
�

1 0 0 0
0 1

2 0 0
0 0 1

4 0
0 0 0 1

8

M P M T

1 0 0 0
0 1

2 0 0
0 0 1

4 0
0 0 0 1

8

︸ ︷︷ ︸

=D

1
v
v 2

v 3

=u D M P M T DT vT =u M M−1 D M
︸ ︷︷ ︸

=S

P M T DT (M−1)T M T vT (4.78)

4.3 Subdivision Surfaces 141

Figure 4.29: The Catmull-Clark subdivision scheme is based on the idea to describe a sub-
patch of a bicubic B-spline patch by a bicubic B-spline patch. The starting point is a bicu-
bic patch (red), which generates a surface (wireframe in black), if evaluated over the domain
(u ,v)∈ [0,1]×[0,1]. Then the subsurface belonging to [0,1/2]×[0,1/2] is inspected and its corre-
sponding control mesh (blue) is determined. The correspondences between the original mesh
(red) and its subdivided version (blue) are the B-spline refinement rules. The Catmull-Clark
subdivision scheme generalizes theses rules to arbitrary meshes.

The matrix product of the diagonal matrix D, the coefficient matrix M and its inverse
M−1 is called splitting matrix S. It is constant and does not depend on the control
points P :

S =
1

8

4 4 0 0
1 6 1 0
0 4 4 0
0 1 6 1

. (4.79)

Consequently, the new control points are

P ′ =
1

8

4 4 0 0
1 6 1 0
0 4 4 0
0 1 6 1

·

P0,0 P0,1 P0,2 P0,3

P1,0 P1,1 P1,2 P1,3

P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3

·
1

8

4 4 0 0
1 6 1 0
0 4 4 0
0 1 6 1

T

,

(4.80)

142 4 Computer-Aided Geometric Design

respectively

P ′0,0 =
1

4
(P0,0+P1,0+P0,1+P1,1) (4.81)

P ′0,1 =
1

16
(P0,0+P1,0+6(P0,1+P1,1)+P0,2+P1,2) (4.82)

P ′0,2 =
1

4
(P0,1+P1,1+P0,2+P1,2) (4.83)

P ′0,3 =
1

16
(P0,1+P1,1+6(P0,2+P1,2)+P0,3+P1,3) (4.84)

P ′1,0 =
1

16
(P0,0+P0,1+6(P1,0+P1,1)+P2,0+P2,1) (4.85)

P ′1,1 =
1

64
(P0,0+6P1,0+P2,0+6(P0,1+6P1,1+P2,1)+P0,2+6P1,2+P2,2) (4.86)

P ′1,2 =
1

16
(P0,1+P0,2+6(P1,1+P1,2)+P2,1+P2,2) (4.87)

P ′1,3 =
1

64
(P0,1+6P1,1+P2,1+6(P0,2+6P1,2+P2,2)+P0,3+6P1,3+P2,3) (4.88)

P ′2,0 =
1

4
(P1,0+P2,0+P1,1+P2,1) (4.89)

P ′2,1 =
1

16
(P1,0+P2,0+6(P1,1+P2,1)+P1,2+P2,2) (4.90)

P ′2,2 =
1

4
(P1,1+P2,1+P1,2+P2,2) (4.91)

P ′2,3 =
1

16
(P1,1+P2,1+6(P1,2+P2,2)+P1,3+P2,3) (4.92)

(4.93)

and

P ′3,0 =
1

16
(P1,0+P1,1+6(P2,0+P2,1)+P3,0+P3,1) (4.94)

P ′3,1 =
1

64
(P1,0+6P2,0+P3,0+6(P1,1+6P2,1+P3,1)+P1,2+6P2,2+P3,2) (4.95)

P ′3,2 =
1

16
(P1,1+P1,2+6(P2,1+P2,2)+P3,1+P3,2) (4.96)

P ′3,3 =
1

64
(P1,1+6P2,1+P3,1+6(P1,2+6P2,2+P3,2)+P1,3+6P2,3+P3,3). (4.97)

The main idea of EDWIN CATMULL and JIM CLARK is to rewrite these rules in terms of
face, edge and vertex points and to generalize them.

4.3 Subdivision Surfaces 143

Face point The average of four points that bound a face, for example (P0,0,P1,0,P0,1,P1,1),
form a so-called face point. In general, a face point is

Fi ,j =
1

4
(Pi ,j +Pi+1,j +Pi ,j+1+Pi+1,j+1) (4.98)

Using the face points on the right-hand side expressions, the subdivision rules
simplify to:

P ′0,0 = F0,0 (4.99)

P ′0,1 =
1

4
(F0,0+ F0,1+P0,1+P1,1) (4.100)

P ′0,2 = F0,1 (4.101)

P ′0,3 =
1

4
(F0,0+ F1,0+P0,2+P1,2) (4.102)

. . .

Edge point An edge point is the average of

• two points that define an edge and

• two new face points of the faces sharing the edge.

Consequently, the edge point is

E i ,j =
1

4
(Fi ,j−1+ Fi ,j +Pi ,j +Pi+1,j) (4.103)

or

E i ,j =
1

4
(Fi−1,j + Fi ,j +Pi ,j +Pi ,j+1). (4.104)

The subdivision rules now simplify to:

P ′0,0 = F0,0 (4.105)

P ′0,1 = E0,1 (4.106)

P ′0,2 = F0,1 (4.107)

P ′0,3 = E0,2 (4.108)

and

P ′1,0 = E1,0 (4.109)

P ′1,1 =
1

16
(F0,0+ F0,1+ F1,0+ F1,1+P1,0+P0,1+8P1,1+P2,1+P1,2) (4.110)

P ′1,2 = E1,2 (4.111)

P ′1,3 =
1

16
(F0,1+ F0,2+ F1,1+ F1,2+P1,1+P0,2+8P1,2+P2,2+P1,3) (4.112)

. . .

144 4 Computer-Aided Geometric Design

Vertex point Last but not least, the average of

• the face points of the faces adjacent to a vertex point,

• the midpoints of the edges adjacent to a vertex point, and

• the corresponding vertex

form a new vertex point. For example, P ′1,3 consists of Q+2R+S
4 with

Q =
1

4
(F0,1+ F0,2+ F1,1+ F1,2) (4.113)

R =
1

4

�

P0,2+P1,2

2
+

P1,1+P1,2

2
+

P1,3+P1,2

2
+

P2,2+P1,2

2

�

(4.114)

S = P1,2. (4.115)

In general, EDWIN CATMULL and JIM CLARK reformulated the evaluation of a B-spline
patch as a subdivision process. By construction the subdivision process converges
to a limit surface, which is a B-spline patch – at least in the regular case. The most-
general case may lead to irregular configurations with vertices having a valence not
equal to four. These configurations do not have a counterpart B-spline patch.

In a sequence of subdivision steps, a point P is mapped to P ′, P ′′, . . . and con-
verges to a limit point P̃ . In a regular configuration P̃ can be evaluated directly via the
counterpart B-spline patch using Equation (4.74):

s(0,0) =
1

36

�

P0,0+4P0,1+P0,2+4P1,0+16P1,1+4P1,2+P2,0+4P2,1+P2,2
�

(4.116)

su (0,0) =
1

12

�

−P0,0−4P0,1−P0,2+P2,0+4P2,1+P2,2
�

(4.117)

sv (0,0) =
1

12

�

−P0,0+P0,2−4P1,0+4P1,2−P2,1+P2,2
�

(4.118)

The limit points of irregular configurations can be determined via eigenanalysis [Sta98].
A summary of commonly used Catmull-Clark subdivision rules including special rules
for border and crease configurations is listed in Table 4.4. An overview on subdivision
surfaces in general has been presented by WEIYIN MA “Subdivision surfaces for CAD –
an overview” [Ma05].

4.3 Subdivision Surfaces 145

Figure 4.30: The Catmull-Clark subdivision scheme refines a mesh. In each iteration step it
introduces new face points (red) and new edge points (green). Furthermore, it modifies the
vertex points (blue). The result is always a quad mesh.

146 4 Computer-Aided Geometric Design

Catmull-Clark Subdivision Surfaces

The Catmull-Clark subdivision scheme generalizes a
B-spline evaluation to meshes with arbitrary topology.
For a vertex with valence k the following subdivision
and limit point rules /weights apply.

α

β0/k

βi/k

γ0/k

classification α βi γi

subdivision rules

inner vertex 1− 3
2k −

1
4k

3
2k

1
4k

border vertex / 3
4

1
8 , along border 0

crease vertex 0, otherwise

corner vertex 1 0 0

limit point rules

inner vertex 1− 5
k+5

4
k+5

1
k+5

border vertex / 2
3

1
6 , along border 0

crease vertex 0, otherwise

corner vertex 1 0 0

limit tangent rules t1

inner vertex 0 a (k)cos 2iπ
k cos 2iπ

k + cos 2(i+1)π
k

border vertex / 0 ±1, along border 0

crease vertex 0, otherwise

limit tangent rules t2

inner vertex 0 a (k)cos 2(i+1)π
k cos 2(i+1)π

k + cos 2(i+2)π
k

with a (k) = 1+ cos 2π
k +

Æ

2
�

9+ cos 2π
k

�

cos πk

Table 4.4: The weights for a Catmull-Clark subdivision step, the corresponding limit point
rules and its limit tangent rules are published in the original article by EDWIN CATMULL and
JIM CLARK [CC78] and in subsequent research papers [HKD93], [Sta98], [BLZ00], [CRE01].
An overview (including this Table) and implementation details have been presented by
TORSTEN TECHMANN [Tec04].

4.3 Subdivision Surfaces 147

4.3.4 Distance Fields

The problem to determine the Euclidean distance between an arbitrary point in 3D
and a free-form subdivision surface is fundamental in many different communities
including computer-aided geometric design, robotics, computer graphics, and com-
putational geometry. A lot of algorithms in the context of physical simulation, path
planning, etc. have to determine this distance: an exemplary algorithm is the shape
fitting approach by TORSTEN ULLRICH. An early version was based on subdivision sur-
faces and evaluated distances between a point cloud and some subdivision surfaces
in order to fit a procedural model [UF07b]. As query time is always an issue, the goal
is to choose the best algorithm for the application at hand [USK+07].

A subdivision surface is defined by an infinite subdivision process. In contrast to
parametric surfaces which provide a finite evaluation algorithm, a subdivision sur-
face may not come with a direct evaluation method at arbitrary parameter values.
Currently, it can be evaluated via

Uniform subdivision If the subdivision rules are applied sufficiently often, the result-
ing mesh will be a tight approximation of the limit surface. For non-interpolating
subdivision schemes, e.g., Catmull-Clark, the resulting mesh points will not lie
on the limit surface in general. In order to decrease the deviation, limit point
rules can calculate the point on the limit surface for a subdivision mesh point.

Adaptive subdivision Due to the exponential need of memory it is a good strategy to
subdivide the mesh adaptively. This results in a subdivision process with vary-
ing subdivision depth but constant overall accuracy [MH00]. The use of limit
point rules is essential for the connection of mesh parts with different subdivi-
sion depths.

Exact evaluation & conversion Stationary subdivision schemes, e.g., Catmull-Clark,
allow an exact evaluation at arbitrary parameter values [Sta98]. JOS STAM makes
use of the property that regular patches can be evaluated as uniform, bicubic
B-spline patches. The region around irregular points shrinks successively when
subdividing the irregular patches, and the eigenstructure of the subdivision ma-
trix is used to determine the limit there. Sensible parametrizations for irregular
patches ensure non-degenerate derivatives [BMZ04]. For Catmull-Clark subdi-
vision, a regular quad patch can even be represented as a single bicubic Bézier
patch.

For the problem of distance computation to subdivision surfaces, TORSTEN ULLRICH

et al. [USK+07] propose the following classification of approaches:

Approaches based on the surface’s distance field A separate scalar data structure re-
constructs the (signed) distance to the closest point on the object [JBS06]. GPU
approaches [BBVK04], which compute and evolve the distance field in a small
narrow band around the object, also belong to this group.

148 4 Computer-Aided Geometric Design

Searching for surface primitives of the original representation The curved surface
patches, which correspond to a face of the control mesh, are organized in a spa-
tial data structure for the domain based on their bounding volume. Only this
data structure has to be updated after model deformations. The spatial data
structure is then traversed in increasing minimum distance to the query point,
and the primitive’s minimum distance is computed as a subproblem. A termina-
tion condition is necessary to stop the search with the correct distance value.

Searching for surface primitives derived from the original representation Instead
of using the surface primitives of the original object representation directly, one
derives a small set of simpler primitives from the original surface primitives. The
reason could be that they offer a simpler minimum distance algorithm. In the
case of subdivision surfaces, the surface’s triangulation is often available also
from other tasks.

Figure 4.31: The distance between a point and a subdivision surface can be calculated in
various ways. This benchmark uses chess figures modeled with subdivision surfaces. Each
initial mesh has between 70 (“pawn”) and 1 454 (“rook”) polygons. The Figure shows all test
pieces in their initial chess position.
The chess figures were created and provided by RENÉ BERNDT.

4.3 Subdivision Surfaces 149

In “Distance Calculation between a Point and a Subdivision Surface”, three kinds of al-
gorithms to determine the distance between a query point and a subdivision surface
are analyzed. The first group consists of three algorithms which use the triangulation
of a subdivision surface. The next approach evaluates the subdivision surface on-the-
fly. And the last algorithm converts it into Bézier patches. In this case distance queries
are answered by a numerical minimization routine.

Uniform Triangulation

The most simple approach uses an uniform tessellation of the subdivision surface
at a fixed depth to create a triangle mesh. For a tight approximation of the limit sur-
face, the limit points of the control vertices have been used. For each query point the
distance to each triangle is calculated [Jon95], and the minimum is selected. This ap-
proach does naive search without any spatial data structure.

pros The calculation is robust and its correctness can be verified easily.

cons As runtime and memory footprint of a single distance query are linear in the
number of triangles and exponential in the subdivision depth, this algorithm is
not useful for real world applications. The implementation has been used to ver-
ify the results of the following algorithms, but it is not considered to be a practical
solution.

Hashed Triangulation

A significant speed-up can be achieved, if the triangulation is stored in a space par-
titioning data structure. The hashed triangulation approach is a space efficient im-
plementation of a 3D regular grid by using spatial hashing [THM+03]. In this way, the
storage requirements can be restricted arbitrarily, e.g., linear in the number of model
triangles.

For a given query point, the hashed triangulation approach determines which grid
cells may potentially contain the nearest triangle. Within the grid cells in question, the
registered triangles are checked. According to the classification, it is based on search-
ing of surface primitives derived from the original object representation.

pros The technique is easy to implement, and a well chosen grid cell size gives good
query times.

cons The memory footprint is exponential in the subdivision depth which disquali-
fies it for many applications. Another problem is the algorithm’s dependency on
the choice of the grid cell size. A reasonable size takes into account the model’s
bounding volume as well as its face distribution within the domain (see Sec-
tion 4.3.5).

150 4 Computer-Aided Geometric Design

Hashed Triangulation – First Hit

A further speed-up is possible, if only the distance value (not the corresponding per-
pendicular point) is needed, and if a small error is acceptable. In this case, only the
nearest non-empty cell is checked. If no other cell is checked, the returned value may
have an error up to the length of the cell’s diagonal.

pros Same as Hashed Triangulation.

cons Same as Hashed Triangulation. The returned distance value is only a rough ap-
proximation.

Adaptive Subdivision

The triangulation-based distance calculations described before have large memory
requirements in common. If the subdivision control mesh has to remain in mem-
ory, for any reason, the triangulation-based methods are not suitable due to their
large memory requirements. An approach which does the refinement of the subdivi-
sion mesh on-the-fly has always smaller memory requirements. The implementation
of the adaptive subdivision algorithm presented by VOLKER SETTGAST et al. [SMFF04]
uses a hashed 3D regular grid structure to identify relevant subdivision patches. These
patches are subdivided using slates as needed. According to previous classification, it
uses searching of surface primitives of the original object representation.

pros The memory footprint is only linear in the size of the subdivision mesh due to
the 3D hash table. The additional overhead during a patch evaluation is of small,
fixed size and can be neglected.

Only a small preprocessing is needed. In contrast to triangulation-based ap-
proaches, this allows to modify the maximum subdivision depth and therefore
adapt the accuracy of the distance calculation as needed.

cons The algorithm requires a substantial implementation.

Bézier Representation & Numerical Optimization

Some subdivision schemes, e.g. Catmull-Clark subdivision [Sta98], allow direct evalu-
ation at arbitrary parameter values. This property can be used to formulate a distance
calculation algorithm. Having identified relevant subdivision patches, the algorithm
converts them into Bézier patches. For regular patches this can be done exactly. Ir-
regular patches have to be approximated. Using a parametrization as a Bézier patch,
the distance calculation can be formulated as a minimization problem in parame-
ter space [MH03],[MK05],[Sel06]. For the resulting nonlinear minimization problem,
Newton-type techniques [FR64], [Kel99] can be used with suitable start values in pa-
rameter space.

4.3 Subdivision Surfaces 151

pros The memory requirements are comparable to the adaptive subdivision algo-
rithm. As the distance calculation is reduced to a standard problem of numer-
ical optimization (see Chapter 2.3), highly-optimized numerical libraries can be
used.

cons The Bézier approximation has some additional runtime overhead, but can be
cached with the subdivision mesh. The following distance minimization requires
considerable tuning of the step sizes. The choice of the start parameter of the
Newton-like iteration has more influence on the runtime than the size of the
model.

Furthermore, the conversion of Catmull-Clark subdivision surfaces to bicubic
Bézier patches is patent-registered (“Approximation of Catmull-Clark subdivi-
sion surfaces by Bézier patches”, United States Patent No. 6 950 099).

4.3.5 Technical Details

In order to allow a thorough comparison of the chosen algorithms some implemen-
tation issues are discussed in detail.

Evaluation Errors

The triangulation-based methods use a fixed, uniform subdivision depth of three sub-
divisions. Note that the use of limit points improves the approximation error, which
can be bounded by a factor times the maximum of the triangle’s side lengths, where
the factor depends on the model. The limit points lie in the convex hull of the Bézier
control mesh instead of the convex hull of the corresponding face’s 1-ring in the sub-
division mesh. This error has been used to set the termination condition of the adap-
tive subdivision algorithm. Therefore, the adaptive version has a maximum subdivi-
sion depth of three, but it is allowed to terminate earlier, if the resulting maximum
error is of same size.

The Bézier surface patches resulting from the conversion have a deviation from
the Catmull-Clark surface patches only in irregular patches. But the subsequent pa-
rameter search, which works with the Bézier representation, produces an error by
itself. With the termination condition in parameter space it is difficult to control the
distance error because the threshold in parameter space depends on the curvature
near a minimum point’s parameter. In our experiments we used only a fixed thresh-
old.

The accuracy of the First-Hit algorithm is determined by the triangulation error
plus

p
3 times the grid cell size.

152 4 Computer-Aided Geometric Design

Grid Size Problems

The grid cell size is not only responsible for the algorithm’s accuracy. The choice of
a reasonable value affects the algorithm’s performance significantly. Unfortunately,
the value depends on the distribution of the cached geometric primitives (triangles,
Bézier patches, etc.) within space. Without additional knowledge only some heuristics
are at hand. Let d be the bounding volume’s diagonal length, and p be the number of
geometric primitives to hash. If all objects are distributed uniformly in their bounding
volume, a grid cell size of d / 3

p
p is a reasonable choice. If the surface of a geometric

object is not distributed uniformly in space (which is the normal case), the grid should
be coarsened. In our implementation the grid cell size had been chosen to

s =
d

n
p

p
with 3≤ n ≤ 5, (4.119)

which has led to feasible runtimes. An illustrative example in Figure 4.32 shows the
correlation of cell grid size and evaluation time for a test object.

0 1/2 1 s

11 000

22 000

t

Figure 4.32: This Figure demonstrates the correlation between grid cell size and runtimes
of hashing-based algorithms. The used test object “pawn” has been triangulated (8 862 trian-
gles). All triangles reside inside the axis-aligned bounding box whose diagonal has a length
of 3.94. According to the heuristics in Equation (4.119) the cell size should be between
3.94/ 3

p
8 862≈ 0.19 and 3.94/ 5

p
8 862≈ 0.65. The needed time in milliseconds to calculate the

distance of 10 000 arbitrary points to the triangle mesh using the First-Hit algorithm is plotted
against the used grid cell size.

4.3 Subdivision Surfaces 153

Hashing

All presented, grid-based hashing algorithms use the hashing function presented by
MATTHIAS TESCHNER [THM+03]. It takes the indices (x ,y ,z) of a grid cell and returns
the hash value

hash(x ,y ,z) = (x p1 xor y p2 xor z p3)mod n (4.120)

using the prime numbers p1 = 73 856 093, p2 = 19 349 669, p3 = 83 492 791. The func-
tion can be evaluated very efficiently and produces a comparatively small number of
hash collisions for small hash tables of size n . The traversal within the grid structure
is illustrated in Figure 4.33.

Figure 4.33: The storage of a model in a regular grid allows a fast preselection of relevant
patches/triangles, which are near the query point (red). In combination with a good hash
function the memory footprint is proportional to the number of model primitives.

154 4 Computer-Aided Geometric Design

Slates for Subdivision Surfaces

The adaptive subdivision algorithm does not modify the base mesh. Instead a sepa-
rate data structure is used consisting of two so-called slates. A slate is composed of
a two-dimensional array of size (2d + 3)× (2d + 3) and four one-dimensional corner
arrays of size 2 · (v − 4), where d is the maximum subdivision depth and v the maxi-
mum valence. For performance reasons, the slates are allocated statically as they can
be reused for each face to be tessellated.

The subdivision process firstly collects the 1-neighborhood of the considered face
f and stores it in the first slate. The vertices of f and the vertices of its edge neigh-
bor faces are stored in the table. If one of the vertices of f has valence greater than
four, the remaining vertices are stored in the dedicated corner arrays. Figure 4.34 il-
lustrates this storage scheme for a quad. Other configurations and further details on
slates can be found in “Adaptive Tessellation of Subdivision Surfaces” [SMFF04]. The
subdivision algorithm processes the vertices row by row and stores the result of one
subdivision step in the second slate. For the next step, source and destination slates

f

v0

v1

v2
v3

v4

v5

v6

v7

v8

v9

v10v11

v12
v13

v14

v15

v16

v17

v18

v19

v0 v1

v3 v2

v4 v5 v6

v7

v8

v9v10

v11v12

v16 v13. . .

v17

v18

v19

Figure 4.34: The adaptive subdivision algorithm stores the collected 1-neighborhood of a
face f from the base mesh (left) in a data structure called slate (right). A slate consists of a
two-dimensional array and four one-dimensional arrays.

are swapped. After two subdivision steps, the algorithm starts calculating distances
from the corresponding limit points of the 25 (5× 5) vertices to the query point. For
the following subdivision steps, only a subpart of 9 (3×3) vertices of the table array is
used, see Figure 4.35. The subpart is chosen depending on the results of the distance
calculations. The process is repeated until the difference of the minimal distance for
the current and the last iteration is below a user-defined threshold.

4.3 Subdivision Surfaces 155

Figure 4.35: After the second subdivision step each face of the control mesh consists of 5×5
vertices. During the distance calculation only relevant subparts out of nine possibilities are
processed further on. Five possible sectors are illustrated on the left, four on the right.

4.3.6 Benchmarks

The test scenario is made of six subdivision surface models.

1. Pawn This object consists of 70 patches. Its triangulation at subdivision level 3
has 8 862 triangles.

2. Rook Within the test scenario this object is the most complex one. It is composed
of 1 454 subdivision surface patches, respectively 185 328 triangles.

3. Knight The control mesh of this model has 78 faces. Triangulated after three suc-
cessive subdivisions it consists of 9 356 triangles.

4. Bishop The bishop is modeled using 130 patches. In this case the triangulation-
based algorithm have to handle 16 542 triangles.

5. Queen This model has 387 subdivision surface patches which results in a trian-
gulation with 49 508 elements.

6. King The king consists of a subdivision mesh with 175 faces. Its tessellation with
19 560 triangles ranges in the midfield of the test scenario.

During each test an algorithm has to calculate the distance between the test object
and 10 000 arbitrary query points. The query points are uniformly distributed within
a box whose volume is twice as large as the test object’s axis-aligned bounding box
volume. Each test model has a closed 2-manifold boundary and the query points may
be located inside and outside of it; whereas the returned distance has no sign and
does not distinguish between interior and exterior.

156 4 Computer-Aided Geometric Design

Adaptive subdivision
Bézier conversion

Hash triangulation
First hit triangulation

pawn
70 faces

knight
78 faces

bishop
130 faces

king
175 faces

queen
387 faces

rook
1 454 faces

t

0

25 000

50 000

Figure 4.36: The test objects are Catmull-Clark surfaces. The smallest object – the Pawn –
has a subdivision control mesh which consists of 70 faces. The most complex model is the
Rook with 1 454 patches. Its triangulation at subdivision level 3 has 185 328 triangles. Within
the distance calculation test each algorithm has to determine the distance between the model
and 10 000 arbitrary query points. The results are measured in milliseconds.
The triangulation-based algorithms as well as the adaptive subdivision one correlates with
the model’s complexity in contrast to the approach using Bézier conversion and numerical
optimization. This algorithm is rather determined by internal parameters (initial parameter
values, step size, etc.) than by model complexity.

The runtimes of these tests are shown in Figure 4.36. The results indicate some in-
teresting facts. Both the adaptive subdivision technique and the Bézier conversion
approach use the same 3D hashed grid structure to identify relevant patches with
a grid cell size of d / 3

p
p , whereas d denotes the AABB diagonal and p the number

of patches in the base mesh. The adaptive subdivision depends on the number of
relevant patches which correlates with the model’s complexity. But the Bézier con-
version is rather determined by internal parameters (start values for numerical iter-
ations, etc.) than by model complexity. This calculation overhead is almost indepen-
dent from the input data and surmounts the time needed by the adaptive subdivision
approach several times.

Another interesting point which can be seen in the diagram is the speed-up fac-
tor of the first-hit algorithm. Compared with the variant which checks additional grid
cells in order to return the exact distance instead of an approximation the first-hit ver-
sion is three times faster (∅≈ 3.09). Of course, both algorithms use the same grid size.
The number of grid cells is proportional to the number of triangles in the tessellation.

While it is normally not recommended to triangulate a subdivision surface ahead
of time, the first hit version has similar timings as the adaptive evaluation technique,
at least for small- and medium-sized models.

4.3 Subdivision Surfaces 157

According to the benchmarks presented above, the distance between an arbitrary
point and a subdivision surface should be determined using an efficient space par-
titioning technique such as hashed, regular 3D grid and an on-the-fly subdivision
surface evaluation algorithm. The result is a distance calculation which

• needs considerably less memory than triangulation based approaches, and

• is the fastest method in most cases.

The only negative point of the adaptive subdivision method is its complex implemen-
tation. The conversion method may use numerical libraries and the triangulation
methods can use wide-spread, standard techniques, whereas an efficient, on-the-
fly evaluation of subdivision surfaces must be implemented efficiently for the mesh
structure used.

Therefore, the triangulation-based approach with the first-hit termination might
be considered for small model sizes, if the perpendicular point is not needed and if an
approximation of the distance is enough. In all other cases the adaptive subdivision
technique is the best choice.

4.3.7 Modeling with Subdivision Surfaces

Current research activities on subdivision surfaces comprehend, amongst others, three
very important aspects. First of all subdivision surfaces have a small degree of con-
tinuity compared to Bézier-, B-splines or NURBS surfaces. Catmull-Clark subdivi-
sion surfaces are C 2-continuous respectively only C 1-continuous in irregular vertices,
whereas in high-quality design C 2 continuity is often a minimum requirement [Bon09].
These requirements can be met using one of several modified subdivision surface
schemes[PU98], [Pet00], [ADS06], [MP09].

Another important question in the context of subdivision surfaces is the integra-
tion into NURBS-dominated processing pipelines. As NURBS are the “standard” tool
to model free-form surfaces, many subsequent steps and algorithms (simulation tools,
etc.) are NURBS-based. In order to use the advantages of subdivision surfaces, open
questions on conversion, integration and migration have to be answered [CADS09].

Last but not least the simple question “where to place the points” is still not an-
swered satisfactorily, although each modeler – human or software – has to answer
it. Based on case studies, heuristics for modeling with Catmull-Clark surfaces can be
given [USF10a]. The way how to model with subdivision surfaces is described in var-
ious tutorials and courses [ZSS96], [DKT98], [ZSD+00]. These tutorials pursue a plan
which can be summarized by the sequence

idea→ subdivision surface model→ real 3d object,

whereas the last production step is omitted, if only the virtual object is of interest.
Within the last few years subdivision surfaces are also used in reverse engineering at
a progressive rate. Reverse engineering is the inverse situation of the sequence above.

158 4 Computer-Aided Geometric Design

A real 3d object is the starting point and its corresponding subdivision surface model
is the desired result. During the re-modeling phase the modeler – either human or
algorithm – has to tackle two problems: geometry and topology. These are the two
ingredients of a subdivision surface. Choosing the right topology to represent a given
object by a subdivision surface reduces the number of needed control vertices signif-
icantly. The choice of a good topology is a distinction between an experienced, skilled
modeler and a beginner.

In “Modeling with Subdivision Surfaces” [USF10a], we, TORSTEN ULLRICH, ANDREAS

SCHIEFER, and DIETER W. FELLNER concentrate on the more general situation from the
reverse engineering point of view. From this perspective a subdivision surface recon-
struction has to tackle two problems, a topological problem (the layout of the control
mesh) and a geometrical problem (the position of the control vertices in 3D). Unfor-
tunately, in most articles about subdivision surface fitting [CWQ+04], [CWQ+07] the
topological problem plays a minor role [MK05].

In this section the topological problem is addressed; i.e. for a chosen topology
the geometry of the control mesh is optimized. The optimization results establish
a relationship between topological layout and approximation quality, which allows
to identify the best topology. In order to concentrate on the topological aspects the
geometry is optimized automatically. The optimization uses a distance based error
function [USK+07], [PW09] which is minimized by a standard approach of numer-
ical minimization [Nas90], [GOT05]. The minimization process is straight forward
and operates on the vector of all vertex coordinates of all vertices to position. Algo-
rithmic details7 on the geometrical optimization are described by RAINER STORN and
KENNETH PRICE [SP97].

The following case studies cover the four most important situations when model-
ing with Catmull-Clark subdivision surfaces:

Modeling Edges The first case examines smooth edges. While sharp edges can be
modeled easily with special feature rules for subdivision surfaces, smooth edges
offer at least two possibilities to be designed: with a row of control vertices along
the edge or with two rows of control vertices alongside the edge.

Modeling Non-Quadrilateral Configurations Almost each type of subdivision surface
has a topology for which it suits best. Loop subdivision prefers triangles, Catmull-
Clark subdivision generates quads, etc. Unfortunately, not every object has a fa-
vorable geometric primitive to be modeled with. Several strategies for such a
configuration are possible.

Modeling Curvature The third case inspects a surface with different curvatures: hy-
perbolic, parabolic and elliptic. It addresses the issue of quad orientation with
respect to the surface’s principal curvature directions.

Modeling Inflection Points The last case analyzes a surface which is defined by a cut
curve. This is a standard situation in CAD modeling.

7 Differential Evolution for Continuous Function Optimization, http://www.icsi.berkeley.edu/ storn/code.html

http://www.icsi.berkeley.edu/~storn/code.html

4.3 Subdivision Surfaces 159

For each case different variants of control meshes that are adjusted by a number of
parameters are examined. These parameters are set by a numerical optimization rou-
tine which minimizes the distance [USK+07] between the nominal surface and the
actual subdivision surface.

Smooth Edges

The first nominal surface is defined by the implicit equation

S1 : x 6+ y 6+ z 6 = 1. (4.121)

The resulting surface looks like a cube with round edges and corners (see Figure 4.37).
In order to analyze how to model beveled edges two variants are inspected.

Figure 4.37: The implicit surface x 6 + y 6 + z 6 = 1 has a degree which cannot be reached by
a cubic patch. Therefore, Catmull-Clark subdivision can only approximate it. The best way to
approximate it is analyzed by testing different topologies.

Variant 1 The first variant of possible control meshes has a cube-like topological
layout. It consists of 3×3 quads on each side. Due to symmetries the geometry is de-
fined by only six parameters of three initial control points. Three parameters are used
for the three coordinates (x1,y1,z 1) of the first control point. The fourth and the fifth
parameter define the second control point. In order to avoid self-intersections as well
as optimizations with constraints, these parameters are defined as positive offsets to
the first control point. Consequently, they have a fixed domain and the second con-
trol point is calculated via (x1+x2,y2,x1+x2). As the second control point defines an
edge of the control mesh cube, and as the faces of the cube are connected at/over this
edge, the x and z components have to be equal. Finally the last parameter x3 again
defines an offset from x1. Due to symmetries this is the only value needed for the third
control point: (x1+x3,x1+x3,x1+x3). As the third control point is at the corner of the
control mesh cube, all coordinate components must be equal. Figure 4.38 shows the
initial three control points that are generated by the six parameters. The optimization

160 4 Computer-Aided Geometric Design

x1

x2

x3

x1+x3

y2 y1

P1(x1 |y1 |z 1)
P2(x1+x2 |y2 |x1+x2)

P3(x1+x3 |x1+x3 |x1+x3)

x

y

Figure 4.38: Due to symmetries six parameters are enough to define three different control
points. The complete subdivision control mesh is composed of rotations and mirrorings of
these points. Each of the six cube sides consists of 3×3 faces.

routine minimizes the distance between the generated surface and the reference sur-
face (Equation (4.121)) based on uniformly distributed samplings. The error function
f 1,1 is a sum of point-to-subdivision surface distances. The optimum is

f 1,1(0.33633, 0.33526, 0.99830,
0.66616, 0.32615, 0.66319) = 7.45141.

(4.122)

The three control points, which generate the complete subdivision control mesh by
rotations and mirrorings, have the coordinates

P1(0.33633 |0.33526 |0.99830), (4.123)

P2(1.00249 |0.32615 |1.00249), (4.124)

P3(0.99952 |0.99952 |0.99952). (4.125)

4.3 Subdivision Surfaces 161

Variant 2 Also the second variant is a cube-like control mesh derived from three ini-
tial control points but with five parameters. This time every side of the cube consists
of four quads, the six sides of the cube are connected through beveled faces at the
edges and with triangles at the corners. Figure 4.39 illustrates this control mesh.

Figure 4.39: This variant uses a control mesh with explicitly beveled edges to approximate
an implicit surface of degree 6.

The first parameter, z 1, is the z component of the first control point, which is lo-
cated at (0,0,z 1). Due to symmetries the first control point is centered on each side
of the control mesh cube. The second and third parameters, x2 and z 2, define the
second control point at (x2,0,x2 + z 2). This time the sides of the cube are connected
via beveled faces, therefore the offset z 2 is added to the z component of the second
control point. Using the last two parameters, x3 and z 3, the third control point is
(x3,x3,x3 + z 3). The error of the best control mesh of this variant – according to the
optimization routine – is 7.79202:

f 1,2(0.99686, 0.83273, 0.14743,
0.74912, 0.33157) = 7.79202.

(4.126)

Comparison Figure 4.40 illustrates both variants. Each variant is rendered with a
color scheme indicating its distance to the nominal surface which is included in each
rendering. It is visualized with a transparent, grayish style. The illustration shows that
the first variant performs better than the second one. The second variant uses beveled
edges to model the reference surface. This topology is not suitable to approximate the
given surface. Even its geometrically optimized version shows “over-modeling” effects
– a high frequency fluctuation which is spread out from the over-modeled parts. In
this case the beveled edges disturb the low frequency parts of the surface. An in-depth
analysis of the distances confirms the visualization. The average and the maximum of
all distances between the nominal surface and points on the actual surface are:

162 4 Computer-Aided Geometric Design

Figure 4.40: In comparison to each other the first variant performs better than the second
one. Explicit modeling of beveled edges increases the risk of “over-modeling” – a high fre-
quency fluctuation which is spread out from the beveled edge and which disturbs the low
frequency parts of the surface.

avg. distance max. distance
Variant #1 0.00079 0.00204
Variant #2 0.00130 0.00519

Modeling Non-Quadrilateral Configurations

The second surface analysis investigates non-quadrilateral configurations. The refer-
ence surface is a so-called monkey saddle. It is a heightfield defined by

S2(x ,y) =
x 3−3x y 2

2
. (4.127)

This surface is axially symmetric at a degree of 120◦; i.e. after a 2
3π rotation the surface

is congruent to itself. The point at the origin is a parabolic, umbilic point. Within this
analysis the parameters x and y may range from −1.0 to 1.0.

As the following variants have different numbers of control vertices, the area of ev-
ery control mesh is chosen to be proportional to the number of its vertices. So control
meshes with more vertices have to approximate a larger area of the reference surface.

Variant 1 The first variant has 19 vertices and seven parameters, which define their
heights (z component). The symmetric configuration is illustrated in Figure 4.41 which
shows the topology of the control mesh and the parameters (height) of each vertex.
All vertices with x = 0 have a fixed height of 0.0. The best optimized version of this
variant has an error of 0.44914. Its parameters are

f 2,1(−0.27195, −0.00007, 0.00001,
−0.27193, −0.00007, 0.27181,
−0.0001) = 0.44914.

(4.128)

4.3 Subdivision Surfaces 163

−p5

−p6

−p7

−p1

−p2

−p3

−p4

p1

p2

p3

p4

p5

p6

p7

x

y

Figure 4.41: The topology of this control mesh is arranged in a 120◦ symmetric layout to
adapt the subdivision surface to the reference.

Variant 2 For the second variant a predefined mesh with 27 vertices is used as con-
trol mesh. The heights of its vertices are controlled by twelve parameters. Figure 4.42
shows the parameters and the topology which is (in the inner part) dual to the first
variant. Again, all vertices with x = 0 have a fixed height of 0.0.

The smallest possible error of this topological configuration is

f 2,2(0.00148, −0.07632, −0.25658
−0.37829, −0.07681, 0.07507,
0.00052, −0.37787, −0.25613,
0.25710, 0.37745, −0,00072) = 0.69362.

(4.129)

Variant 3 The third variant for this surface does not adapt to the reference’s axial
symmetry of 2

3π in any way. It uses a regular quadratic grid centered on the refer-
ence surface. There are five vertices along each side of the grid, so 25 vertices in to-
tal. Fixing the vertices at x = 0 six parameters are enough to describe all vertices.
Figure 4.43 illustrates this topology. The optimization returns the optimum of this
topology with an error of f 2,3 = 0.80376. The parameters for this control mesh are
(−0.32781,−0.05752,0.01131,−0.45664,0.11135,0.24120).

164 4 Computer-Aided Geometric Design

−p10

−p11

−p12

−p9

−p6

−p7

−p8

−p4

−p5

−p1

−p2

−p3

p10

p11

p12

−p9

p6

p7

p8

p4

p5

p1

p2

p3

x

y

Figure 4.42: The topology of the second variant has a configuration which is dual to the first
one (except for the border).

Comparison Taking the number of control vertices into account, each surface has
been normalized; i.e. the area of every control mesh is proportional to the number of
its vertices. Therefore, all subsequent error values are normalized and comparable to
each other. In this situation the case study does not reveal a best topology but a worst
one. The regular gird does not approximate the given surface well. The two variants
whose topologies reflect the nominal surface’s symmetry perform much better (see
Figure 4.44):

avg. distance max. distance
Variant 1 0.00241 0.00624
Variant 2 0.00153 0.01037
Variant 3 0.00330 0.01555

4.3 Subdivision Surfaces 165

Figure 4.43: A rectangular topology leads to a very high error. Topologies that reflect the
nominal surface’s symmetry perform much better.

Figure 4.44: The nominal surface (upper left) is invariant to 120◦ rotations. The topology of
variant #1 (upper right) and #2 (lower right) reflect this property whereas variant #3 (lower
left) uses a simple rectangular grid. In this case topologies, which reflect the main symmetries
of the reference surface, perform better.

166 4 Computer-Aided Geometric Design

Modeling Curvature

The third modeling study inspects a torus due to its characteristic curvatures: hyper-
bolic, parabolic, and elliptic [Iro05]. The reference is described by the formula:

S3(u ,v) =

�

a +b cos(2πv)
�

· cos(2πu)
�

a +b cos(2πv)
�

· sin(2πu)
b sin(2πv)

(4.130)

with major radius a = 5.0 and minor radius b = 3.0. The parameters u and v are
within the range 0.0 to 1.0.

Variant 1 For the first variant the parameter domain is sampled at a fixed, regular
grid to get the control point positions. Two parameters, that can be set by the opti-
mization, define the major and the minor radius of the control mesh torus. This is
probably the most commonly used parametrization of a torus in modeling software.

The error of this variant after the optimization is 824.82012. The two parame-
ters defining the major and minor radius have their optimum at 5.42375 respectively
3.38278. This variant is compared to a slanted torus control mesh.

Figure 4.45: A slanted torus control mesh is a “non-standard” way to model a torus. This
variant is compared to the most commonly used parametrization with a rectangular grid lay-
out of the parameter domain.

Variant 2 A slanted torus uses a slightly different parametrization than the first one.
Again, the values u and v are a regular grid in the parameter domain, but this time an
offset depending on u is added to v each time. For this variant, the offset is defined
as 2

3 u . This introduces a slant in the control mesh.
The optimization routine calculates a minimum error of 1474.60738 for this vari-

ant. The parameters defining the resulting control mesh are a = 5.62499 and b =
3.43444. Figure 4.45 shows the slanted control mesh created with these parameters.

4.3 Subdivision Surfaces 167

Figure 4.46: A torus can be modeled with a slant offset and without one (upper left). With
increasing slant offset (upper right, lower left) the approximation error increases. If the opti-
mization routine is allowed to set the slant offset by itself, it is set to zero (lower right).

Variant 3 This variant of the torus control mesh is basically the same as variant 2,
except that the offset defining the slant is defined as 4

3 u . Even the optimized geometry
(a = 6.24999,b = 3.56744) leads to a large error f 3,3 = 4290.40374.

Variant 4 As it is difficult to determine appropriate slant offsets, the fourth variant
also optimizes this parameter; i.e. in addition to the two parameters defining the radii
of the torus control mesh, it has a third parameter defining the slant offset. The opti-
mization process returns

f 3,4(5.42399,3.38277,0.00000) = 826.65427. (4.131)

Comparison The easiest way to model a torus seems to be the best way. All vari-
ations in topology increase the approximation error (see Figure 4.46). The in-depth
analysis of distances confirms this heuristic:

avg. distance max. distance
Variant 1 0.07806 0.12925
Variant 2 0.11145 0.19450
Variant 3 0.19887 0.35382
Variant 4 0.07806 0.12904

168 4 Computer-Aided Geometric Design

Modeling Inflection Points

The last case analyzes a surface which is defined by a cut curve. Blended with a straight
line the result has the formula:

S4(x ,y) =
y

10
· sin

�

2π

3
arctanx

�

(4.132)

The parameter x describes the cut curve in the range from−5.0 to 5.0 whereas the pa-
rameter y blends between the straight line and the curve from 0.0 to 10.0. The surface
is plotted in Figure 4.47.

Figure 4.47: This surface is defined by a cut curve which is blended with a straight line. This
is a standard situation in CAD modeling.

Variant 1 The control mesh of the first variant gets 20 parameters – 10 pairs of x po-
sition and height value z . The range of the x values (−5.0 to 5.0) has been partitioned
into 10 equally-sized intervals. In each interval one and only one parameter pair is
allowed. For each pair p i = (x i ,z i) two control points are generated: one at (x i ,10,z i)
to approximate the cut curve and one at (x1,0,0) on the straight line. The error of the
optimized variant is 6.73931:

f 4,1(−4.35546, −0.30532,
−3.05017, −0.48656,
−2.93309, −0.50592,
−1.58539, −0.82026,
−0.37453, −1.29349,
0.38362, 1.32794,
1.71154, 0.78575,
2.30383, 0.65748,
3.00657, 0.48136,
4.02755, 0.35095) = 6.73931.

(4.133)

4.3 Subdivision Surfaces 169

Variant 2 This variant uses a regular 10× 3 grid covering the whole reference sur-
face. All heights are specified as a parameter and the (x ,y)-positions are fixed. Conse-
quently, this variant operates on 30 parameters. The optimization calculates an error
of 14.70749 for the best geometry. The best parameters for the control mesh are:

f 4,2(−0.00257, −0.13120, −0.27108,
0.00131, −0.17258, −0.33910,
−0,00099, −0.28033, −0.55752,
0,00048, −0.36468, −0.74336,
−0,00057, −0.72072, −1.40922,
−0,00022, 0.72074, 1.41115,
0.00191, 0.36363, 0.74169,
−0.00244, 0.28386, 0.55652
0.00267, 0.16798, 0.34212,
−0.00105, 0.13555, 0.26656) = 14.70749.

(4.134)

Variant 3 The third variant has fixed x positions at prominent values of the cut
curve:−5.00000 (end of range),−3.31764,−1.63528 (inflection point),−0.93159 (min-
imum), 0.00000 (inflection point, root), 0.93159 (maximum), 1.63528 (inflection point),
3.31764, 5.00000 (end of range). For each x position there is again one control point
at y = 0 with height 0 and another one at y = 10 with the height value which has to be
optimized. So this variant has nine height parameters, one for each x position. The
result is

f 4,3(−0.22288, −0.47240, −0.67730,
−1.37479, −0.00353, 1.37625,
0.67573, 0.47305, 0.22281) = 11.91346.

(4.135)

Variant 4 The fourth variant is very similar to the third variant. It uses the same con-
figuration but in contrast to fixed x positions, the optimization routine is allowed to
modify these positions within an offset of ± 1

3 . Therefore, this variant takes 18 param-
eters, nine for the height values at each x position and nine offsets for the initial x
positions.

For this variant, the minimum error after the optimization is 6.17020. The param-
eters for this control mesh are

f 4,4(−0.25058, −0.46790, −0.74541,
−1.18889, −0.38835, 1.29557,
0.76445, 0.36971, 0.26533,

0.04882, 0.33053, −0.25836,
0.28352, −0.17465, −0.33332,
−0.01570, 0.32223, −0.03218) = 6.17020.

(4.136)

170 4 Computer-Aided Geometric Design

Figure 4.48: In this comparison approximations with fixed x positions are more erroneous
than approximations with x positions as free parameters. The interval spacing (upper left)
of the first variant and the prominent-values-of-the-cut-curve variant with additional off-
sets (lower right) are the best results, whereas the regular grid (upper right) and the fixed
prominent-values-of-the-cut-curve (lower left) are the worst results.

Comparison The in-depth distance analysis reveals the following values:

avg. distance max. distance
Variant 1 0.00264 0.01044
Variant 2 0.00718 0.04152
Variant 3 0.01826 0.09219
Variant 4 0.00323 0.01460

If the area of the approximated surface is taken into account, the fourth variant is
even slightly better then the first one. The approximation with the highest error level
is the variant which has fixed x positions at prominent values of the cut curve (see
Figure 4.48 (lower left)). Consequently, the best result and the worst result can be
created with the same topology and minor differences in geometry. The additional
offsets which distinguish a good from a bad result are plotted in Figure 4.49.

4.3 Subdivision Surfaces 171

The figure shows some very important properties when modeling with subdivision
surfaces.

• At the extreme values (minimum and maximum at ±0.93159) the control points
have been moved by the optimization routine towards the direction of higher
absolute gradients.

• Having moved the control points, the control polygon has fewer intersections
with the nominal curve than the fixed-x -positions version.

• All versions with a small error (also the first variant with interval spacing) inter-
sect the reference curve very close to (at x =−1.63528 and at x = 0.0) or nearby
(at x = 1.63528) inflection points.

2

−2

−5 5 x

z

Figure 4.49: The cut curve which defines the fourth nominal surface is plotted in this dia-
gram. Furthermore it shows the positions of the control vertices of the worst approximation
(red) and the best approximation (blue). Their differences are visualized by gradients.

Modeling Heuristics

Based on the four case studies several conclusions and heuristics can be derived. The
first case examines smooth edges and demonstrates the “over-modeling” effect. Mod-
eling a local surface feature always takes the risk to disturb large parts of a model by
spreading high-frequency fluctuations from the “over-modeled” parts. This effect can
be avoided by a better topology, which does not model rounded edges explicitly, or
by barrier lines – two or three consecutive lines of control vertices of low frequency,
which suppress fluctuations due to the locally limited influence of a vertex to a sub-
division surface.

172 4 Computer-Aided Geometric Design

While simple geometric properties – such as beveled edges – should not be consid-
ered in the topological layout of a control mesh, high-level geometric aspects play an
important role. The second case study shows that global symmetries should be re-
flected in the control mesh. All control meshes, which did not reflect the global sym-
metry of the surface to approximate, caused higher errors than those with symmetri-
cal layout. The third study approves this fact.

The last case analyzes a surface on the geometrical – not topological – level to
explore the best positions for control vertices. Besides the conclusions already pre-
sented in the previous section the last study demonstrates the difficulties in predict-
ing a good subdivision approximation without iterative optimization. All solutions
with partly-fixed control vertices have a high error value.

The last two cases lead to the assumption to investigate curvature-driven mod-
eling. In the third case study (torus), the best solution has a quad layout parallel to
principal curvature lines. In the fourth case (cut curve) all good solutions have con-
trol polygons, which intersect the cut curve in its inflection points.

4.3.8 Curvature-Driven Modeling

As modeling is a time-consuming task, techniques to increase efficiency are always an
important research topic. Many designs are not digitally-born, but created out of clay.
Although their digital counterpart can be created automatically, interactive processes
are still in use – especially in high-quality surface design. Consequently, a common
task in surface engineering is surface reconstruction: from a triangle mesh of a laser
scan towards a CAD representation; i.e. a Bézier surface, NURBS surface, or a subdivi-
sion surface. Besides the omnipresent usability aspects in computer science, surface
reconstruction has to solve the following problems.

Curvature calculation As differential geometry operates on continuous surfaces and
manifolds [DC76], the calculation needs to be adopted to discrete triangulations
[GI04]. Having calculated a surface’s principal curvatures κ1, κ2 including prin-
cipal curvature directions, derived values such as Gaussian and mean curvature
can be calculated.

The correspondence between surface characteristics (of a laser scan) and sur-
face layout (of a CAD surface) is visualized in Figure 4.50.

Curvature flow In the next step, the discrete curvatures calculated at vertex posi-
tions are regarded as continuous curvature flow, into which control vertices and
meshes are placed. Control elements, which are parallel or orthogonal to prin-
cipal curvature directions, meet a differential equation; i.e. they are the solution
of a so-called initial value problem. This is a continuous problem. Therefore, the
curvatures at discrete vertex positions have to be interpolated in between.

4.3 Subdivision Surfaces 173

Scan with NURBS patch outlines Curvature difference: |κ1−κ2|

Gaussian curvature: κ1 ·κ2 Mean curvature: 1
2 (κ1+κ2)

Maximum curvature: max(κ1,κ2) Minimum curvature: min(κ1,κ2)

Figure 4.50: In high-quality surface engineering a clay model is scanned and reengineered
resp. reconstructed with a CAD surface representation (e.g. NURBS, subdivision surface, etc.).
In this example, the scan of a VW Passat front fender and its NURBS representation (upper
left) is shown. As surface curvatures (κ1, κ2 and derived values) are an important design fea-
ture, it is natural to use them for reconstruction.
A curvature-driven patch layout can be generated using curvature tracking – a technique sim-
ilar to an initial value problem of differential equations.

174 4 Computer-Aided Geometric Design

From the numerical point of view, curvature calculation and curvature flow track-
ing is very unstable. Especially, in regions with similar principal curvature values
(κ1 ≈ κ2), the calculation of principal curvature directions is not stable. A solu-
tion to this problem is a propagation system, in which stable regions propagate
curvature directions into spherical and planar regions.

The instability issue of initial value problems is illustrated in Figure 4.51. As dif-
ferential equations have been a well-established area of research, many numer-
ically stable solvers can be found in literature [AS72], [oST10]. Single step meth-
ods – such as Euler’s method – only use the differential at the current position
(xn ,yn) to calculate the next step from xn to xn+1 = xn +h

yn+1 = yn +h f (xn ,yn). (4.137)

The resulting path

(x0,y0), (x1,y1), (x2,y2), . . . (4.138)

Figure 4.51: Curvature flow tracking can be interpreted as solving an initial value problem:
y′(t) = f (t ,y(t)) with function f and condition y(t0) = y0. Many differential equations cannot
be solved analytically, in which case an approximation to the solution must be sufficient. If
the approximation method is not very accurate and very stable, the approximation will suf-
fer from error accumulation (red curve). In the worst case the calculated solution can differ
arbitrarily from the exact solution (blue curve).

4.3 Subdivision Surfaces 175

is a solution of the initial value problem. The main drawback of this technique
is its error accumulation. The method increments a solution through an interval
h while using derivative information from only the beginning of the interval.
Consequently, the step’s error is O(h2) and it is propagated to the next step. For
simple applications the resulting path is a sufficient solution to the initial value
problem, but in its worst case the calculated solution can differ arbitrarily from
the exact result.

Multi-step methods reduce this error accumulation in each step by taking the
results of multiple, previous steps into account. In this way, the calculation is
not linear with respect to the differential, but of higher order. The methods of
CARL D. T. RUNGE8 and MARTIN W. KUTTA9 realize this technique (see Table 4.5).

Figure 4.52: Going by curvature flow simplifies the patch layout for a human modeler. In this
way the modeling task can be performed more efficiently.

8 CARL DAVID TOLMÉ RUNGE (August 30, 1856 – January 3, 1927) Carl David Tolmé Runge was a Ger-
man mathematician, physicist, and spectroscopist. He worked on differential geometry and numeri-
cal analysis.

9 MARTIN WILHELM KUTTA (November 3, 1867 – December 25, 1944) Martin Wilhelm Kutta was a Ger-
man mathematician. He co-developed the Runge-Kutta method, used to solve ordinary differential
equations numerically. Furthermore, his works on aerodynamics are key contributions.

176 4 Computer-Aided Geometric Design

Runge-Kutta Methods

Runge-Kutta methods for first order ordinary differential equations y ′ = f (x ,y).

Second Order

yn+1 = yn + 1
2 (k1+k2)+O(h3) (4.139)

k1 = h f (xn ,yn)

k2 = h f (xn +h,yn +k1)

yn+1 = yn +k2+O(h3) (4.140)

k1 = h f (xn ,yn)

k2 = h f
�

xn + 1
2 h,yn + 1

2 k1

�

Third Order

yn+1 = yn + 1
6 k1+ 2

3 k2+ 1
6 k3+O(h4) (4.141)

k1 = h f (xn ,yn)

k2 = h f
�

xn + 1
2 h,yn + 1

2 k1

�

k3 = h f (xn +h,yn −k1+2k2)

yn+1 = yn + 1
4 k1+ 3

4 k3+O(h4) (4.142)

k1 = h f (xn ,yn)

k2 = h f
�

xn + 1
3 h,yn + 1

3 k1

�

k3 = h f
�

xn + 2
3 h,yn + 2

3 k2

�

Fourth Order

yn+1 = yn + 1
6 k1+ 1

3 k2+ 1
3 k3+ 1

6 k4+O(h5) (4.143)

k1 = h f (xn ,yn)

k2 = h f
�

xn + 1
2 h,yn + 1

2 k1

�

k3 = h f
�

xn + 1
2 h,yn + 1

2 k2

�

k4 = h f (xn +h,yn k3)

yn+1 = yn + 1
8 k1+ 3

8 k2+ 3
8 k3+ 1

8 k4+O(h5) (4.144)

k1 = h f (xn ,yn)

k2 = h f
�

xn + 1
3 h,yn + 1

3 k1

�

k3 = h f
�

xn + 2
3 h,yn − 1

3 k1+k2

�

k4 = h f (xn +h,yn +k1−k2+k3)

Table 4.5: All Runge-Kutta methods are expressions yn+1 = yn + h
∑s

i=1 b i k i with
k i = f (tn +hc i ,yn +h

∑s
j=1 a i j k j). The coefficients a i j , b i , c i are determined by quadrature

formulas – a nonlinear system of equations, which has several solutions. This Table lists two
solutions per order. Further details can be found in literature [BP93], [AS72].

4.3 Subdivision Surfaces 177

Surface design Another important problem in surface reconstruction is the conflict
of different objectives: scan interpolation versus surface design [TGRZ07]. On
the one hand the resulting surface shall interpolate the laser scan as good as
possible, on the other hand it shall meet design conditions such as bounded cur-
vatures. In high-quality surface engineering this trade-off between conflicting
objectives is solved locally by a human modeler.

In an ongoing project on high-quality surface engineering with the automotive manu-
facturer Volkswagen Aktiengesellschaft the researchers SVEN HAVEMANN and TORSTEN

ULLRICH develop a curvature-driven modeling tool. Using subdivision surfaces in-
stead of NURBS surfaces, connectivity and smoothness conditions can be omitted
and the number of control vertices can be reduced by approximately 25%. These pre-
liminary results will be made up as soon as the tool’s evaluation phase and further
benchmarks at Volkswagen will be completed.

178 4 Computer-Aided Geometric Design

4.4 Generative Modeling

The term generative modeling reflects a paradigm change in representing shape. The
key idea is to identify a shape with a sequence of shape-generating operations, and
not just with a list of low-level geometric primitives. This is a true generalization since
static objects are equivalent to constant operations that have no input parameters.
The benefit of this approach is that parameter dependencies can be expressed, as the
output of one operation may serve as input to another. The practical consequence
is that every shape needs to be represented by a computer program, i.e., encoded in
some form of programming language. Although it is possible to use a general pur-
pose programming language – such as C++ [KK11] – most approaches use a domain-
specific description.

JOHN SNYDER [SK92]was the first to implementation the generative paradigm with
his C-like shape language GENMOD, followed by CONAL ELLIOTT’s TBAG [ESYAE94],
and ALBERTO PAOLUZZI’s PLaSM [PPV95]. A first general theory of generative shape
was developed by MICHAEL LEYTON [Ley01]. This academic development was paral-
leled by the advent of parametric design in high-end CAD systems in the mid-1990s,
pioneered by Pro/Engineer (PTC), soon followed by all its competitors. As a result, to-
day almost all CAD systems use internally a procedural representation, just to men-
tion AutoLISP (AutoCAD), MaxScript (3D Studio Max), and MEL (Maya). Nevertheless,
there is still no common exchange standard for procedural models, so that even high-
end programs can still exchange only static low-level geometry reliably [Pra04].

With ever increasing computing power becoming available (Moore’s Law), gener-
ative approaches become more important since they trade processing time for data
size. At runtime the compressed procedural description can be “unfolded” on de-
mand to very quickly produce amounts of information that are several classes of com-
plexity larger than the input data. The advantages of the generative approach are:

• complex models become manageable through high-level parameters [HF04],

• models are easier to store and to transmit, as only the process itself is described,
not the processed data, i.e., the end result [BFH05],

• changeability and re-usability of existing solutions to modeling problems can be
very much improved [HF01], and

• the smaller parameter space can lead to much better results in model-based in-
dexing and retrieval [FH05b].

Generative modeling techniques take advantage of regularities and uniformities. Es-
pecially, frequent repetitions and models with complex interdependencies benefit
from procedural approaches due to its reusability [GPMG10].

4.4 Generative Modeling 179

Figure 4.53: The CityEngine modeling environment (right) uses the language CGA shape.
This shape modeling language (left) has its roots in L-Systems and split rules. Having split the
root geometry node into houses→ floors→walls→windows→ . . . the last operations replace
each abstract placeholder by prebuilt geometry (OBJ files).

4.4.1 Generative Modeling Techniques

In today’s procedural modeling systems, grammars are often used as a set of rules
to achieve a description. Early systems based on grammars were Lindenmayer sys-
tems [PL90], or L-systems for short. They were successfully applied to model plants.
Given a set of string rewriting rules, complex strings are created by applying these
rules to simpler strings. Starting with an initial string the predefined set of rules form
a new, possibly larger string. The L-systems approach reflects a biological motiva-
tion. In order to use L-systems to model geometry an interpretation of the generated
strings is necessary. The modeling power of these early geometric interpretations of
L-systems was limited to creating fractals and plant-like branching structures. This
lead to the introduction of parametric L-systems. The idea is to associate numerical
parameters with L-system symbols to address continuous phenomena which were
not covered satisfactorily by L-systems alone [DL05].

CGA Shape Later on, L-systems and shape grammars were successfully used in pro-
cedural modeling of cities [PM01]. YOGI PARISH and PASCAL MÜLLER presented a sys-
tem that, given a number of image maps as input, generates a street map including
geometry for buildings. For that purpose L-systems have been extended to allow the
definition of global objectives as well as local constraints. However, the use of proce-
durally generated textures to represent facades of buildings limits the level of detail
in the results. In later work, MÜLLER et al. describe a system [MZWVG07] to create

180 4 Computer-Aided Geometric Design

detailed facades based on the split grammar called CGA shape. A framework called
CityEngine provides a modeling environment for CGA shape. It relies on different
views to guide an iterative modeling process. Figure 4.53 shows code defining split
rules written in CGA shape.

Another modeling approach presented by MARKUS LIPP et al. [LWW08] following
the notation of MÜLLER [MWH+06] deals with the aspects of more direct local con-
trol of the underlying grammar by introducing visual editing. The idea is to allow
modification of elements selected directly in a 3D-view, rather than editing rules in
a text-based environment. Therefore principles of semantic and geometric selection
are combined as well as functionality to store local changes persistently over global
modifications.

Model Graphs BERND LINTERMANN and OLIVER DEUSSEN proposed a new modeling
method as well as a graphical user interface (GUI) for the creation of natural branch-
ing structures [LD98]. A structure tree represents the modeling process and can be
altered using specialized components describing geometry as well as structure. An-
other type of components can be used for defining global and partial constraints.
Components are described procedurally using creation rules which include recur-
sion. The generation of geometric data according to the structure tree is done via a
tree traversal where the components generate their geometrical output.

The procedural modeling approach proposed by BJÖRN GANSTER and REINHARD

KLEIN [GK07] describes an integrated framework based on structure trees in a visual
language. The infix notation of the language requires the use of variables which are
stored on a heap. A graph structure represents the rules used to create an object. Spe-
cial nodes allow the creation of geometry, the application of operators as well as the
usage of control structures. Various attributes can be set for nodes used in a graph.
Directed edges between nodes define the order of execution, in contrast to a visual

Figure 4.54: The generative modeling environment by GANSTER et al. traverses a model graph
(left) with various attributes at each graph node to create geometry. This purely visual pro-
gramming approach provides graph and attribute editors (middle) in an integrated environ-
ment (right) and does not show any source code to users. (Image source: [GK07])

4.4 Generative Modeling 181

Figure 4.55: The visual modeling environment ProcMod consists mainly of a rule editor
(front window) and a scene graph editor (back window). The resulting geometry is passed
to Maya. (Image source: [Fin08b])

data flow pipeline (VDFP) where data is transported between the different stages. The
framework is illustrated in Figure 4.54. It allows fast creation of complex scenes with
the limitation that geometry has to be modeled on a rather low level using polygon
lists.

Hierarchical Description DIETER FINKENZELLER presented another approach for de-
tailed building facades [Fin08a] called ProcMod. It features a hierarchical description
for an entire building. The user provides a coarse outline as well as a basic style of
the building including distinguished parts and the system generates a graph repre-
senting the building (see Figure 4.55). In the next step, the system traverses the graph
and generates geometry for every element of the graph. This results in a generated,
detailed scene graph, in which each element can be modified afterwards. The cur-
rent version has some limitations: for example, organic structures and inclined walls
cannot be modeled.

182 4 Computer-Aided Geometric Design

Figure 4.56: Autodesk’s 3D modeling software Maya provides a complete tool set for model-
ing, rendering and animations (right). Its integrated programming language Python allows a
user to access all Maya functions (plus additional Python resources) via scripting (left). (Image
source:left [Baa06])

Scripted Modelers 3D modeling software packages like Autodesk Maya provide a
variety of tools for the modeling process. Figure 4.56 (right) shows the graphical user
interface. However, a scripting language is supplied to extend the functionality of the
GUI. It enables tasks that cannot be achieved easily using the GUI and speeds up com-
plicated or repetitive tasks. For that purpose Autodesk integrates the programming
language Python. The left part of Figure 4.56 shows a Python script that generates
rendered text as an example output.

When using parametric tools in modern CAD software products, geometric valid-
ity is a subject. For a given parametric model certain combinations of parameter val-
ues may not result in valid shapes. CHRISTOPH M. HOFFMANN and KU-JIN KIM propose
an algorithm [HK01] that computes valid parameter ranges for geometric elements in
a plane, given a set of constraints.

Functional Expressions ALBERTO PAOLUZZI suggests a functional language in the con-
text of geometric design programming [PPV95]. The idea is to associate geometric
shapes to generating functions and to pass geometric expressions as function param-
eters. This allows the generation of abstract methods describing geometric shape, as
well as calling such methods for the purpose of modeling specific geometry. Although
generated objects are always consistent in geometry – due to the validity at a syntac-
tical level – this approach is of rather theoretical interest.

4.4 Generative Modeling 183

Figure 4.57: SVEN HAVEMANN’s approach to procedural modeling is the Generative Modeling
Language. It has a PostScript-like syntax (left) in postfix notation; i.e. operators follow their
operands (e.g. 1 2 add). The development environment GMLStudio (right) integrates source
code editor, outline views and an interpreter. (Image source: [CGKV04])

Postfix Expressions The Generative Modeling Language (GML) by SVEN HAVEMANN

is a stack-based language for creating polygonal meshes. Its postfix notation takes
getting used to [Rei90] and is very similar to that of Adobe’s Postscript [Inc85]. It allows
the creation of high-level shape operators from low-level shape operators. The GML
serves as a platform for a number of applications because it is extensible and comes
with an integrated visualization engine.

The generative parametric design of Gothic window tracery [HF04] shows GML’s
ability to handle complex geometric shapes. Figure 4.57 shows the modeling environ-
ment GMLStudio displaying a chess board. Parts of the GML code used to generate
the chess board are listed alongside.

An extended system presented by ERICK MENDEZ et al. combines semantic scene
graph markups with generative modeling in the context of generating semantic three
dimensional models of underground infrastructure [MSH+08]. The idea is to connect
a geospatial database and a rendering engine in order to create an interactive applica-
tion. The GML is used for on-the-fly generation of procedural models in combination
with a conventional scene graph with semantic markup. An augmented reality view
of underground infrastructure like water or gas distribution systems serves as a demo
application.

Generative Modeling Language

The Generative Modeling Language is
based on concepts of Adobe Postscript
and is designed to describe geomet-
ric shapes in 3D. It uses polygonal
meshes and subdivision surfaces and
provides data types such as numbers,
strings, vertices, edges, faces, etc. as
well as methods to create and modify
these data types.

A commented, exemplary method
call to create stairs is:

% push base vertices of base
% polygon on GML stack
[(0,0,0) (10,0,0) (10,1,0)
(0,1,0)]

% push additional parameters
% on stack
0.2 1 5

% call library function to
% create stairs
Lib.stairs

The function to create stairs takes the
vertices of a base polygon (and an im-
plicit half-edge), the length of the

tread
riser

Figure 4.58: The high level parameters of
a generative stairs model are its base poly-
gon, the length of the riser, the length of
tread, and the number of steps.

riser, the length of tread, and the
number of steps. The design drawing
in Figure 4.58 visualizes the geomet-
ric meaning of parameters. A simpli-
fied implementation of the generative
stairs model respectively the stairs
function (without any error or reason-
ability checks) is listed beneath

% pop parameters from stack
% and use them by names
usereg
!nSteps !nTread !nRiser !polyBase

% create base polygon from
% array of vertices
:polyBase 3 poly2doubleface

% initialize first step
0 :nRiser 3 vector3 extrude
dup faceCW edgedirection length
!nDepth

% create following steps
% with a for-loop
1 1 :nSteps
{

pop edgemate
0 :nRiser 3 vector3 extrude
edgemate
0 :nTread 3 vector3 extrude
0 :nRiser 3 vector3 extrude
edgemate
0 :nDepth 3 vector3 extrude
edgemate

} for

pop

Further information about the Gen-
erative Modeling Language, in-
terpreters for various platforms
and examples can be found at:
http://www.generative-modeling.org

http://www.generative-modeling.org

4.4 Generative Modeling 185

4.4.2 Procedural Model Compilation

JOHN K. OUSTERHOUT categorizes programming languages into low level, system pro-
gramming and higher level languages [Ous98]. Low level languages (e.g. assembler)
reflect virtually all aspects of the CPU. Writing complex programs in low level lan-
guages is a tedious task because of the small abstraction possibilities. However, be-
cause of the direct mapping of the machine architecture to the language, programs
can be optimized for the executing platform (e.g. time critical applications or hard-
ware drivers). System programming languages (e.g. C/C++/C#, Java) provide higher
abstraction levels for the programmer and are typically strongly typed. In this con-
text, typing denotes the degree to which the meaning of information is specified in
advance of its use. Strong typing enables the compiler to check for data types in ad-
vance.

Higher level languages (script languages) are in most cases type-less and allow
rapid development. Typically, scripting languages are interpreted; therefore, applica-
tions written in such languages provide usually less performance than compiled pro-
grams. Scripting languages are well suited to glue components together, combining
the advantages of high-performance components and the high abstraction. In addi-
tion, scripting languages are generally more flexible.

The importance of scripting techniques comprehends not only areas which are
dominated by programming techniques per se but also all kinds of media and en-
vironments. The wide range of scripting applications, starting with the first system
scripts of mainframe computers, has now spread on server- and client-side inter-
net applications and desktop programs. Scripted content has been included into 3D
scene graphs and multimedia systems [RFM95] and is now the basis for all highly cus-
tomizable environments [JF06].

In the context of modeling, scripting techniques offer a new dimension of collab-
orative modeling, due to its close relationship to programming. Static content can
be exchanged, modified, and assembled via exchange file formats [Ros97]. Dynamic
content can also be exchanged, modified, and assembled, but furthermore it allows
collaborative modeling in parallel.

In order to modify a static 3D model, the modeler needs the 3D model; whereas
a dynamic model can be modified on the basis of its interfaces. In the same way, in
which a programming library can be changed independently from the application
that uses it (as long as the interfaces remain stable), the procedures of a generative
model can be changed. This separation allows the utilization of design patterns (dec-
orator, builder, . . .) known from software engineering [FFBS04] in 3D modeling. A
decorator function (for example a method, which smoothes all edges) can be mod-
ified independently from the code which generates geometry.

As the interpretation of a geometric script is computationally more intensive than
the handling of static geometry, optimization techniques, such as just-in-time com-
pilation, are of great interest. Unfortunately, scripting languages tend to support fea-
tures such as higher order functions or self-modification, etc. These language charac-
teristics are difficult to compile into machine/byte-code. Therefore, we developed a

186 4 Computer-Aided Geometric Design

hybrid approach. In “Compilation of Procedural Models” [UKF08], TORSTEN ULLRICH,
ULRICH KRISPEL, and DIETER W. FELLNER present an interpreter with an integrated com-
piler. In this way we speed up the script evaluation without having to remove any
language features e.g. the possibility of self-modifications.

A complete compilation of a GML program would be a hard task due to its dy-
namic properties. ANTON M. ERTL presented a method to compile FORTH, another
stack based language, to native code [Ert96], [EP97]. He creates a data flow graph by
interpreting an input file and examining all stack operations, i.e. the input and output
parameters of a function. The native code is then generated from this data flow graph.
This method implies that the number of input and output parameters of each func-
tion is known. In the context of GML this is not possible as the interface (especially
the number of input and output parameters) of a function can be changed at runtime.
Therefore, a hybrid approach has been chosen. The implemented system is able to
translate bounded functions (marked in the source to be permanent/unchangeable)
to executable Java code.

In GML each function consists of a sequence of instructions so-called tokens. Ev-
ery token generates side effects when it is executed. A simple token such as an integer
pushes itself on the operand stack. A complex token may produce geometry or per-
form arbitrary stack operations.

To generate Java source code, the interpreter distinguishes four different stack ma-
nipulations – depending on the number of elements put on the stack. Instead of using
the operand stack the compiler maintains an internal stack of strings for code gener-
ation.

No element Such a function takes a fix number of elements from the stack and does
not push any elements on the stack. As long as the internal compiler stack is not
empty, elements from this stack are popped. If the internal string stack is empty,
source code to pop elements is generated instead (interpreter.pop()). These
strings are passed to the function operator, which has to provide appropriate
source code. The resulting code will then be written to the source file.

Example: The print function takes one parameter from the stack and writes it to
standard out. If "Hello World" is on the internal compiler stack the source code
System.out.println("Hello World") is generated. If the internal compiler stack
is empty, the compiler passes interpreter.pop() and the resulting source code
is System.out.println(interpreter.pop()).

One element This case is very similar to the ‘No element’-case. It gets the parameters
as strings and generates source code. Instead of writing the generated code into
the source file it is put on the internal compiler stack.

Example: The add function takes two parameters from the stack and adds them.
A pure interpreter pushes the result on the operand stack.

The compiling interpreter keeps the appropriate function call on its internal
stack. If 3 and 5 are on the internal compiler stack, the operator may produce
Operator.add(3, 5). This line of code is pushed on the compiler stack.

4.4 Generative Modeling 187

Two or more elements In contrast to the previous cases the operator gets the needed
input parameters as well as referenced containers for the results. The generated
source code is written to the source file, the container references are put on the
compiler stack.

Example: The function exchange swaps the two topmost elements of the stack.
If x and y are on the internal compiler stack, the operator gets these strings and
source code to access the result containers. The creation of these containers and
the resulting code line of the operator are written to the source file:
_v1 = new ResultContainer();
_v2 = new ResultContainer();
Operator.exchange(x, y, _v1, _v2);
Source code strings to reference the result containers are pushed on the compiler
stack.

Unknown number of elements For each element of the compiler stack an appropri-
ate source code line to push it on the interpreter stack is generated. Then the op-
erator’s execute method is inserted into the source code. Normally this method
is called by the interpreter.

At the end of the translation process the compiler generates source code to put all its
internal stack elements on the interpreter stack. This guarantees a consistent inter-
action between compiled code and the interpreter. Functions created or modified at
runtime are interpreted.

Run time analysis has shown a significant performance gain in the compiling ver-
sion of the interpreter, at the cost of a bigger preprocessing overhead generated by
the compilation. However, this preprocessing time gets insignificant for applications
where frequent re-evaluation of a model is necessary; e.g. in interactive environments.

An important advantage of procedural modeling techniques is the included expert
knowledge within an object description; e.g. classification schemes used in architec-
ture, archaeology, civil engineering, etc. can be mapped to procedures. The genera-
tive approach scales with the object’s complexity and does not depend on the object’s
number of vertices. Furthermore, generative models normally have perfect shapes
which do not suffer from wear and tear effects. Therefore, they represent an ideal ob-
ject rather than a real one. The enrichment of measured data with an ideal description
enhances the range of potential applications, for example in the field of cultural her-
itage. A nominal/actual value comparison may indicate wear and tear effects as well
as changes in style. But how are these generative models created?

In “Modeling Procedural Knowledge: A Generative Modeler for Cultural Heritage”
the authors CHRISTOPH SCHINKO, MARTIN STROBL, TORSTEN ULLRICH, and DIETER W.
FELLNER present a new meta-modeler approach for procedural modeling based on
the programming language JavaScript [SSUF10a]. The choice of the programming
language was a process of carefully considering pros and cons. JavaScript has a va-
riety of important aspects and features we would like to refer to. It is a structured
programming language featuring a rather intuitive syntax, which is easy to read and
to understand. As source code is more often read than written, a comprehensible,

188 4 Computer-Aided Geometric Design

well-arranged syntax is useful, which is provided by JavaScript. It also incorporates
features like dynamic typing and first-class functions. The most important feature of
JavaScript is that it is already in use by many non-computer scientists – namely de-
signers and creative coders [RFM07]. JavaScript and its dialects are widely used in
applications and on the Internet: in Adobe Flash (called ActionScript), in the Adobe
Creative Suite, in interactive PDF files, in Apple’s Dashboard Widgets, in Microsoft’s
Active Scripting technology, in the VRML97, in the Re-Animator framework, etc. Con-
sequently, a lot of documentation and tutorials to introduce the language exist [VV04].
In order to be used for procedural modeling, JavaScript is missing some functionality,
which we added via libraries.

Our meta-modeler approach Euclides differs from other modeling environments
in a very important aspect: target independence. Usually, a generative modeling en-
vironment consists of a script interpreter and a 3D rendering engine. A generative
model (3D data structures with functionality) is interpreted directly to generate ge-
ometry, which is then visualized by the rendering engine. In our system a model’s
source code is not interpreted but parsed into an intermediate representation, an ab-
stract syntax tree (AST). After a validation process it is translated into a target lan-
guage [USF10b]. The process of

parsing→ validating→ translating

offers many advantages as illustrated in Figure 4.59. The validation step involves syn-
tax and consistency checks. These checks are performed to ensure the generation of a
correct intermediate representation (AST) and to provide meaningful error messages
as early as possible within the processing pipeline. Meaningful error messages are one
of the most, if not the most, important aspect of a beginner-friendly development en-
vironment. The consistent intermediate representation serves as a basis for back-end
exporters to different languages, different targets / platforms and for different pur-
poses. As our compiler has been designed to translate and export JavaScript to other
languages, it includes mechanisms to map JavaScript methods and data types to the
target language as well as mechanisms to wrap already existing libraries. The Euclides
compiler uses annotation techniques to control this mapping and wrapping process.
These annotations are placed in JavaScript comments to ensure 100% compliance
with the JavaScript standard. In this way low-level, platform dependent functions –
such as a method to draw a single shape – are wrapped platform independently. Dur-
ing the bootstrapping process of a new exporter a few low-level functions need to be
wrapped in this way. All other functions, methods, etc. are built upon these low-level
routines. Consequently, they can be converted and translated automatically.

Currently, the framework offers translators and exporters to HTML/XML (for doc-
umentation and publishing), executable Java code and GML code (for visualization),
and differentiated Java code (for numerical optimization). The differentiated Java code
can be included in objective functions. Having the objective function f (x1, . . . ,xn) as

well as its partial derivatives ∂ f
∂ x i

at hand, it is possible to use standard optimization
algorithms to solve a generative minimization problem efficiently. This technique is
used, amongst others, in the generative reconstruction approach described in the

4.4 Generative Modeling 189

Generative knowledge and
procedural 3D model in
JavaScript source files

standard XML for sustainable
documentation and long-term
archival

commonly used 3D formats
and viewers (GML, Java, etc.)
for visualization

internet file formats (HTML)
for publishing and distribution

differentiated code
for numerical optimization

The Euclides
framework:

- lexical
scanner

- grammar
parser

- translator
to various
platforms

Figure 4.59: The meta-modeler approach has many advantages. Its main characteristic is its
platform / target independence with various exporters for different purposes.

next chapter. It is implemented using a JavaScript to Java translator and automatic
differentiation techniques (see sidebar on page 52f).

For visualization purposes the framework offers an GML translator. PostScript and
all its dialects use reverse Polish notation. Although the JavaScript to GML translation
might seem to be a simple infix-to-postfix rewrite for mathematical expressions, the
correct translation of control flow structures is a non-trivial task, due to the fact that
there is no concept of “goto” in the PostScript language and its dialects.

PostScript and GML are interpreted, stack-based languages with strong dynamic
typing, scoped memory, and garbage collection. The language syntax uses reverse
Polish notation, which makes the order of operations unambiguous, but reading a

190 4 Computer-Aided Geometric Design

program requires some practice, because one has to keep the layout of the stack in
mind [Rei90]. Literals such as numbers and strings are simply put on the stack. Oper-
ators and functions take their arguments from the stack, and place their results onto
the stack. Complexe data structures can be built on array and dictionary types, which
are known to the interpreter, but cannot be declared to the type system. They remain
arrays and dictionaries without further type information.

The JavaScript to GML translator is explained in detail in “Euclides – A JavaScript
to PostScript Translator” [SSUF10b]. The translation process begins with a correct
JavaScript (JS) abstract syntax tree (AST).

Data Types

In JavaScript each variable has a particular, dynamic type. It may be undefined, boolean,
number, string, array, object, or function. GML also has a dynamical type system. Un-
fortunately, both type systems are incompatible to each other. Therefore, translating
JS-data types to GML poses two particular problems: On the one hand, the dynamic
types must be inferred at run time. On the other hand, GML’s native data types lack
distinct features, for example, GML-Strings cannot be accessed character-wise. We
solved these problems by implementing JS-variables as dictionaries in GML. Dictio-
naries are objects that map unique keys to values. These dictionaries hold needed
metadata and type information as well as methods which emulate JavaScript behav-
ior.

The system translation library for GML (which every JS-translated GML program
defines prior to actual program code) contains the function sys_init_data, which de-
fines an anonymous data value in the sense of JS-data.

/sys_init_data
{

dict begin
/content dict def
content begin
/type edef
/value edef
/length { value length } def

end
content
end

} def

sys_init_data opens a new variable-scope by defining a new, anonymous dictionary
and opening it. In this new scope, another newly created dictionary is defined by
the name content. This content-dictionary receives three entries: type, value and the
method length. Each entry value is taken from the top of GML’s stack. The newly
created dictionary is then pushed onto the stack and the current scope is destroyed

4.4 Generative Modeling 191

by closing the current dictionary, leaving the anonymous dictionary on the stack. In
GML notation, a JS-variable’s content is defined by pushing the actual value and a pre-
defined constant to identify the type of the variable (such as Types.number, Types.array,
etc.) onto the stack, and calling sys_init_data. Consequently, var foo = 42; trans-
lates to

/usr_foo 42.0 Types.number sys_init_data def

As it can be seen, the translator prefixes all JS-identifiers with usr_ (in order to ensure
that all declarations of identifiers do not collide with predefined GML objects) and
uses the following translations:

Undefined: Variables of type undefined result from operations that yield an undefined
result or by declaring a variable without defining it. var x; leads to x being of type
undefined. It is translated to

/usr_x Nulls.Types.undefined Types.undefined sys_init_data def

Boolean: Boolean values are denoted by the keywords true and false. The translation
simply maps these values to equivalent numerical values in GML. The JS-statement
var x = true; becomes

/usr_x 1 Types.bool sys_init_data def

Number: All JS-numbers (including integers) are represented as 32-bit floating point
values. As GML stores numbers as 32-bit floats internally as well, we simply map
them to GML’s number representation. For the sake of completeness, the statement
var x = 3.14159; is translated to

/usr_x 3.14159 Types.number sys_init_data def

String: Although GML does support strings, they cannot be accessed character-wise.
We cope with this limitation by defining strings as GML-arrays of numbers. Each
number is the unicode of the respective character. As GML allows to retrieve and to
set array-elements based on indexes, this approach meets all conditions of JS-strings.
The statement var x = "Hello"; becomes

/usr_x [72 101 108 108 111] Types.string sys_init_data def

192 4 Computer-Aided Geometric Design

Array: JS-arrays allow to hold data with different types, the array’s contents may be
mixed. This behavior is in line with GML. Therefore, an array has a straightforward
translation. var x = [true, false, "maybe"]; is

/usr_x [
1 Types.bool sys_init_data
0 Types.bool sys_init_data
[109 97 121 98 101] Types.string sys_init_data]

Types.array sys_init_data def

Object: Objects consist of key-value-pairs. This structure is mapped to nested GML-
dictionaries. The value of a variable’s content is a dictionary of its own. The statement
var x = { x: 1.0, y: 2.0, z: 42}; defines an object of name x with key-value-pairs
x to be 1, y to be 2, and z to be 42:

/usr_x dict begin
/obj dict def obj begin
/usr_x 1.0 Types.number sys_init_data def
/usr_y 2.0 Types.number sys_init_data def
/usr_z 42.0 Types.number sys_init_data def

end obj
Types.object sys_init_data end def

Opening an anonymous dictionary creates a new scope. In this scope, a dictionary
is created and bound to the name /obj. It is then opened and its members are de-
fined, just like anonymous variables would be. The object dictionary is then closed,
put on the stack, and used to define an anonymous variable. The enclosing anony-
mous scoping dictionary is then closed and simply discarded.

Function: JavaScript has first-class functions. Therefore, it is possible to assign func-
tions to variables, which can be passed as parameters to other functions. In the fol-
lowing example, a function function do_nothing() {} is declared and defined. After-
wards, it is assigned to a variable var x = do_nothing; If we abstract away from the
translation of the function do_nothing, the code var x = do_nothing; becomes:

/usr_do_nothing {
%% ... definition of function omitted ...

} def

/usr_x /usr_do_nothing Types.function sys_init_data def

4.4 Generative Modeling 193

The variable x can now be used as a functor, which acts the same ways as do_nothing.
Because such functors can be reassigned, it is necessary to handle functor calls (e.g.
x()) differently than ordinary function calls (e.g. do_nothing()): Euclidescreates a tem-
porary array, which contains the functor parameters and passes this array as well
as the variable referencing the function name to a system function sys_execute_var.
This system function resolves the functor and determines the referenced function,
unwraps the array and performs the function call.

Functions

In GML, functions are defined using closures, such as /my_add { add } def. If this
function my_add is executed, the closure { add } is put onto the stack, its brackets are
removed, and the content is executed.

To execute a GML function, its parameters need to be put on the stack prior to
the function call: 1.0 2.0 my_add The result 3.0 will remain on the stack. Please note,
that GML functions may produce an arbitrary number of results (left on the stack) at
each function call. According to the JavaScript standard, functions always return ex-
actly one value. The default return value is null, if nothing is returned otherwise. The
number and names of function parameters are known at compile time. Only func-
tors (referenced functions stored in variables) may change at run time and cannot be
checked ahead of time.

Scopes As JavaScript uses a scoping mechanism different to GML, it has to be em-
ulated. This is a rather difficult task, which has to take the following properties of
scopes into account.

• JavaScript functions may call other functions or themselves.

• Called functions may declare the same identifiers as the calling functions.

• Within functions other functions may be defined.

• Blocks might be nested inside functions, redefining symbols or declaring sym-
bols of the same name.

The translator uses GML’s dictionary mechanism to emulate JS-scopes. A dictionary
on the dictionary stack can be opened and it will take all subsequent assignments to
GML-identifier (variables). Since only the opened dictionary is affected, this behav-
ior is the same as the opening and closing scopes in different scoped programming
languages, such as C or Java.

Thus an assignment /x 42 def can be put into an isolated scope by creating a dic-
tionary (dict), opening it (begin), performing the assignment, and closing the dictio-
nary (end). The following example shows how such GML scopes can also be nested:

194 4 Computer-Aided Geometric Design

dict begin %%
/x 3.141 def %% x is 3.141
dict begin %%
/x 4 def %% x is 4.0

end %% x is 3.141
end %% x is unknown

As noted before, JavaScript supports redefinition of identifiers that were declared in a
scope below the current one. Fortunately, GML exhibits just the same behavior when
reading out the values of variables/keys from dictionaries of the dictionary stack.
Consequently, the following example works as expected.

dict begin %%
/x 42 def %%
dict begin %%
/y x 1 add def %% y is now 43

end %%
end %%

However, assignments to variables have to be handled differently in GML. The Gen-
erative Modeling Language does not distinguish between declaration and definition,
any declaration must be a definition and vice versa. The translator solves this prob-
lem and uses a function of the system translation library called sys_def. This function
applies GML’s where operator to the dictionary stack in order to find the uppermost
dictionary, where the searched name is defined. The operator returns the reference to
the dictionary, in which the name was found.

4.4 Generative Modeling 195

Control Flow for Functions The Generative Modeling Language and all PostScript
dialects lack a dedicated jump operation in control flow. Imperative functions often
require the execution context to jump to a different point in the program – and to re-
turn from there as well. Fortunately, GML provides an exception mechanism. A GML
exception is propagated down GML’s internal execution stack until a catch instruction
is encountered. In this way it overrides any other control structure it encounters.

/usr_foo {
dict begin
/return_issued 0 def
{ dict begin
%% ... function body omitted ...
end }

{ /return_issued 1 def }
catch

return_issued not
{ Nulls.Types.undefined Types.undefined sys_init_data } if
end
sys_exception_return_handler

} def

In this empty function skeleton, the function opens a new anonymous scope. In-
side this scope dict begin . . . end the local identifier /return_issued is set to 0. Af-
terwards a GML try-catch-statement { try_block } { catch_block } catch contains
the JS-function implementation. The catch block redefines /return_issued to 1 to in-
dicate that a JS-return statement has been executed in the function body. JS-functions
without any return statement, automatically return null. A corresponding JS-return
statement, e.g., return 42;, is translated to

42.0 Types.number sys_init_data end throw

In this example, the number 42.0 is put onto the stack. The actual function body’s
scope is closed end, and the throw operator is applied. The distinction of whether the
end of the function body was reached by normal program flow or via a return state-
ment determines, if a return value needs to be constructed (null) and put onto the
stack.

Parameters to functions are simply put on the stack. The function body retrieves
the expected number of parameters and assigns them to dictionary entries of the
outer scope defined in the function translation. A complete example of a translated
JS-function shows the interplay of all mechanisms.

196 4 Computer-Aided Geometric Design

The simple function

function foo(n) {
return n;

}

is translated to

/usr_foo {
dict begin
/usr_n edef
/return_issued 0 def
{ dict begin
usr_n
end
throw
end }

{ /return_issued 1 def }
catch

return_issued not
{ Nulls.Types.undefined Types.undefined sys_init_data } if
end
sys_exception_return_handler

} def

A function call, for example foo(3), yields the translation

3.0 Types.number sys_init_data usr_foo

If the function foo is assigned to a variable foo_functor, the calling convention in GML
would change significantly:

/usr_foo_functor /usr_foo Types.function sys_init_data def

is called via

[3.0 Types.number sys_init_data] usr_foo_functor sys_execute_var

and represents the call foo_functor(3.0);

4.4 Generative Modeling 197

Exceptions The programming language JavaScript supports throwing exceptions;
e.g., throw "Error: unable to read file.";. Its syntax is similar to a return statement.
To implement such behavior, the Euclides translator adds a call to the predefined sys-
tem function sys_exception_return_handler at the end of each translated function
(see example above).

Throwing an exception translates into a global GML variable exception_thrown be-
ing set to 1, closing the current dictionary and calling GML’s throw. The system func-
tion sys_exception_return_handler will check, if an actual exception is being thrown,
and if so, calls throw again. A catch-block inside a JavaScript program would set the
variable exception_thrown to 0.

Operators

The evaluation of expressions demands variables to be accessed. While GML provides
operators that operate on their own set of types, they obviously cannot be used to
access the translated/emulated JS-variables. For this reason, the Euclides translator
automatically includes a set of predefined GML functions that substitute operators
defined in JavaScript.
Performing the opposite operation to sys_init_data, sys_get_value will retrieve the
data saved in a JS-variable resp. its GML-dictionary. The system function sys_get im-
plements string, array and object access.

/sys_get {
dict begin
/idx exch def /var exch def

var.type Types.string eq {
%% ... handling strings ...

} if

var.type Types.array eq {
%% ... handling arrays ...

} if

var.type Types.object eq {
var sys_get_value idx known 0 eq {
%% return null, if element doesn’t exist
Nulls.Types.undefined Types.undefined sys_init_data

} if
var sys_get_value idx known 0 ne {
%% access element
var sys_get_value idx get

} if
} if
end

} def

198 4 Computer-Aided Geometric Design

Applied to a string / an array Arr and index k, it will return the element Arr[k]. If
its parameters are an object Obj and an attribute name, the function sys_get executes
Obj.name. This may result in a value, which is put on the stack or in a function, which
is called. Conforming to JavaScript, it returns undefined for any requested elements
that do not exist.
Analogous to sys_get, sys_put inserts data into strings and arrays, or defines members
of objects. If sys_put encounters an index k that is out of an array’s range, the array is
resized and filled with values undefined.

The already mentioned routine sys_execute_var inspects a given variable. If it is
a function, it will retrieve the array supplied to hold all parameters and execute the
function. The dynamic binding of functions to variables requires to consider two sit-
uations at run time: The functor receives the correct amount of parameters for its
function, or the number of parameters does not correspond to the referenced func-
tion. In the later case, the function is not called and null is returned instead.

At compile time, a function is defined to expect a concrete number of parameters.
This information is kept to perform parameter checks at run time. In this way, the
correct number of parameters for all functors can be determined any time.

Control Flow

The if-then-else statement corresponds one-to-one to the same GML statement. Con-
sequently, the conditional expression is translated straightforwardly. Using the ex-
pression mapping introduced in the previous section (e.g. sys_eq implements the
equality operator), the JS-statement if(a == b) { c = a; } else { c = b; } is trans-
lated info:

%% if (a==b)
usr_a usr_b sys_eq sys_get_value
{ %% then:

dict begin {
dict begin
/usr_c usr_a sys_def

end
} exec end

}
{ %% else:

dict begin {
dict begin
/usr_c usr_b sys_def

end
} exec end

} ifelse

The exec-statements (and their closures) stem from the fact that both sub-statements,
the then-part and the else-part, are statement blocks { ... }. These blocks are exe-
cuted within their own, new scopes.

4.4 Generative Modeling 199

The Generative Modeling Language supports different types of looping control struc-
tures, which have similar names to JS-loops (e.g., both languages have a for-loop).
However, the GML counterparts have different semantics (e.g., GML’s for-loop has a
fixed, finite number of iterations, which is known before execution of the loop body,
whereas JS-loops evaluate the stop condition during execution, which may result in
endless loops). The Euclides translator uses the GML mechanism, which is an infinite
loop that can be quit using the exit operator.

An important problem is that control structures such as for, while and do-while
are not only controlled by the loop’s stop condition, but also by JS-statements such
as continue and break within the loop body (besides return and throw as mentioned
before). The statement break immediately stops execution of the loop and leaves it,
whereas continue terminates the execution of the current loop iteration and contin-
ues with the next iteration of the loop. Therefore, an empty while loop, for example
while(false) { ... }, is translated to

{ /continue_called 0 def
{ 0 Types.bool sys_init_data
sys_get_value not { exit } if
{ dict begin
%% ... loop body omitted ...
end

} exec
} loop
continue_called not { exit } if

} loop

GML’s exit keyword terminates the current loop. This behavior is leveraged by the
Euclides translator to implement break and continue. It uses two nested loops that
will run infinitely. Prior to the begin of the inner loop /continue_called is set to 0. At
the top of the inner loop, the loop condition is tested. If the condition evaluates to
false, the inner loop is exited using GML’s exit. Otherwise a new scope is created and
the loop-statement executed within that scope. During loop iterations, there are three
scenarios under which a loop can terminate:

1. If the loop condition is met: When the condition evaluates to false, the inner
loop is exited. Since continue_called is not set to true, the outer loop will termi-
nate as well.

2. If the loop body encounters break (resp. GML exit): Again, the inner loop is left.
continue_called will not be set to true, hence the outer loop will also terminate.

3. If the function returns: GML’s exception throwing mechanism will unwind the
stack until the catch-handler at the end of the function is encountered.

200 4 Computer-Aided Geometric Design

If the loop body encounters a JS-continue statement, continue_called will be set to
true and the GML exit command will immediately stop the inner loop. Since the
variable continue_called is set, execution does not leave the outer loop, however. As
a consequence, continue_called becomes 0 again, and execution re-enters the inner
infinite loop.
The do-while-statement is translated very similar to the while-statement. The only
semantic differences in JavaScript are that execution will enter the loop regardless of
the loop-condition and that the loop-condition is tested after loop body execution.

Due to a semantic difference of JS-continue in do-while-loops, this statement needs
to be handled differently. If continue is encountered, the loop condition must still exe-
cute before the loop body is re-entered, because side effects inside the loop condition
may occur (such as incrementing a counter). Euclides handles this problem.
Although GML has a for operator, it is semantically incompatible with JavaScript’s
one. Its increment is a constant number, and so is the limit. In JavaScript, both in-
crement and limit must be evaluated at each loop body execution. Therefore, for
translates just like the previous constructs by two nested loops with the increment
condition repeated in outer loop (due to continue semantics). The statement

for(var i=0; i<1; i++) { }

becomes

dict begin
%% initialization (i=0)
/usr_i 0.0 Types.number sys_init_data def
{ /continue_called 0 def

{ %% condition (i<1)
usr_i 1.0 Types.number sys_init_data sys_lt
sys_get_value not { exit } if
{ dict begin
%% ... loop body ...
end

} exec
%% increment (i++)
usr_i
usr_i 1 Types.number sys_init_data sys_add

/usr_i sys_edef
pop

} loop
continue_called not { exit } if
%% increment again (i++)
usr_i
usr_i 1 Types.number sys_init_data sys_add

/usr_i sys_edef
pop

} loop
end

4.4 Generative Modeling 201

The alternative for-in statement for(var x in array) statement; is semantically equiv-
alent to:

for(var i=0; i<array.length; i++) {
var x=array[i];
statement;

}

This construction loops over the elements of an array and provides the loop body with
a variable holding the current element.

The translation of the switch statement poses several difficulties:

• If a case condition is met, execution can “fall through” till the next break is en-
countered.

• If a break is encountered, the currently executed switch statement must be ter-
minated.

• Of course, switch statements may be nested.

To develop a semantically consistent solution without changing the translation of JS-
break inside switch statements (compared to loops), the switch statement is trans-
lated to a loop that is run exactly once. In GML it reads like 1 { body } repeat. This
way the translation of break shows semantically correct behavior, it terminates the
loop. Consider the following JavaScript program:

var x = 0, y = 0;

function bar() {
return 3;

}

function foo(i) {
switch(i) {
case 0:
case 1:
case 2:
x = 1;

case 4:
x = 3;

case bar():
x = 2;
break;

default:
y = 5;

}
}

202 4 Computer-Aided Geometric Design

The function foo is translated to:

/usr_foo
{ dict begin

/usr_i edef
/return_issued 0 def
{ dict begin
/switch_cnd_met1 0 def
1 { usr_i 0.0 Types.number sys_init_data sys_eq
sys_getvalue switch_cnd_met1 1 eq or {
/switch_cnd_met1 1 def

} if

usr_i 1.0 Types.number sys_init_data sys_eq
sys_getvalue switch_cnd_met1 1 eq or {
/switch_cnd_met1 1 def

} if

usr_i 2.0 Types.number sys_init_data sys_eq
sys_getvalue switch_cnd_met1 1 eq or {
/switch_cnd_met1 1 def
%% x = 1;
/usr_x 1.0 Types.number sys_init_data sys_def

} if

usr_i 4.0 Types.number sys_init_data sys_eq
sys_getvalue switch_cnd_met1 1 eq or {

/switch_cnd_met1 1 def
%% x = 3; /usr_x 3.0 Types.number sys_init_data sys_def

} if

usr_i usr_bar sys_eq
sys_getvalue switch_cnd_met1 1 eq or {
/switch_cnd_met1 1 def
%% x = 2;
/usr_x 2.0 Types.number sys_init_data sys_def
exit

} if
%% y = 5;
/usr_y 5.0 Types.number sys_init_data sys_def

} repeat
currentdict /switch_cnd_met1 undef end
}
{ /return_issued 1 def } catch

return_issued not
{ Nulls.Types.undefined Types.undefined sys_init_data } if
end
sys_exception_return_handler

} def

4.4 Generative Modeling 203

This example shows an introduced, internal variable /switch_cnd_metX for travers-
ing the case statements. As soon as a case statement condition is met, the variable
/switch_cnd_metX is set to true, leading execution into every encountered case state-
ment. The Euclides translator takes into account that switch statements may be nested.
As it traverses the AST, it keeps book of all internal variable to ensure a unique name
(switch_cnd_met1, switch_cnd_met2, . . .).

The example translation shows that for foo(3) only the case 3 (= bar()) will be
executed. The interpreter will break out of the 1 { } repeat statement due to the exit
operator. The default block will be executed in any case if execution is still inside the
repeat statement; no further state is checked for default.

Example

To demonstrate the interplay of all translational building blocks, this section shows a
non-recursive, subtraction-based version of the Euclidean algorithm to calculate the
greatest common denominator and its translation to GML. It can be shown by induc-
tion that two successive Fibonacci numbers (named after LEONARDO FIBONACCI10) are
the computational worst-case of the Euclidean algorithm. We use them as input data.

function fibonacci(index) {
switch (index) {
case 0:
case 1:
return 1;

default:
return fibonacci(index-2) + fibonacci(index-1);

}
}

function gcd(a,b) {
if (a == 0)
return b;

while (b != 0)
if (a > b)
a = a - b;

else
b = b - a;

return a;
}

var x = gcd(fibonacci(5), fibonacci(6));

The corresponding GML code is:

10 LEONARDO FIBONACCI (1180 – 1241) Leonardo Pisano Bigollo also known as Leonard Fibonacci was an
Italian mathematician. His important book “Liber Abaci” spread the Hindu-Arabic numeral system
in Europe.

204 4 Computer-Aided Geometric Design

%% function fibonacci(index) {
%% switch (index) {
%% case 0:
%% case 1:
%% return 1;
%% default:
%% return fibonacci(index-2) + fibonacci(index-1);
%% }
%% }

/usr_fibonacci {
dict begin
/usr_index edef
/return_issued 0 def
{ dict begin
/switch_cnd_met1 0 def
1 { usr_index 0.0 Types.number sys_init_data
sys_eq sys_getvalue switch_cnd_met1 1 eq or {
/switch_cnd_met1 1 def

} if

usr_index 1.0 Types.number sys_init_data
sys_eq sys_getvalue switch_cnd_met1 1 eq or {
/switch_cnd_met1 1 def
1.0 Types.number sys_init_data
end throw

} if

usr_index 2.0 Types.number sys_init_data sys_sub usr_fibonacci
usr_index 1.0 Types.number sys_init_data sys_sub usr_fibonacci sys_add
end throw

} repeat
currentdict /switch_cnd_met1 undef end

}
{ /return_issued 1 def } catch
return_issued not
{ Nulls.Types.undefined Types.undefined sys_init_data } if
end
sys_exception_return_handler

} def

4.4 Generative Modeling 205

%% function gcd(a,b) {
%% if (a == 0)
%% return b;
%%
%% while (b != 0)
%% if (a > b)
%% a = a - b;
%% else
%% b = b - a;
%% return a;
%% }

/usr_gcd {
dict begin
/usr_a edef
/usr_b edef
/return_issued 0 def
{ dict begin
usr_a 0.0 Types.number sys_init_data
sys_eq sys_getvalue
{ usr_b end throw }
{}
ifelse

{ /continue_called 0 def
{ usr_b 0.0 Types.number sys_init_data
sys_ne sys_getvalue not { exit } if

usr_a usr_b sys_gt sys_getvalue
{ /usr_a usr_a usr_b sys_sub sys_def }
{ /usr_b usr_b usr_a sys_sub sys_def }
ifelse exec

} loop
continue_called not { exit } if

} loop
usr_a end throw
end

}
{ /return_issued 1 def } catch
return_issued not
{ Nulls.Types.undefined Types.undefined sys_init_data } if
end
sys_exception_return_handler

} def

%% var x = gcd(fibonacci(5), fibonacci(6));

/usr_x
6.0 Types.number sys_init_data usr_fibonacci
5.0 Types.number sys_init_data usr_fibonacci
usr_gcd

def

206 4 Computer-Aided Geometric Design

While this translation is a simple infix-to-postfix notation rewrite for mathematical
expressions (e.g. the function call gcd(fibonacci(5), fibonacci(6)) becomes basi-
cally 6 fibonacci 5 fibonacci gcd), the correct translation of control flow structures
is a non-trivial task, due to the fact that there is no concept of goto in the PostScript
language and its dialects. “Euclides – A JavaScript to PostScript Translator” [SSUF10b]
shows the first translation of JavaScript into a PostScript dialect including allcontrol
flow statements.

As Euclides offers a new access to GML, all GML users will benefit from its results.
The possibility to use GML via a JS-to-GML translator reduces the inhibition thresh-
old significantly. Everyone, who knows any imperative, procedural language (Pascal,
Fortran, C, C++, Java, etc.) is familiar with the language concepts in JS and can use
Euclides. Advanced GML users, who already know how to program in PostScript style,
can use Euclidesto translate algorithms, which are often presented in a imperative,
procedural (pseudo-code) style [CSLR01]. In this way, algorithms and mathematical
routines, such as a Cholesky, eigenvalue, or singular value decomposition, can easily
be included in hand-written code.

Euclideshas a beginner-friendly syntax and is able to generate and export proce-
dural code for various, different generative modeling or rendering engines. This in-
novative meta-modeler concept allows a user to export generative models to other
platforms without losing its main feature – the procedural design. In contrast to other
modelers, the source code is not interpreted but translated. These translators can
transform the source code to different languages; furthermore, they can perform “non-
standard” compilation task, such as differentiate a function with respect to its input
parameters.

207

5 Reconstructive Geometry

Generative modeling techniques have influenced the modeling process significantly.
The resulting models may appear realistic, but they are not the reconstruction of
some real objects and their geometry.

The process to bring the geometry of a real object together with a suitable shape
template and to extract its main characteristic parameters is known as shape recog-
nition and reverse engineering. This task is highly related to the shape description
problem.

Reverse engineering of generative models offers a new advantage: semantic en-
richment. With more and more virtual objects in model repositories, algorithms gain
importance, which are able to recognize a shape, to extract its main parameters and
therefore to classify a model and to enrich it semantically. This chapter offers a new
approach to this challenge and presents a proof of concept.

Contents

5.1 Information Extraction 208

5.2 Shape Description 212

5.3 Reverse Engineering 215

5.4 Generative Object Definition and Semantic Recognition 221

5.5 Implementation 227

5.6 Applications 233

208 5 Reconstructive Geometry

5.1 Information Extraction

In the context of information extraction, the question to begin with is: Which seman-
tic information can a three dimensional model be expected to contain? According to
“The Meaning of 3D Shape and some Techniques to Extract It” by SVEN HAVEMANN,
TORSTEN ULLRICH, and DIETER W. FELLNER [HUF11] 3D data sets are used for convey-
ing very different sorts of information. A 3D scanning process typically produces a
number of textured triangle meshes, or maybe just a large set of colored points. So a
single 3D scan is conceptually very much like a photograph; it is a result of an optical
measuring process, only with additional depth information. One 3D scan may con-
tain many objects at the same time, or a set of 3D scans may contain different views
of the same object. The notion of an object is highly problematic in this context, of
course, and must be used with care. It may change as function of interpretation and
query context.

5.1.1 2D/3D Analogy

The strong analogy between 2D images and 3D objects is useful and illustrative. There-
fore, extracting semantic information can be done in 3D with similar techniques as
in computer vision, for example, segmentation, object recognition, object retrieval,
shape/image matching, etc. In contrast to 2D data, three dimensional objects can
be arranged hierarchically, which is seldom done with images. A scene graph typi-
cally has a root node representing the origin, inner nodes are transformations, and
leaf nodes contain actual 3D objects. This can express coarse-to-fine transformation
chains, for example:

city→ quarter→ house→ floor→ room→ table→ cup.

In this case objects are typically moveable things, but can also be semantic units. The
roofs and floors of a house may be separated simply because the user wishes to be
able to move them in order to show what is inside the house. If the parts are not in
separate scene graph nodes, they cannot be moved separately.

To summarize, the main difference between 2D images and 3D objects is that im-
ages are typically treated as self-contained units. Segmentation is typically applied
for recognition purposes (foreground-background separation), but rarely for cutting
an image into pieces that are stored separately and re-combined to create new im-
ages. With 3D data, this is done routinely. The consequence is that in 3D, the spatial
inter-object relations are more changeable, and more significant: Collision of 3D ob-
jects is more significant than 2D collision, which typically means only that one object
occludes another from the point of view of the camera. In some sense, of course, 3D
subsumes 2D since an arbitrary number of virtual photographs can be shot from a 3D
scene.

5.1 Information Extraction 209

5.1.2 Semantic Gap

The problem of extracting semantic information from 3D data can be formulated sim-
ply as What is the point? to express that it is a-priori not clear whether a given point
belongs to a wall, to a door, or to the ground. To answer this question is called seman-
tic enrichment and it is, as pointed out, always an act of interpretation.

According to SVEN HAVEMANN and DIETER W. FELLNER [HF07] several research chal-
lenges have to be met. The most important challenge is the semantic gap and the
meaning of shape. The goal is to assign a meaning (car, house, screw) to a given 3D
model only by considering its geometry. This entails classical questions such as mea-
sures for shape similarity, shape retrieval, and query-by-example. But also more fine-
grained questions such as determining dimensions, parameters, part-of relationships
as well as symmetries, self similarity (ornaments, patterns) and speculation about de-
teriorated parts need to be considered.

Assuming that the meaning of a shape was determined, how can that information
be stored in a sustainable way? Currently, there is no commonly accepted, domain
independent method to store and exchange the meaning of a shape. Note that this
not only requires solving the previous problems, but it additionally requires a com-
mon approach for knowledge engineering, e.g., using standardized shape ontologies
to express the relations between the different shapes.

Currently, the 3D production and acquisition pipeline does not consider shape se-
mantics sufficiently. Techniques to digitize shape are currently becoming available to
a wide audience. Also shape modeling, i.e., the creation of synthetic 3D models has
become more accessible due to proliferation of free, easy-to-use 3D modeling soft-
ware, e.g., Google SketchUp [GL06]. As a consequence, masses of 3D data are pro-
duced. Therefore, the problems of missing shape semantics are very urgent.

Shape acquisition is a measurement process using dedicated devices like a com-
puter tomograph, or a laser scanner, or simply sequences of uncalibrated photographs
to which photogrammetry and computer vision techniques are applied [KPVG00]. In
any case, the result of the measurement is typically a point cloud, either with color
per point, or with texture coordinates per point and a set of texture images. The next
(non-trivial) processing step converts the point cloud to a higher-level geometric sur-
face description with less redundancy: Note that also a perfectly planar surface can
yield millions of points when it is 3D-scanned, although maybe four corner points
would be sufficient to represent the shape with high accuracy. This goes without say-
ing that creating a surface from a set of points is in fact already an interpretation;
strictly speaking, it is a hypothesis.

5.1.3 Digital Libraries

The idea of generalized documents is to treat multimedia data, in particular 3D data
sets, just like ordinary text documents, so that they can be inserted into a digital li-
brary. For the digital library to be able to handle a given media type, it must be inte-
grated with the generic services that a library provides.

Documents, Metadata, and Annotations

In 1998 WILLIAM J. CLINTON announced
at the 150th Anniversary of the Amer-
ican Association for the Advancement
of Science that “the store of human
knowledge doubles every five years”.
With increasing knowledge the process
of knowledge management and engi-
neering becomes more and more im-
portant. Enriching documents by using
markup techniques and by supporting
semantic annotations is a major tech-
nique for knowledge management. It al-
lows an expert to establish an interrela-
tionship between a document, its con-
tent and its context.

Annotations made by groups or in-
dividuals, in the context of teamwork
or individual work allow to capture
contextual information, which can im-
prove and support cooperative knowl-
edge management policies; i.e. anno-
tations can be considered under the
perspective of documentation. In fact,
tracking the changes and focal points of
annotations implies tracing the under-
lying reasoning process.

This invaluable information is of ex-
treme importance in the context of civil
engineering, product life cycle man-
agement, virtual archival storage, and
preservation. In these fields of applica-
tions annotation techniques for 3D doc-
uments are a vital part.

Documentation standards and an-
notation processes are used in var-
ious fields of applications. Unfortu-
nately, each branch of science has
slightly different definitions of bibli-
ographical terms. TORSTEN ULLRICH,
VOLKER SETTGAST and RENÉ BERNDT

clarify these terms in “Semantic Enrich-
ment for 3D Documents – Techniques
and Open Problems” [USB10]:

A document is any object, “pre-
served or recorded, intended to repre-
sent, to reconstruct, or to demonstrate
a physical or conceptual phenomenon”.
This definition has first been verbalized
by SUZANNE BRIET in her manifesto on
the nature of Documentation: “Qu’est-
ce que la documentation?” [Bri51]. In
MICHAEL K. BUCKLAND’s article “What is
a document?” various document defini-
tions are given and compared to each
other [Buc97].

A distinct, separate subpart of a doc-
ument is called entity. Other authors
refer to a subpart as segment. Meta-
data about documents or parts of doc-
uments are defined as “structured, en-
coded data that describe characteris-
tics of information-bearing entities to
aid in the identification, discovery, as-
sessment, and management of the de-
scribed entities.” The American Library
Association formalized this definition in
its Task Force on Metadata Summary
Report [oC99]. According to this defini-
tion metadata is always structured. Un-
structured, encoded data, such as com-
ments and free texts, are hereinafter
called annotations. As metadata is al-
ways structured, it can be specified in
a formal, explicit way: an ontology is
a “formal, explicit specification of a
shared conceptualisation”. It provides a
shared vocabulary, which can be used
to model a domain; i.e. the type of ob-
jects and/or concepts that exist, and
their properties and relations.

5.1 Information Extraction 211

TOM GRUBER established this defini-
tion in his article “A translation ap-
proach to portable ontology specifi-
cations” [Gru93]. The connections be-
tween a document and its metadata or
annotations are called markup instruc-
tions. They provide local or global refer-
ence points in a document.

In the context of computer-aided
design a document is very often the re-
sult of a process chain. Data describing
a single processing step or a document’s
process chain is termed paradata.

Metadata and annotations – seman-
tic information in general – can be clas-
sified in several ways. Depending on the
field of application, they can be classi-
fied according to the following criteria.

Document data type Semantic in-
formation enriches a document. As
documents can be grouped according
to their type, these categories can be
transferred to metadata and annota-
tions as well. In the context of 3D data
the most common representations are:
Boundary representation, point clouds,
volume data.

Scale of Semantic Information Se-
mantic information can be added for
the entire data set or only for a frag-
ment of the object. For some metadata
like “author” it can be sufficient to mark
the entire document. But 3D data cre-
ation is often a collaborative task with
many people working on one complex
object. For comments and detailed de-
scriptions a specific place within the 3D
data set (via anchor) is needed.

Type of Semantic Information The
“Metadata Encoding & Transmission
Standard” of the Library of Congress de-

fines three types of metadata and an-
notation: Descriptive information (e.g.
the Dublin Core metadata set [SBW02]),
administrative metadata (e.g. intellec-
tual property rights), structural meta-
data (e.g. hierarchical structure of a dig-
ital library object).

Type of creation The creation of se-
mantic enrichment of 3D documents
fall basically in two categories: manual
or automatic. Most of the metadata (es-
pecially administrative and descriptive
metadata) can be generated automati-
cally, but depending on the domain cer-
tain fields need support from an expert.

Data organization The data organi-
zation is an important aspect thinking
of the sustainability of the annotation.
There are two basic concepts how pro-
grams can store annotations: Within the
original documents or separated.

Information comprehensiveness
Semantic enrichment can be further
classified by the comprehensiveness of
the information. The amount of com-
prehensiveness can vary from low to
high in any gradation. An example for
a low comprehensiveness would be the
Dublin Core metadata set [Ini95] with
15 properties. In contrast, the CIDOC
Conceptual Reference Model (CRM) is
a scheme with a high comprehensive-
ness. It is a framework for the definition
of relationship networks of semantic
information in the context of cultural
heritage [Gro03]. It offers a formal on-
tology with 90 object classes and 148
properties (in version 5.0.1) to describe
all possible kinds of relations between
objects.

212 5 Reconstructive Geometry

This defines a library in terms of the function it provides – namely markup, indexing,
and retrieval [Fel01], [FSK07]. Like any library, a digital library contains meta infor-
mation for all data sets. This is insufficient for large databases with a huge number of
3D objects, because of their versatility and rich structure. Scanned models are used
in raw data collections, for documentation archival, virtual reconstruction, historical
data analysis, and for high-quality visualization for dissemination purposes [SUF07].
Navigation and browsing through the geometric models must be possible not only in
3D, but also on the semantic level. This cannot be done, if the library simply treats 3D
data as binary large objects as it is done quite often.

5.2 Shape Description

While describing a 3D model on the geometric level is a problem that has been re-
searched reasonably well, it is still an open-ended question how to describe the shape
and its structure on a higher, more abstract level [LZQ06]. Several approaches are de-
scribed in “Multimedia Information Extraction” [May11], which also illustrates the
complexity of the task.

5.2.1 Description by Definition

The traditional way of classifying objects, pursued both in mathematics and, in a less
formal manner, in dictionaries, is to define a class of objects by listing their distinctive
properties:

cup – a small, open container made of china, glass, metal, etc., usually hav-
ing a handle and used chiefly as a receptable from which to drink tea,
soup, etc.

http://dictionary.reference.com

This approach is not amenable for computers not only because of the natural lan-
guage used, but more fundamentally because of the fact that definitions typically de-
pend on other definitions (e.g., container, china, glass, etc.). This often leads to circu-
lar dependencies that cannot be resolved automatically by strict reasoning, but rely
on intuitive understanding at some point (hen – egg). The dictionary example also
illustrates the difficulty of making implicit knowledge explicit: Most people will agree
on which objects fall into the class “cup”, but it is far more difficult to synthesize an
explicit definition for this class. So building up a dictionary of definitions is a sophis-
ticated and tedious task.

http://dictionary.reference.com

5.2 Shape Description 213

5.2.2 Taxonomic Examples

An alternative, non-recursive approach for describing shape is to use a picture dic-
tionary. Each entry in the dictionary is illustrated with a photo or a drawing. This
description by example approach is widely-used, for example in biology for plant
taxonomy. This avoids listing an exhaustive list of required properties for each entry.
However, it requires some notion of similarity and classification, simply because the
decision whether object x belongs to class A or B requires measuring the closeness of
x to the exemplars a∈ A and b∈ B of both classes.

5.2.3 Statistical Approaches and Machine Learning

A large body of literature on 2D segmentation, detection, recognition, and matching
exists in the field of computer vision, based on machine learning techniques. Many
of these approaches use a classifier. A classifier decides to which class an object x
belongs; or more formal: it is a function f that maps input feature vectors x ∈ X to
output class labels y ∈C = {1, . . . ,k }. The feature space X is often Rd .

The goal in machine learning is to derive f from a set of labeled training data
(xi ,yi). Probabilistic approaches compute the posterior probability P(y |x) that feature
vector x belongs to the class y . Then, the classifier can simply choose the class with
the highest probability,

P(y = c |x) =max
c∈C

. (5.1)

Modeling the a-posteriori probability directly is called a discriminative model, since
it discriminates between given classes. A generative model, however, uses Bayes’ rule,
Equation (2.67), to compute the posterior probabilities using

P(y |x) =
P(x|y) ·P(y)

∑

c∈C P(x|c) ·P(c)
. (5.2)

The advantage is that P(x|c) and P(c) can be learned separately, which makes the
classifier more robust against partly missing data, it can handle combined features,
and new classes can be added incrementally. Details can be found in the computer
vision literature [Bis07], [UB05].

Many of the machine learning techniques are applicable to 3D problems [OB07],
e.g., for feature-based similarity search [MGGP06], [FS06], [GCO06], [FMA+10]; some
even use computer vision techniques directly. 2D computer vision is clearly ahead
with respect to machine learning, so much progress can be expected when more of
these techniques are lifted to 3D [JH99]. The new term visual computing was coined
for the confluence of graphics and vision.

Statistical approaches clearly have their strength in discriminating object classes.
However, it is generally difficult to describe objects with a “flat” feature vector. Fur-
thermore 3D objects often have a rich hierarchical structure, e.g., a hierarchy of joints

214 5 Reconstructive Geometry

or a graph of rooms connected by doors. In addition, feature-based object detection,
e.g., of rectangular shapes, does not yield object parameters: width and height of a
detected rectangle must typically be computed separately.

A good survey on content-based 3D object retrieval is provided by BENJAMIN BUSTOS

et al. [BKSS07]. One example is the approach from DING-YUN CHEN et al. [CTSO03],
who calculate the similarity between a pair of 3D models (taken from a 3D database)
by comparing heuristically chosen sets of 2D projections rendered from the two mod-
els. Each projection is then described by image features, for instance the silhouette.
The similarity between two objects is then defined as the minimum of the sum of
distances between all corresponding image pairs over all camera rotations.

5.2.4 Algorithmic Description

In “Semantic Fitting and Reconstruction” TORSTEN ULLRICH, VOLKER SETTGAST and
DIETER W. FELLNER present an approach to describe objects via generative scripts and
parameters [USF08b]. In this case a class of geometric objects is described by a gen-
erative script respectively by an algorithm. The question whether an object belongs
to a class is reduced to the question whether the object can be generated by the class’
algorithm.

This combination of geometry and algorithm design offers a big advantage. Due
to its close relationship to programming, generative modeling offers a new dimension
of collaborative modeling. Static content can be exchanged, modified, and assembled
via exchange file formats [Ros97]. Dynamic content can also be exchanged, modified,
and assembled, but furthermore it allows collaborative modeling in parallel. In order
to modify a static 3D model, the modeler needs the 3D model; whereas a dynamic
model can be modified on the basis of its interfaces. In the same way, in which a
programming library can be changed independently from the application that uses it
(as long as the interfaces remain stable), the procedures of a generative model can be
changed. This separation allows the utilization of design patterns (decorator, builder,
. . .) known from software engineering [FFBS04] in 3D modeling. A decorator function
(for example a method, which smoothes all edges) can be modified independently
from the code which generates geometry. To illustrate this possibility Figure 5.1 shows
the result of a generative model highlighting independent subroutines in different
colors. These building blocks can be arranged freely to describe a class of buildings
(see Figure 5.2).

Due to the naming of functions and algorithms as well as possible markup tech-
niques, procedural model libraries are the perfect basis for digital library tasks. The
advantages of procedural modeling arise from the fact that generative models have
perfect shapes. Therefore they represent an ideal object rather than a real one. The
enrichment of measured data with an ideal description enhances the range of pos-
sible applications. This connection – an inverse problem called reverse engineering
– is a great challenge as pointed out in “Procedural methods for 3D reconstruction”
[Arn06].

5.3 Reverse Engineering 215

Figure 5.1: Gothic architecture is defined by strict rules with its characteristics: pointed arcs,
the ribbed vaults, and the flying buttresses. These building blocks (highlighted in different col-
ors) can be identified in every building of Gothic style. The building blocks have been created
by MICHAEL CURRY, thingiverse.

5.3 Reverse Engineering

Given a shape, the reverse engineering problem is to answer the question: How has
this shape been created? This is an inverse problem in the sense that it tries to infer the
construction process. Simple examples would be to infer from points sampled from
a sphere the center and radius of the sphere; or, given the shape created by a milling
process, to compute the path of the milling tool. This shows that reverse engineering
always makes certain assumptions about the underlying design space, i.e., the tools
that were used for creating a given object. These assumptions may be wrong: Fitting
a sphere to an ellipsoid or to a box yields bad results.

According to the definition by Tamás Vradi et al. [VMC97], reverse engineering
requires identifying the structure of the model and the creation of a consistent and
accurate model description. It comprises a number of different problems and tech-
niques such as fitting, approximation, and numerical optimization, described in more

http://www.thingiverse.com/thing:2030

216 5 Reconstructive Geometry

Figure 5.2: Gothic architecture flourished during the high and late medieval period. Its
building blocks (pointed arcs, the ribbed vaults, and the flying buttresses) have been com-
bined in various ways to create great churches and cathedrals all over Europe.
Using these building blocks in a generative system it is easy to generate Gothic examples (left,
middle, right). This generative description and the rules it is based on can be used to define a
class of Gothic architecture.

5.3 Reverse Engineering 217

detail in the processing pipeline from FAUSTO BERNARDINI et al. [BBCS99]. Applying
knowledge to reverse engineering problems improves the recovery of object mod-
els [Fis02]: “computers are good at data analysis and fitting; humans are good at rec-
ognizing and classifying patterns.” ROBERT FISHER demonstrated that general shape
knowledge enables to recover an object, even if the given input data is very noisy,
sparse, or incomplete.

One example of a well-established, complete reverse engineering pipeline is the
field of urban reconstruction. Raw data, unorganized 3D point clouds, are captured
using aerial imagery processed photogrammetrically, optionally complemented by
aerial or terrestrial laser scans. Using strong assumptions about the objects to be re-
constructed, excellent results can be obtained fully automatically by now [KBK+01,
FZ03, Rem03]. This yields a well defined set of semantic information, i.e., ground
polygons and building heights as well as the “roof landscape” [ZKGGK06]. Unfor-
tunately, this semantic information is highly domain dependent and thus, not very
generally applicable. It is difficult to extend the information model to represent the
number of floors, windows, entries, and walking paths, or by a detailed street model.

5.3.1 Structural Decomposition

Urban reconstruction is in fact an example for structural decomposition. The idea is
to postulate a certain type of semantic structure in the data, typically “part-of” rela-
tions, and then to search and extract this structure in unstructured data such as point
clouds or triangle sets.

Structural decomposition can be implemented in various ways; e.g. TAHIR RABBANI

and FRANK VAN DEN HEUVEL use the constructive solid geometry (CSG) paradigm (see
[Sha02]) where primitive objects (box, sphere, cylinder etc.) can be added to or sub-
tracted from each other. So they decompose a triangulated object into a tree of CSG
operations with primitive objects in the tree leafs [RvdH04]. The used primitives (box,
sphere, etc.) are often part of man-made objects. Therefore, they are also used by
RAOUL WESSEL and REINHARD KLEIN to learn “the Compositional Structure of Man-
Made Objects for 3D Shape Retrieval” [WK10].

KIN-SHING D. CHENG et al. [CWQ+04] decompose a triangulated free-form surface
into a subdivision surface. Similar to splines, subdivision surfaces define a smooth
surface with a comparably coarse control mesh.

Structural decomposition is well in line with human perception. In general, shapes
are recognized and coded mentally in terms of relevant parts and their spatial con-
figuration or structure. While this was only postulated, e.g., in the influential Gestalt
theory [KW05] in the late 19th century, psychologists like IRVIN BIEDERMAN have found
also empirical evidence [Bie87]. One idea to operationalize this concept was pro-
posed, among others, by MASAKI HILAGA [HSKK01], who introduces an interesting struc-
tural descriptor, the Multiresolution Reeb Graph, to represent the skeletal and topo-
logical structure of a 3D shape at various levels of resolution. Another school around
BIANCA FALCIDIENO and MICHELA SPAGNUOLO [AIM06] is pursuing the idea of shape

218 5 Reconstructive Geometry

ontologies. They propose, in the context of shape retrieval, the notion of a shape
prototype represented as attributed graph with nodes containing shape descriptors
[BMSF06], [MSF07].
A simple and elegant conceptual framework to extract primitive shapes is the ran-
dom sample consensus (RANSAC) paradigm by MARTIN A. FISCHLER and ROBERT C.
BOLLES [FB81]. In the context of 3D pattern recognition and reconstruction this tech-
nique is capable of extracting a variety of different types of primitive shapes out of un-
structured, noisy, sparse, and incomplete data (see sidebar “Random Sample Consen-
sus” on page 38f). RUWEN SCHNABEL et al. have presented a RANSAC-based framework
that detects planes, spheres, cylinders, cones, and tori in massive point clouds. They
use the detected objects as shape proxies that are much more efficient to render than
the point cloud [WGK05, SWK07]. The approach by PÁL BENKO et al. refines this idea
to process a point cloud by using a hierarchy of tests, i.e. a tree where in each node a
decision is taken which kind of primitive to choose for the fitting process [BKV+02].

Another interesting refinement of the same idea has been done by RUWEN SCHNABEL

et al. [SWWK07]. In addition to the detected shape they also consider the geometrical
neighborhood relations between these shapes and store them in a topology graph. A
query graph captures the shape configuration to be detected, for instance a pair of
symmetrically slanted planes describing a gabled roof. These query graph templates
represent the knowledge about the shape of an entity. The templates have to be pro-
vided by the user, again by making implicit knowledge explicit. The matching of a
semantic entity to the data then corresponds to a subgraph matching of the topology
graph, which can be carried out automatically.

5.3.2 Symmetry Detection

One very active branch in the field of geometry processing is the detection of shape
regularities. An obvious problem is instance detection of parts and subparts. MARK

PAULY and others detect symmetries on multiple levels, e.g., for architectural build-
ings [PMW+08], or even to detect that the deformed body of an animal is symmet-
ric [MGP06]. The latter approach can be further extended to un-deform and straighten
out a deformed symmetric shape so that it becomes symmetric to a plane [MGP07].

MARTIN BOKELOH, MICHAEL WAND, and HANS-PETER SEIDEL use a symmetry detec-
tion approach [BWS10] to create generative model descriptions. Given some 3D ge-
ometry, they find a set of rules that describes new objects, which are similar to the
given one considering local similarity [BBW+08], [BWM+11], i.e., each local neigh-
borhood of a newly created object must match some local neighborhood of the given
exemplar.

To summarize, structural decomposition proceeds by postulating that a certain
type of general regularity or structure exists [WXL+11] in a class of shapes [SBM+10].

Besides semantic challenges, the creation of consistent and accurate model de-
scriptions – focused on geometry – is known as reverse engineering and reconstruc-
tion. To outline the coherences between existing reconstruction approaches it makes

5.3 Reverse Engineering 219

Complete
Fitting

Subpart
Fitting with
preceding
Segmentation

Subpart
Fitting
without
Segmentation

A complete fitting ap-
proach uses a geometry
description that is able
to describe every object
in a unified way. The
fitting process itself re-
gards an object always
as a single component.

Some subpart fitting
algorithms rely upon
an object segmentation
such that different parts
not belonging to the
currently fitted subpart
do not disturb the fitting
process.

Other subpart fitting
techniques do not need
a preceding object seg-
mentation. The fitting
process is capable to
handle multiple in-
stances of the same
subpart within one
object.

Example:
Mesh based
reconstructions.

Example:
NURBS surfaces ap-
proximations.

Example:
RANSAC based
algorithms.

Figure 5.3: The currently known solutions to reverse engineering can be group by the under-
lying geometric model description. The differences arise from the uniformity of a description
and its need of a pre-segmentation.

sense to classify them into three groups (see Figure 5.3) according to the model de-
scription capabilities and the need of a preceding model segmentation.

If the underlying model description is able to describe every three dimensional
object in a consistent and integrative way without the need of an additional super-
structure, the fitting process can be called complete fitting. Otherwise an object is
described by several small parts whose orientation to each other is stored in a super-
structure. This approach is a subpart fitting process.

5.3.3 Complete Fitting

In 1992 HUGUES HOPPE et al. presented an algorithm that fits a polyhedral surface to
an unorganized cloud of points [HDD+92]. The result is a polygonal mesh which de-
scribes the complete object. Further development of polygonal reconstruction has
lead to algorithms whose output is guaranteed to be topologically correct and conver-
gent to the original surface as the sampling density increases [ABK98]. Besides polyg-
onal reconstruction algorithms [GJ02], approaches based on radial basis functions

220 5 Reconstructive Geometry

[CBC+01], constructive solid geometry [RvdH04], or subdivision surfaces [CWQ+04],
[MMTP04], [CWQ+07], are able to describe three-dimensional objects in a unified
way and are representatives of the complete fitting class.

5.3.4 Subpart Fitting with Segmentation

The subpart fitting approaches can be divided into two classes depending on whether
the input data has to be segmented and partitioned or not.

The preprocessing step of segmentation uses feature extraction algorithms, which
determine feature lines such as crease loops and junctions, or border lines [GWM01].
MARK PAULY et al. used principal component analysis on local neighborhoods to clas-
sify points according to the likelihood that they belong to a feature [PKG03]. Using lo-
cal feature vectors to segment and partition the input data into smaller regions, where
each of which can be approximated by a single patch [GG04], is a common approach.

In combination with a special sequence of tests [PTK05] a large point cloud can
be robustly split into smaller and smaller subregions until no further subdivision is
sensible. The spectrum of partitioning approaches reaches from local feature extrac-
tion [WBK08] to global shape recognition [HOP+05], [VGSR04], [ABS06] and varia-
tional shape approximation [CSAD04], [WK05]. The detection of axes of reflection or
intrinsic symmetries of a model [MSHS06], [MZWVG07], [SKS06] as well as geometri-
cal classifications using clustering [KT03] or line geometry [PWL01] offer further seg-
mentation possibilities.

These analysis techniques are needed for example by reconstructions based on
non-uniform rational B-splines (NURBS) [WPL04], developable surfaces [Pet04], or
least squares techniques [Sha98].

5.3.5 Subpart Fitting without Segmentation

No preceding segmentation is needed among others by RANSAC-based algorithms
[FB81], [DDSD03], [WGK05]. The basic idea of RANSAC is described in “Random Sam-
ple Consensus” on page 38f.

A method to create generative models from point clouds or range data of 3D ob-
jects has been presented by RAVI RAMAMOORTHI and JAMES ARVO in [RA99]. The algo-
rithm uses a hierarchy of generative model templates. The root node of the hierarchy
is a very simple geometric shape. Each child node within the hierarchy is a refined
version of its parent. For a given point cloud the algorithm starts to fit the root node
to the input data. It determines the template’s free parameters represented by spline
curves which match the point cloud best. Afterwards it fits the node’s children to the
point cloud as well. The child node with the best results according to an error func-
tion is selected to be the new parent node whose children are fitted next. In this way
the algorithm refines the generative model until the end of the hierarchy is reached
or the fitting error is underneath a user-defined threshold.

5.4 Generative Object Definition and Semantic Recognition 221

This approach creates concise generative models from incomplete and sparse data,
but it is not able to differentiate between objects on a semantic level. Two objects
which have been fitted by the same hierarchy may differ in their free parameters
which are spline curves. Therefore the hierarchy of rotating generalized cylinders may
represent many different objects: a banana as well as a candle-holder or a coffee mug.

5.4 Generative Object Definition and Semantic Recognition

Generative models offer a possibility to describe a shape [USF10b]. The key idea is to
encode a shape with a sequence of shape-generating operations, and not just with a
list of low-level geometric primitives. In its practical consequence, every shape needs
to be represented by a program, i.e., encoded in some form of programming lan-
guage [ÖK08], shape grammar [MWH+06], modeling language [Hav05] or modeling
script [Aut07].

Within this “definition by algorithm” approach, each class of objects is represented
by one algorithm M . Furthermore, each described object is a set of high-level param-
eters x, which reproduces the object, if an interpreter evaluates M (x). As this kind of
modeling resembles programming rather than “designing”, it is obvious to use soft-
ware engineering techniques such as versioning and annotations. In this way, model
M can contain a human-readable description of the object class it represents.

This encoding of semantic information can be used by the algorithm developed
by TORSTEN ULLRICH and published in “Robust Shape Fitting and Semantic Enrich-
ment” [UF07b]. Enhancements to this algorithm are described in “Semantic Fitting
and Reconstruction” [USF08b], [USF09]. The latest developments, discussed in “Gen-
erative Object Definition and Semantic Recognition” [UF11b] by TORSTEN ULLRICH

and DIETER W. FELLNER, enriches 3D objects semantically: the algorithm starts with a
geometric object O and a generative model M . Without user interaction it determines
a parameter set x0, which minimizes the geometrical distance between O and M (x0).
This distance d can be interpreted as a multidimensional error function of a global
optimization problem. Therefore, standard techniques of function minimization can
be used. Having found the global minimum x0, the geometric distance d (O,M (x0))
can be interpreted. A low value corresponds to a perfect match; i.e. the 3D data O is
(at least partly) similar to M (x), whereas a high value indicates no similarity. Conse-
quently, the presented approach is able to semantically recognize instances of gener-
ative objects in real data sets.

As the computational complexity of global optimization depends on the dimen-
sions of the error function, our approach uses a hierarchical optimization strategy
with coarse model descriptions and few parameters at the beginning and detailed
model descriptions at the end. This multi-step optimization determines free parame-
ters successively, fixes them and introduces new parameters. This process stops, if the
end of the hierarchy is reached, or if high error values indicate no object similarity.

222 5 Reconstructive Geometry

If the generative model is regarded as a function M (x), x∈G ⊂Rk , the objective func-
tion minimizes the distance between a geometric object, without loss of generality a
point cloud P= {P1, . . . ,Pn}, and a procedural description M (x); i.e. d (P,M (x)). Due to
numerical stability a weighting function is used. It reduces the disproportional effect
of outlying points [Zha97]. Consequently, the objective function is

f (x) =ψ(d (P,M (x))) !=min . (5.3)

5.4.1 Distance Function

Section 3.3 discusses the main definitions and properties to measure a distance be-
tween two point sets. Without loss of generality it is sufficient to cover point sets; i.e.
even an instance of a procedural model M (x) will temporarily be regarded as a point
set {M 1(x), . . . ,M m (x)}.

A fully automatic, distance-based fitting algorithm has to determine whether a
fitting result is “sensible” or not; i.e. it has to interpret the measured distance. To sim-
plify this interpretation task, the distance of a perfect match should be zero. Although
each metric has to meet the identity condition (Equation (3.16)) and the symmetry
condition (Equation (3.17)), a perfect match does not imply zero distance. In most
fitting scenarios – especially in hierarchical fitting approaches – the generative model
only describes a subpart. Therefore, even a perfect match, for example an identified,
generative window within a scanned point cloud of a complete building, will have a
non-zero distance. Oriented distances, which are characterized by

d (X,Y) 6= d (Y,X), with point sets X,Y, (5.4)

solve this problem. As a consequence,

d (P,M (x)) =
m
∑

i=1

d (P,M i (x)) (5.5)

the sum of all distances from a generated sample point M i to the point cloud P satis-
fies the zero distance requirements mentioned above.

As the distance between a single point X and a point set Y is defined by the mini-
mum of all distances between X and a point Y ∈ Y, respectively

d (X ,Y) =min
Y∈Y

d (X ,Y), (5.6)

a perfect match of a generative subpart has distance zero.

5.4 Generative Object Definition and Semantic Recognition 223

5.4.2 Weighting Function

The most commonly-used weighting function is the squared distance

ψLSQ (x) = x 2, x ∈R. (5.7)

Squared distances to curves and surfaces do not only appear in geometric reconstruc-
tion problems, but also in registration tasks in computer vision and positioning prob-
lems in robotics. Due to the importance of the squared distance function, great effort
has been made to understand the geometry of the function, which associates to each
point in space the square of the shortest distance to a given curve or surface [PH03a].
In combination with an octree data structure which stores in each of its cells a local
quadratic approximant of the squared distance function of a geometric object, many
geometric optimization problems – like registration or surface approximation, where
the solution to the problem is found iteratively with a Newton-type method – can be
solved very efficiently [LPZ03].

The sum of the squares of the distances between data points and a model is used
to treat the residuals as a continuous differentiable quantity. In many cases a simpli-
fied version (e.g. using only a vertical offset) is used instead of the Euclidean distance
allowing a much simpler, linear analytic form.

The usage of squared distances is a mixed blessing. On the one hand it avoids
square root operations. On the other hand outlying points may have a dispropor-
tionate effect on the fit. Even worse, if a model shall be fitted to a data set, least
squares methods implicitly assume that the entire set of data can be interpreted by
one parameter vector of the model. If this condition is not met (as illustrated in Fig-
ure 5.4), the data set has to be partitioned into regions fulfilling this condition. A rea-
sonable weighting function is an alternative to a preceding segmentation. Further-
more, a weighting function should preserve the properties of the metric used to com-
pute the distance. Consequently it should meet the following conditions:

1. The weighting functionψ should be non-negative, so that outliers cannot com-
pensate each other.

2. ψ(0) = 0 should be fulfilled, in order to identify the best-fit solution indepen-
dently of the free parameters.

Considering the requirements for a numerical, iterative solver,

3. the weighting function should be monotonic increasing on the interval (0,∞)
and monotonic decreasing on the interval (−∞,0). Otherwise additional local
minima complicate a numerical solution.

4. ψ should have two continuous derivatives (ψ ∈C 2) to avoid an unnecessary re-
duction of the numerical tools at hand.

224 5 Reconstructive Geometry

Figure 5.4: Fitting a line to a point set is a frequently needed task in reverse engineering
and regression analysis. Using a least squares approach to approximate points of a regularly
sampled square by a line leads to undesirable results (blue). The solution to this problem
either uses a segmentation algorithm to separate the four sides and to fit them separately or
uses a fitting approach, which is robust towards outliers (red).

All these conditions apply to least squares fittingψLSQ (x) = x 2. To overcome the sensi-
tivity of the least squares approach, the area of statistics has developed a wide range of
methods to circumvent the limitations of traditional parametric and non-parametric
methods [MMY06]; in particular, generalized maximum likelihood estimators [Zha97]
and robust parameter estimation techniques [Ste99] are of big importance in this con-
text.

The decreasing exponential approach uses a Gaussian weighting function

ψE X P (x) = 1− e−x 2/σ2
. (5.8)

This function meets the conditions (1) to (4) mentioned previously. To overcome the
disproportionate effect of outlying points the weighting function ψE X P has two im-
portant, additional properties:

5.4 Generative Object Definition and Semantic Recognition 225

1

−1 0 1 x

ψLSQ (x) = x 2

ψE X P (x) = 1− e
−x 2

σ2

Figure 5.5: The least squares approach minimizes the sum of squared distances, ψLSQ (x) =
x 2, which weights outlying points (blue). The function ψE X P (x) = 1− e−x 2/σ2 used by the de-
creasing exponential approach (red) reduces this effect significantly. The choice of σ usually
depends on the noise level of the input data.

5. The codomain ofψE X P is limited to the interval [0,1). Due to the upper limitation
ψE X P < 1, outlying points do not disturb the overall fitting. Outlying points have
only limited influence (illustrated in Figure 5.5). But in contrast to segmentation
and clustering techniques all points haveinfluence and regard is paid to them.

6. While the idea behind least squares is based on regression analysis, the back-
ground of the decreasing exponential approach is related to combinatorial anal-
ysis. The combinatorial process to find a model M (x) = {M 1(x), . . . ,M m (x)} con-
taining the maximum number of points on a sampled surface P can be formu-
lated using the Kronecker delta:

δM i (x),P =

¨

0, M i (x) 6∈P,
1, M i (x)∈P.

(5.9)

The formulation of the discrete, combinatorial problem as a continuous maxi-
mization problem with the possibility of handling feasible noise leads to a weight-
ing functionψCOM (x) = e−x 2/σ2 . Having transformed the maximization problem
into a minimization oneψCOM (x) = 1−ψE X P (x) results in decreasing exponen-
tial fitting which maximizes the number of points on a model’s surface.

226 5 Reconstructive Geometry

5.4.3 Parameter Estimation

A simple plane-fitting example demonstrates the different approaches. The nonlinear
least squares fitting technique to fit a plane

E : Ax + By +C z +D = 0 (5.10)

to some points P1, . . . ,Pn with Pi =
�

x i yi z i

�T ∈R3 uses the unsigned Euclidean
distance

d (Pi ,E) =

�

�

�

�

�

A ·x i + B · yi +C · z i +D
p

A2+ B 2+C 2

�

�

�

�

�

. (5.11)

The function to minimize consists of the squared distances

f LSQ (E) =
n
∑

i=1

d 2(Pi ,E) (5.12)

=
n
∑

i=1

(A ·x i + B · yi +C · z i +D)2

(A2+ B 2+C 2)
(5.13)

!= min
A,B ,C ,D

(5.14)

and takes the four model parameters with three degrees of freedom (the plane equa-
tion can be normalized). If the point set P consists of samples from the surface of
a regular cube, the resulting plane will not contain a side of the cube but its space
diagonal.

An appropriate RANSAC-algorithm will return a plane containing one side of the
cube. It can handle multiple data sets and outliers very well. A basic prerequisite
needed by any RANSAC approach is a solution for the inverse model description
problem. A model’s parameters have to be determined by a fixed number of points
which define a unique model instance. This fixed number should be the minimum
number of sample points needed to identify a unique solution [HZ04]. For a plane
with parameters A, B , C , and D three sample points are sufficient, but this inverse
problem becomes difficult or even unsolvable as soon as the model’s complexity in-
creases; for example, to fit a cylinder more points are needed and the calculation to
get its position and radius is non-trivial. An overview of “Direct solutions for comput-
ing cylinders from minimal sets of 3D points” has been presented by CHRISTIAN BEDER

and WOLFGANG FÖRSTNER [BF06].
In this context, the major advantage of the RANSAC approach is its ability to ignore

outliers without explicit handling. This advantage without the need to solve the in-
verse parameter problem also applies to the decreasing exponential fitting approach.
Its objective function uses ψE X P and regarding the used error functions and metrics
involved the decreasing exponential method is similar to least squares techniques,
but it belongs to the category of subpart fitting algorithms without preceding seg-
mentation. It is able to find the best fit of an arbitrary subpart within a point cloud.

5.5 Implementation 227

5.5 Implementation

The scanned data set is a point cloud P = {P1, . . . ,Pn} and the generative model is a
function M (x), x∈G ⊂Rk . The objective function of our algorithm minimizes

f (x) =ψ(d (P,M (x))) !=min . (5.15)

5.5.1 Hierarchical Shape Description

In order to reduce the number of dimensions which are optimized at once, the shape
template uses a hierarchy of model descriptions. Each level within this hierarchy reuses
the parameters already defined in previous levels and refines the generative model. In
this way the optimization problem is split up in several smaller problems. This hier-
archical process is illustrated in Figure 5.6.

In each level of a hierarchy, the fitting process takes

1. the initial point cloud P= {P1, . . . ,Pn},

2. a generative description in form of a script;
e.g. function_XY_shape(v_1, ..., v_k)

3. and a corresponding validator;
e.g. function_XY_check(v_1, ..., v_k, ..., distances, ...)

The point cloud and the scripted generator are the main components of the objective
function to minimize. The result of this numerical optimization is a set of parameters
(v1, . . . ,vk). Besides numerical problems (local minima, divergence, etc.), this param-
eter set creates the “most similar” object to P, if passed to the generator function.

The optimization routine always returns a parameter set, but the generative de-
scription and the point cloud may have nothing in common and do not have to de-
scribe the same shape. In this case, the distance values (one-sided distances, Haus-
dorff distance, . . .) will have high values. The function of the validator script is to in-
terpret these values.

It checks the optimization results and returns

• reject, if the distances are above a threshold (so that a continued fitting process
does not make any sense), and if the intermediate result, including all fitting
results of previous levels, are not acceptable.

• stop, if the distances are above a threshold, and if the intermediate result is ac-
ceptable.

• continued, if the distances pass the threshold. In this case, the validator also re-
turns the next generative descriptor/validator pair to continue with.

228 5 Reconstructive Geometry

Laser-scanned point cloud P= {
P1 =

�

x1 y1 z 1

�T
,

. . . ,

Pn =
�

xn yn z n

�T

}

Shape generator
function_1_shape(
v_1, . . ., v_r)

Fitting validator
function_1_check(
v_1, . . ., v_r,
. . ., distances, . . .)

Hierarchy level #1

Each hierarchy level optimizes the free
parameters (v1, . . . ,vr) of the generative
script via numerical minimization of
the oriented distances between proce-
dural models and initial point cloud.

stop continue reject

Shape generator
function_2_shape(
v_1, . . ., v_s)

Fitting validator
function_2_check(
v_1, . . ., v_s,
. . ., distances, . . .)

Hierarchy level #2

In each level a scripted validator in-
spects the geometric distance between
the best fit and the point cloud. Its
interpretation determines how to con-
tinue overall the fitting process.

stop continue reject

Continue fitting process, until a) fitting stopped with acceptable result,
b) hierarchy end reached, or
c) fitting result rejected.

Figure 5.6: The fitting process uses a hierarchical shape description in order to reduce the
number of free parameters during one optimization task (illustrated in gray). The input data
(blue) does not only consist of one generative model, but of a collection of scripted subshapes
and validators. The function of the validators (results in red) is to control the successive refine-
ments and the overall fitting process.

5.5 Implementation 229

The collection of all validators describe the overall fitting process. They implicitly
comprehend a state machine respectively a directed graph. In most cases, it is or-
ganized as a tree or linear graph. From this point of view, the difference between re-
jectedand stopped is simply a flag. In both cases the process has come to an end, but
in one case the current state is marked to be an acceptable final state.

5.5.2 Fuzzy Geometry

A hierarchy of generative models contains model descriptions at different levels of
resolution. Especially at early stages within the hierarchy it may not be sensible to
describe geometry precisely – due to missing parameters. This problem can be solved
by introducing fuzzy geometry.

Fuzzy geometry is a point cloud, in which each point is extended by a probability
valueσ. This value defines a normal distribution in 3D. A fuzzy geometry model con-
sists of all overlapping normal distributions; i.e. a blurred point cloud as illustrated in
Figure 5.7. This technique allows a modeler to describe diffuse geometry. It is used for
all hierarchy levels except those, which may stop the fitting process with an accept-
able solution. These levels produce precise geometric models based on meshes.

Figure 5.7: Geometry at a low resolution can be described by a fuzzy point cloud; i.e. a point
cloud in which each point is smeared in space. This illustration shows such a fuzzy point
cloud. Each point is drawn as a spherical volume whose radius and transparency correspond
to its probability.

230 5 Reconstructive Geometry

5.5.3 Inverse Geometry

The fuzzy models can be interpreted as an energy field – each point is an energy
source whose power is quantified byσ. According to this interpretation the objective
function “tries” to place the generative model, so that the scan is in a high energy area.
This attraction effect is inverted by a new geometry description: inverse geometry.

Inverse geometry is a fuzzy point cloud with negative values ofσ and with a mod-
ified weighting function. It uses the weighting function 1−ψ(x) (see Figure 5.8). As a
consequence, negative points “try” to maximize the distance to the scan.

1

−1 0 1 x

ψ(x) = 1− e
−x 2

σ2

Figure 5.8: The weighting functionψ(x) (plotted in red) reduces the disproportionate effect
of outlying points. Furthermore, its bounded codomain 0≤ψ(x)≤ 1 can be used to introduce
distance-based “penalty” terms 1−ψ(x) (plotted in blue) in the objective function. These
terms are the key idea of inverse geometry.

5.5.4 Optimization

The previous text describes the objective function f that is passed to the numeri-
cal optimization respectively minimization. The mathematical framework is summa-
rized in Chapter 2.3.

The function f is evaluated by the numerical optimization routine, which consists
of two parts. The first part uses a statistical optimization routine called “Differential
Evolution” [SP97]. This algorithm is used to find a “good” starting point for the sec-
ond optimization part – a conjugated gradients optimization according to Fletcher-
Reeves [GMW82, GJH95, Fle00].

5.5 Implementation 231

The objective function

f (x1, . . . ,xk) =ψ(d (P,M (x1, . . . ,xk))), x i ∈R (5.16)

is evaluated algorithmically; i.e. M (x1, . . . ,xk) is a method call to an a-priori unknown
script, which returns 3D geometry. In order to tap the full potential of numerical op-

timization, the minimization routines need f as well as its partial derivatives ∂ f
∂ x i

[Gou09]. This problem is solved by a differentiating compiler. The Euclides meta-
modeler parses JavaScript and translates it to various platforms for different pur-
poses [USF10b], [SSUF10b], [SSUF10a]. The result is differentiated Java code, which
can be included in objective functions. The complete generative model description
M (x1, . . . ,xk) (including all possibly called subroutines) is differentiated with respect
to the input parameters. This differentiating compiler offers the possibility to use
gradient-based optimization routines in the first place. Without partial derivatives
many numerical optimization routines cannot be used at all or in a limited way.

Having the objective function f (x1, . . . ,xk) as well as its partial derivatives ∂ f
∂ x i

at
hand, it is possible to use standard optimization algorithms to solve the minimiza-
tion problem efficiently. The differentials are implemented using automatic differen-
tiation techniques (see sidebar on page 52f). Furthermore, compiled scripts can be
executed much faster than purely interpreted scripts [UKF08].

5.5.5 Distance Calculation

The distance computation is generally by far the most time-consuming part of the
algorithm. Due to the fact that the weighting functionψ has an upper limit

∀x ∈R : ψ(x)< 1 (5.17)

and converges relatively fast to one (see Figure 5.8), the objective function can be
evaluated very efficiently. The weighted distances of points “far away” (depending
on a threshold calculated using σ) can be approximated by ψ ≈ 1 and do not have
to be calculated exactly. Bounding volumes, partitioning of space, and hashed grid
structures speed up the evaluation of f . Only small distances are evaluated exactly as
illustrated in Figure 5.9. Further details on optimal distance calculations can be found
in [USK+07].

232 5 Reconstructive Geometry

Figure 5.9: The storage of a point cloud in a regular grid structure of equally sized cubes
allows a fast evaluation of a sum of ψE X P -weighted distances. For a given model only those
cubes whose distance to the model is within a threshold may contain points with a weighted
distance significantly smaller than one. These points have to be evaluated separately, the
weighted distance of all other points – outside the colored area – can be approximated by
the value 1.

5.5.6 Linear Algorithms in Sublinear Time

Another technique to speed up the optimization routine uses estimation techniques
based on probability theory and statistics (see Chapter 2.2).

The sidebar “Linear Algorithms in Sublinear Time” on page 48 introduces an ex-
ample, in which the hypothesis test of a RANSAC algorithm is not evaluated exactly
but estimated. The optimization processes can be sped up the same way.

In this context, the key requirement to use statistical estimation is a result whose
size is constant. Moreover, if the input data size is very large, such as a laser scan, then
the setting is a perfect candidate for estimation techniques. Therefore, the distance
function will not be evaluated completely, but approximated with sufficient accuracy.
The approximation will only use a subset of points. This technique also applies to

evaluations of derivatives ∂ f
∂ x i

of f .
As many optimization routines have additional subroutines to handle local min-

ima, noisy data, and ill-conditioned problems, the number of random samples to en-
sure a fixed confidence level cannot be determined easily. A rule of thumb suggests
for input data of size n the use of

p
n samples. As estimation and exact evaluation

can be exchanged easily the implementation uses an adaptive solution. The iteration
starts with an estimation based on

p
n random samples. A couple of iterations in the

beginning and a few iterations in between use not only an estimate but also perform
an exact evaluation using the complete input data set. Depending on the difference of
estimation and evaluation a feedback-loop adjusts the number of random samples.

5.6 Applications 233

The following example applications comprehend a laser scan of the Pisa Cathedral.
One data set consists of 4 449 908 points, whereas the average number of points used
in its estimation is ≈ 45 000. As the error thresholds and exit condition of the opti-
mization routine have not been modified, the optimization results do not differ sig-
nificantly, whereas the minimization routine speeds-up by a factor of ≈ 90.

From the information theoretical point of view, our practical results coincide with
theory. BRADFORD R. CRAIN has shown the interrelation between the concept of infor-
mation according to CLAUDE ELWOOD SHANNON1 [Mac03] and statistics [Cra77]. The
correlation between entropy and the central limit theorem has been pointed out by
ANDREW R. BARRON [Bar86]. The connection to approximation and estimation theory
has been studied by ZHI ZONG who presents an overview in Information-Theoretic
Methods for Estimating of Complicated Probability Distributions [Zon06]. The tech-
nique to apply statistics to algorithmic or combinatorial problems has produced in-
teresting results in the latest research findings [BKR04], [MB07]. An overview can be
found in the proceedings of the “Sublinear Algorithms” workshop [CMRS08]. An in-
troduction with a focus on computer graphics named “Linear Algorithms in Sublinear
Time–a Tutorial on Statistical Estimation” has been written by TORSTEN ULLRICH and
DIETER W. FELLNER [UF11b].

5.6 Applications

In order to proof the algorithmic concept, three fields of applications are inspected in
the text below. The data sets used in these applications have been created exclusively
for this purpose or have been acquired in the context of information technology for
cultural heritage.

In contrast to many fields of applications the context of cultural heritage distin-
guishes itself by model complexity, model size, and imperfection to such an extent
most approaches cannot handle.

• Complexity: cultural heritage artifacts “represent a masterpiece of human cre-
ative genius”2. Hence, many cultural heritage artifacts have a high inherent com-
plexity.

• Size: as of January 2011 the United Nations Educational, Scientific and Cultural
Organization lists 911 cultural sites in over 150 states. They are part of the cul-
tural and natural heritage which the World Heritage Committee considers as
having outstanding universal value.
Furthermore, an archaeological excavation may have an extent on the scale of
kilometers with a richness of detail on the scale of millimeters.

1 CLAUDE ELWOOD SHANNON (April 30, 1916 – February 24, 2001) Claude Elwood Shannon was an Amer-
ican mathematician and electronic engineer. He is famous for having founded information theory
with his article “A Mathematical Theory of Communication” published in 1948.

2 The Criteria for selection to be included on the United Nations Educational, Scientific and Cultural
Organization (UNESCO) World Heritage List: http://whc.unesco.org/en/criteria

http://whc.unesco.org/en/criteria

234 5 Reconstructive Geometry

• Imperfection: cultural heritage artifacts are embedded into a context. Beside
natural wear and tear effects, many artifacts exhibit signs of preservation, restora-
tion, and refurbishment.

These additional constraints have to be regarded by reconstruction algorithms in the
context of cultural heritage.

5.6.1 Selfsimilarity

From the mathematical point of view all input parameters of a generative model are
equal. In practice, they can be divided in two groups:

1. Parameters, which describe an object’s position and orientation, and

2. Parameters, which describe object attributes (e.g. width, height, etc.)

The first example concentrates on position and orientation parameters only. It is a
“degenerative” model, which consists of static geometry and an isometric transfor-
mation; i.e. a transformation, which only consists of a rotation and a translation. Con-
sequently, it has six free parameters.

Figure 5.10: The Pisa Cathedral (Duomo di Pisa) is a masterpiece of Romanesque archi-
tecture. Despite its proximity to the eye-catching and tourist-attracting Leaning Tower, the
Duomo still dominates the monumental Piazza dei Miracoli in Pisa.
This photo has been taken by GEORGES JANSOONE.

5.6 Applications 235

Figure 5.11: One column has been extracted from the apse of the Pisa Cathedral (upper left).
In combination with an isometric mapping with six degrees of freedom (translation and rota-
tion) it forms a “degenerative” model. The fitting algorithm minimizes the objective function,
which defines a measure of similarity; i.e. it identifies “copies” of the reference. Each “copy” is
rendered in a different color and blended with the input data set.

The example data set is a laser scan of the Pisa Cathedral. It has been generated by
the Visual Computing Laboratory at the Institute of Information Science and Tech-
nologies (ISTI) of the Italian National Research Council (CNR). The Duomo is located
on the Campo dei Miracoli in the center of Pisa, Italy. The architect BUSCHETO DI

GIOVANNI GIUDICE begun his masterpiece in 1064 and started the characteristic Pisan
Romanesque style in architecture. Just like the whole building (see Figure 5.10), the
apse of the Duomo consists of many similar columns which are arranged in arcs and
rows.

In this scenario a single column has been extracted manually. It serves as a geo-
metric reference model. Being a part of a “degenerative” model, which only consists of
an isometric map applied to the geometric reference, the fitting algorithm optimizes
the translational and rotational part of the isometric transformation; i.e. it searches
for similar geometry. The similarity is measured by the objective function to mini-
mize. As a consequence, the algorithm identifies “copies” of the reference. Figure 5.11
shows the reference geometry (upper left) and all identified, similar objects – each
one rendered in a different color and blended with the input data set.

236 5 Reconstructive Geometry

5.6.2 Parameter Estimation

In the next example a shape template with free parameters on object attributes is
used. It describes an arcade that is arranged in an arc and takes nine parameters. Its
horizontal and upright projection is shown in Figure 5.12. The shape template has
nine free parameters: the center point x , y , z , the main radius R , the column radius
r , the offset angle α, the opening angle β , the number of columns n and the column
height h.

The fitting process has been started to detect the two arcades in the data set. Due
to the low level of noise within the data set, σ2 has been set to a rather small value.
The results are positive and the algorithm has identified the two arcades. The corre-
sponding parameters have been determined and the reconstruction is visualized in
Figure 5.13.

As the Pisa Cathedral and the Leaning Tower of Pisa share the same soft soil, the
cathedral’s eastside already sank during construction. Corrective building measures
and civil works started even before the building has been finished. These changes in-
fringe its regular structure. Consequently, the arc’s boundary columns, which are dis-
tributed absolutely regular, have higher error/distance values than the inner columns.
This effect can be seen in the second arcade (Figure 5.13, upper row). This effect
demonstrates an important property of the algorithm: it can only determine param-
eters – it does not modify the generative description. The regular structure of a script
is fixed. Variations and deviations are only possible, if appropriate parameters have
been made accessible. Especially, semantic errors its construction process will not be
corrected.

Furthermore, this example demonstrates the negative effects of over-fitting, if in-
verse geometry, as described in Section 5.5.3, is not used. Without inverse geometry,
the parameter intervals need to be estimated roughly and the number of columns n
needs to be fixed. The range δ of each parameter has been:

∆x = 21.0m ∆R = 1.5m
∆y = 21.0m ∆r = 0.2m
∆z = 21.0m ∆h = 2.0m
∆α = 14◦ ∆n = 0
∆β = 14◦

As the generative description does not check reasonability, a high number n of columns
would be a good solution. It would generate a “wall” of columns. This arched “wall”
could be placed anywhere within the apse, and the result would lead to a small error,
respectively to small distances. This undesirable effect can be avoided by fixed pa-
rameters and domains or by inverse geometry. In this way, the arc’s property that it
spans a space can be included the generative description: the space is just filled with
inverse geometry.

5.6 Applications 237

(x ,y ,z)

h

R r

α

β

Figure 5.12: The parametric description of the circle-arcades model takes nine parameters:
the three coordinates of a center point (x ,y ,z), a main radius R , a column radius r , an offset
angle α, an opening angle β , and the number of columns n . These values define the ground
construction in the x y plane which contains the center point. The last parameter h defines
the columns’ height. The height of the Roman arcs are determined by the column distances.

238 5 Reconstructive Geometry

Figure 5.13: A generative model with nine parameters is fitted to the laser scan of the Duomo
of Pisa. The algorithm detects two instances of the shape template and determines the param-
eters which describe the given geometry best. These characteristics (column height, etc.) are
high-level parameters and valuable information which are needed in the context of digital
libraries in order to index a model repository.

The second data set is a photogrammetric reconstruction of an inner courtyard. It is
located in Graz, Austria, and belongs to the Landhaus. This Renaissance building has
been constructed in 1557 by DOMENICO DELL’ALLIO3.

Due to the high level of noise within the photogrammetric reconstruction, this
example is a robustness test for the fuzzy geometry concept. This geometry represen-
tation is described in Section 5.5.2.

The generative model to fit describes an arcade. It consists of columns with a
quadratic profile. Its parameters are

• the center point (x ,y ,z) of the first column,

• the angle α to define the arcade’s orientation,

• the column width w ,

3 DOMENICO DELL’ALLIO (1505 – 1563) Domenico dell’Allio (1505–1563) was an Italian architect who has
lived and worked in Styria, Austria since 1530.

5.6 Applications 239

• the column height h,

• the distance d between two columns, and

• the number of the columns n .

Figure 5.14 illustrates an instance of the procedural description in horizontal projec-
tion.

The quality of the input data set is rather poor. The point cloud shown in Fig-
ure 5.15 has been reconstructed with only 4 sequences of photos. As a consequence,
the result has a very high level of noise. The fitting process started withσ2 = 0.025 1

m 2 ;
i.e. points up to±0.13m away from the surface are still regarded as part of the surface.
Nevertheless, the algorithm is able to identify two instances and to approximate its
high-level parameters. As the input data set can hardly be considered to be a “ground
truth”, the results in Figure 5.15 are not distance-based color-coded.

(x ,y ,z)

α

w
2

d

Figure 5.14: The parametric description of the row-arcades model takes eight parameters:
the three coordinates of the starting point (x ,y ,z), an offset angle α to define the arcade’s ori-
entation, a column’s width w and height h, the distance d between two columns, and the
number of columns n .

240 5 Reconstructive Geometry

Figure 5.15: The inner courtyard of the Landhaus in Graz consists of several arcades. Its
point cloud model has a very high level of noise. A noisy data set requires a tolerant fitting
configuration, respectively a tolerant geometry representation such as fuzzy geometry. The
concept of fuzzy geometry is described in Section 5.5.2. In this visualization not a fuzzy point
cloud, but an isosurface of a fixed probability is rendered.

5.6 Applications 241

5.6.3 Shape Recognition

Generative modeling techniques take advantage of regularities and uniformities. Es-
pecially, frequent repetitions benefit from procedural approaches due to its reusabil-
ity. In the context of shape recognition, it is obvious that a generative script cannot
only identify a single object but a whole family of objects. The following example
demonstrates this capability. It consists of twelve laser-scanned cups and scripted a
generative model of a cup, which takes 15 input parameters: six parameters describe
its position and orientation, nine parameters describe its attributes (radius, height,
. . .). The generative model is sketched in Figure 5.16 whereas images of the cups and
their scans are visualized in Figure 5.17 and Figure 5.18 respectively.

(x ,y ,z)

(α,β ,γ)

r

h

h1

h2A h2B

h3A h3B

h4

f i n (x) = 1
25 (x +

1
10)

2+s ha p e

fou t (x) = x 3+s ha p e

Figure 5.16: The generative cup model takes 15 parameters: (x ,y ,z) is the base point of the
cup and (α,β ,γ) define its orientation. Its shape is defined by an inner f i n and outer fou t shape
function with one free parameter s ha p e . These functions are rotated around the cup’s main
axis and scaled with the parameters r and h.
The handle is defined via six parameters, which form points in 2D (the plane of the handle);
namely (h1, fou t (h1)), (h2A ,h2B), (h3A ,h3B), and (h4, fou t (h4)). They are the control points of a
Bézier curve. Its tube with a fixed diameter (10mm) defines the cup’s handle.

242 5 Reconstructive Geometry

Figure 5.17: The example data set consists of twelve cups made of porcelain. Each one has
been scanned using a laser scanner. As the cups have clean and shiny surfaces, they are diffi-
cult to scan. The scan results are shown in Figure 5.18.

5.6 Applications 243

Figure 5.18: Each scanned cup comprehends between 15 573 (small espresso cup) and
130 973 triangles (big mug). The scan results are noisy and not-cleaned-up meshes with many
holes. In this illustration the surfaces are rendered semi-transparent, so that incomplete parts
(with missing inner and / or outer surface) appear brighter than complete parts.
Please note, each subimage is scaled to a common bounding box, which does not reflect the
scan’s real size.

244 5 Reconstructive Geometry

The 15 parameters of the generative model are determined using three hierarchical
levels.

1. The first level determines the cup’s base point (x ,y ,z) and its orientation (α,β),
as well as its height h, radius r , and s ha p e . At this level the cup is rotationally
symmetric; therefore, position and orientation only need five instead of six pa-
rameters. The s ha p e parameter is used in two functions f i n , fou t which define
the cup’s inner and outer shape (see Figure 5.16).

2. Afterwards, the algorithm determines the parameter γ – the rotational position
of the handle.

3. At the last level, the parameters h1, h2A , h2B , h3A , h3B , h4 are determined. These
parameters define four points of a Bézier curve. As h1 and h4 are start and end
point of the handle, they are located at (h1, fou t (h1)) resp. (h4, fou t (h4)), whereas
the second (h2A ,h2B) and third point (h3A ,h3B)may float freely within the plane
with orientation γ. The resulting Bézier curve is expanded to a 3D tube with a
fixed diameter of 10mm.

This generative model M is able to describe the scanned cups and its parameters can
be determined automatically by the proposed algorithm.

The fitting results are visualized in Figure 5.19. In 11 of 12 cases (92%) the algo-
rithm is able to detect an instance of the generative cup M . In these cases the cups’
properties (position, orientation, radius, height, handle shape) are determined with
only a small error.

In one case (cup #5) the global optimization routine is stuck in a local minimum.
Despite the local minimum, the error values is too high, so that the algorithm rejects
the hypothesis of a generative cup. For illustration purposes Figure 5.19 (second row,
middle) shows the last best-fit result of the optimization which would have been re-
turned, if the algorithm had not stopped and rejected the fitting process.

In the other cases, the fitting process has been successful. Especially, the cups #1
and #12 have been fitted, although their shapes (the scan is rendered semi-transparent
in gray) are not rotationally symmetric. Cup #1 (Figure 5.19, top row, left) has quadratic
footprint with beveled edges; cup #12 (Figure 5.19, bottom row, right) has an octago-
nal footprint. In both cases the generative cup is able to describe them within a toler-
able rate of variance.

Also cup #9 (Figure 5.19, next to last row, right) has been detected to be a cup,
although its shape looks like a busted paper cup. Its error value passed the threshold
of rejection at the first level, but it did not pass the following ones. Therefore, the
algorithm perfectly identifies a cup without a handle.

The distance values of all cups are listed in Table 5.1. During the fitting process
mainly one-sided distances (from the generative model to the scan) and Hausdorff
distances are used. While the Hausdorff distance gives an “overall impression”, the
one-sided distances can be used to measure local fits; e.g. if each point on the gen-
erated handle is (in average) half its diameter away from the scan, then the cup will
most probably not have a handle.

5.6 Applications 245

Figure 5.19: The laser-scanned cup (rendered in semi-
transparent gray) have been identified as instances of the gen-
erative cup description in 11 of 12 cases. In these cases the
cups’ properties (position, orientation, radius, height, han-
dle shape) are determined successfully. The detailed distance
measurements are listed in Table 5.1.
Please note, each subimage is scaled to a common bounding
box, which does not reflect the scan’s real size.

246 5 Reconstructive Geometry

Semantic Recognition

Table of distance measurements of the “cups” data set.

one-sided one-sided one-sided Hausdorff

distance distance distance distance

average maximum std. deviation

scan #1 3.37228 mm 8.04885 mm 1.99973 mm 9.24657 mm

scan #2 3.16246 mm 6.74649 mm 1.86304 mm 6.80079 mm

scan #3 4.70168 mm 8.87795 mm 2.47398 mm 10.0124 mm

scan #4 2.35580 mm 8.22992 mm 1.51475 mm 8.22992 mm

scan #5 – – – 68.2669 mm

scan #6 2.09885 mm 5.48440 mm 1.16270 mm 14.9031 mm

scan #7 1.75171 mm 5.55879 mm 0.92017 mm 7.46554 mm

scan #8 2.23997 mm 6.32716 mm 1.34969 mm 6.32716 mm

scan #9 2.25705 mm 10.7793 mm 1.78702 mm 10.7793 mm

scan #10 2.25851 mm 6.98503 mm 1.31063 mm 6.98503 mm

scan #11 3.91988 mm 7.81589 mm 2.13471 mm 11.4433 mm

scan #12 2.96143 mm 8.68567 mm 1.98203 mm 8.68567 mm

Table 5.1: The detailed measurements of the fitted, generated cups. The scan numbers
correspond to the visualizations shown in Figure 5.17 and Figure 5.18 respectively. As
cup #5 has been rejected, it does not have sensible distance values. In all other cases, the
distance values have been calculated between the scan and its best-fit generative description.

This chapter presents a shape description approach based on generative modeling
techniques and an algorithm, which is able to identify instances of a generative de-
scription in real-world data sets. This algorithm demonstrates the proof of concept.

The main contributions and benefits of this approach are an implementation of
a generative shape description including the inverse recognition and indexing prob-
lem. Based on a generative description, the algorithm is able to identify instances of
a shape template and it can determine its calling parameters.

To implement this concept, a hierarchical model description with fuzzy geometry
to represent “unknown” parts of a model (parts which are fitted at lower levels within
the hierarchy) is used. Furthermore, the concept of inverse geometry is implemented.
It offers the possibility to describe the absence of geometry; i.e. to formulate “missing”
geometry (e.g. a window is a hole in a wall).

5.6 Applications 247

Including a generative compiler with automatic derivation, the optimization routine
can evaluate both the objective function f (x1, . . . ,xk) as well as its partial derivatives
∂ f
∂ x i

. This key feature opens up new chances to use standard optimization algorithms
to solve the inverse problem efficiently. Each fitting process (with one scan and one
generative hierarchy) takes only a few minutes one a single PC to finish. These timings
just give an impression of the algorithm’s performance. Due to open problems (e.g.
algorithm’s failure in test case #5), it is currently not sensible to run benchmarks at
great length. As long as this problem is not solved, detailed benchmarks would not be
reasonable. If the problem was caused by a premature termination of the routine to
avoid local minima, the algorithm’s timings might change signifcantly.

248 5 Reconstructive Geometry

249

6 Conclusion & Future Work

Within this thesis the thematic complex of Reconstructive Geometry has been ad-
dressed. This topic comprehends geometry, numerical optimization, probability
theory, as well as algorithm design, software engineering, computer graphics, and
computer-aided design.

This thesis is composed of numerous scientific articles and conference papers.
Its main contributions have been made in the field of collision detection, generative
modeling, and semantic recognition. These contributions and their corresponding
benefits are summarized in this chapter. An outlook on further research and future
perspectives concludes this thesis.

Contents

6.1 Collision Detection 250

6.2 Generative Modeling 250

6.3 Semantic Reconstruction 252

6.4 Future Work 252

250 6 Conclusion & Future Work

6.1 Collision Detection

In reconstructive geometry many tasks and algorithms are distance based; i.e. they
evaluate a distance function. Therefore, space partitioning techniques are of special
interest. The same techniques are used to speed up collision detection algorithms.
They answer the question, whether two objects collide i.e. have distance zero. As a
consequence, this thesis places particular emphasis on collision detection.

6.1.1 Contribution

In the article “Hierarchical Spherical Distance Fields for Collision Detection” [FUF06]
by CHRISTOPH FÜNFZIG, TORSTEN ULLRICH and DIETER W. FELLNER, we present an ap-
proach, which combines wavelet-like techniques with max-plus algebra [ACG+90].
Applied to spherical coordinate systems the resulting distance field is perfectly quali-
fied for terrain and model queries as well as line-of-sight computation.

Its implementation details and a comprehensive comparison can be found in “Em-
pirical Comparison of Data Structures for Line-Of-Sight Computation” [FUFB07] and
in “Terrain and Model Queries Using Scalar Representations With Wavelet Compres-
sion” [FUFB09].

6.1.2 Benefit

Due to the fact, that our hierarchical, spherical distance field for collision detection
can be implemented hardware-optimized, it is an attractive collision detection solu-
tion for embedded systems. As it meets real-time requirements, it is the first choice for
time-critical systems. EDWARD N. BACHELDER from Systems Technology, Inc.1 adopted
this idea and implemented such a real-time solution on embedded hardware.

Our collision detection algorithm has been analyzed in a comprehensive compar-
ison. Every practitioner who is confronted with the task of distance calculation can
benefit from our analyses [USK+07].

6.2 Generative Modeling

The distance calculation is one of the techniques used in the context of generative
modeling. Furthermore, this thesis presents a semantic recognition and reconstruc-
tion approach based on shape templates and generative modeling techniques. Con-
sequently, procedural modeling languages, language processing and translation, as
well as compiler construction are an important issue of this thesis.

1 http://www.systemstech.com/

http://www.systemstech.com/

6.2 Generative Modeling 251

6.2.1 Contribution

The main contribution on generative modeling techniques is the meta-modeler ap-
proach Euclides. This innovative meta-modeler concept allows a user to easily export
generative models to other platforms without losing its main feature – the procedural
paradigm. In contrast to other modelers, the source code does not need to be inter-
preted or unfolded, it is translated. Therefore it can still be a very compact represen-
tation of a complex model. The process of

parsing→ validating→ translating

JavaScript offers many advantages. A consistent intermediate representation in terms
of an abstract syntax tree, serves as a basis for back-end exporters to different lan-
guages and different platforms for different purposes [SSUF10a]. Two platforms are
outstanding: differentiated Java code and Generative Modeling Language (GML).

The compiler Euclides regards a shape template as a function f (x1, . . . ,xk) and gen-
erates code to execute it. Furthermore, it differentiates each function – including all
subroutines – with respect to its parameters. In this way, every inverse problem in-
volving generative modeling techniques and shape templates can evaluate f as well

as its partial derivatives ∂ f
∂ x i

. This technique offers the possibility to use standard op-
timization algorithms to solve inverse problems efficiently.

While the translation to GML may sound like a simple infix-to-postfix transforma-
tion, the correct translation of control flow structures is a non-trivial task, due to the
fact that there is no concept of goto in the PostScript language and its dialects. Eu-
clides is the first complete translator to a PostScript dialect, which covers all control
flow statements [SSUF10b].

6.2.2 Benefit

As Euclides offers a new access to GML, all GML users will benefit from its results.
The possibility to use GML via a JS-to-GML translator reduces the inhibition thresh-
old significantly. Everyone, who knows any imperative, procedural language (Pascal,
Fortran, C, C++, Java, etc.) is familiar with the language concepts in JavaScript and
therefore he can use Euclides.

In order to make generative modeling accessible to an audience of domain ex-
perts, e.g. cultural heritage professionals, which are seldom computer scientists, new
access technologies to generative modeling are needed. Only these experts have the
knowledge about the inner structure of an object. If this structure should be reflected
in a generative description, these domain professionals are needed to tap the full po-
tential of generative techniques. The generative modeling framework Euclides offers
an easy-to-use scripting approach based on JavaScript.

252 6 Conclusion & Future Work

6.3 Semantic Reconstruction

The generative modeling framework Euclides has been used to design shape tem-
plates and to describe shapes. The identification of shapes is an emerging problem,
whose urgency increases with the number of digital 3D objects.

6.3.1 Contribution

This thesis presents a shape description approach based on generative modeling tech-
niques and an algorithm, which is able to identify instances of a generative descrip-
tion in real-world data sets. The algorithm demonstrates the proof of concept.

This proof of concept comprehends geometric techniques such as inverse geom-
etry, fuzzy geometry and generative, hierarchical model descriptions. Inverse geome-
try describes the absence of geometry. This concept offers the possibility to formulate
“missing” geometry (e.g. a window is a hole in a wall); whereas fuzzy geometry rep-
resents “unknown” parts of a model. In a hierarchy of model descriptions the fuzzy
parts are defined in one level and are refined or replaced in a higher level of detail.

The algorithm’s implementation uses the translation and compilation techniques
mentioned above. Furthermore, it realizes geometric optimizations (e.g. spatial co-
herence in data structures) and algorithmic optimizations to perform numerical min-
imization in acceptable time. The algorithmic optimization uses statistical estimation
to speed up the evaluation of a cost function. This technique is published in “Linear
Algorithms in Sublinear Time” [UF11b].

6.3.2 Benefit

The generative shape description and recognition approach presented in this thesis
is a proof of concept. In combination with annotation techniques it is now possible
to index 3D objects. Generative scripts will describe 3D data (stairs, windows, cups,
etc.) and the presented algorithm processes them. It will perform a fitting process and
evaluate the best-fit result. Having found an instance of a generative description, this
offline indexing step can copy a human-readable annotation (“This is a cup.”) into the
object’s markup. Each identified object just references the annotation of its best-fitted
shape template. Then, queries can be formulated in textual form and the retrieval is
based on simple text searching.

6.4 Future Work

While the proof of concept already works today, a scalable solution of an automati-
cally indexed 3D data base [SMKF04]will meet new challenges that will be met in the
future.

6.4 Future Work 253

6.4.1 Generative Modeling

Beside the automatic indexing of 3D data bases, the interplay of generative model-
ing techniques and primitives-based modeling using triangles, meshes, etc. will offer
new modeling possibilities. A simple example is a laser scan that is fitted to a gen-
erative shape template. The template describes the ideal geometry whereas the scan
represents a real-world data set. If the difference – the geometric offset – is stored
in a generative texture map respectively offset map, then it can be reused by other
instances of the same generative model. Consequently, the laser-scanned mesh can
be modified using the shape template’s high-level parameters. First experiments with
this new modeling approach are visualized in Figure 6.1.

6.4.2 Procedural Optimization

Currently, generative modeling is a design process guided by aesthetics. The parame-
ters used to instantiate a shape template are often set manually by a human designer
or they are set according to a human design – in a fitting process. However, it does not
have to be that way.

The numerical optimization minimizes a cost function, which uses distances that
perform a kind of similarity measurement. Though if the design were already com-
pletely determined by the generative modeling script, its free parameters could be
optimized according to new objectives; e.g. energy consumption. Concerning the en-
ergy balance of a building several factors are important: area-to-volume ratio, insu-
lation, window size, and many more (see Figure 6.2). These factors cause mutual in-
teractions and need a trade-off. For example, insulation does not only keep energy
inside, it also keeps energy outside. In this case the free parameters of a generative
building can be optimized in order to find the best trade-off of all factors. If the objec-
tive function describes the energy needed, the optimization routine will minimize the
amount of consumed energy. This is one important field of application; as optimiza-
tion is a permanent issue in civil engineering, many more applications of generative
optimization techniques are possible. The meta-modeler concept with its differenti-
ating compiler is a cornerstone and offers the possibility to use standard optimization
routines in the first place.

254 6 Conclusion & Future Work

Figure 6.1: Using generative modeling techniques a shape template can be fitted to a laser
scan (upper left). The fitting process determines the best-fit parameters of the procedural
model, so that an instance of these parameters generates the most-similar object the shape
template can produce (upper right). The geometric difference between both objects can be
stored in an offset map, which can be applied to all instances of the shape template (lower
left). As a consequence, the laser scan can be modified using the template’s high-level param-
eters (lower right).

6.4 Future Work 255

Figure 6.2: Free parameters of a generative model can be set according to aesthetics or ac-
cording to a cost function; e.g. energy consumption. This concept is an important field of
applications for generative optimization techniques.

256 6 Conclusion & Future Work

257

Bibliography

[ABK98] Nina Amenta, Marshall Bern, and Manolis Kamvysselis. A New Voronoi-
Based Surface Reconstruction Algorithm. Computer Graphics, 32:415–
421, 1998.

[ABS06] Marco Attene, Falcidieno Bianca, and Michela Spagnuolo. Hierarchical
Mesh Segmentation based on Fitting Primitives. The Visual, 22:181–193,
2006.

[ACDL00] Nina Amenta, Sunghee Choi, Tamal K. Dey, and Naveen Leekha. A Sim-
ple Algorithm for Homeomorphic Surface Reconstruction. Proceedings
of the 16th annual symposium on Computational Geometry, 1:213–222,
2000.

[ACG+90] Marianne Akian, Guy Cohen, Stephane Gaubert, Ramine Nikoukhah,
and Jean Pierre Quadrat. Linear Systems in (max,+)-Algebra. Proceed-
ings of the 29th Conference on Decision and Control, 29:151–156, 1990.

[ACN+05] Marco Allegretti, Marco Colaneri, Riccardo Notaroietro, Marco Gabella,
and Giovanni Perona. Simulation in Urban Environment of a 3D Ray
Tracing Propagation Model based on Building Database Preprocessing.
Proceedings of the International Union of Radio Science (General Assem-
bly), 16:1–4, 2005.

[ADNF+03] Heinz-Wilhelm Alten, Alireza Djafari Naini, Menso Folkerts, Hartmut
Schlosser, Karl-Heinz Schlote, and Hans Wußing. 4000 Jahre Algebra:
Geschichte, Kulturen, Menschen (english: 4000 years of algebra: history,
cultures, men). Springer, 2003.

[ADS06] U. H. Augsdörfer, Neil A. Dodgson, and Malcolm A. Sabin. Tuning Subdi-
vision by Minimizing Gaussian Curvature Variation Near Extraordinary
Vertices. Computer Graphics Forum, 25(3):263–272, 2006.

[AIM06] AIM@SHAPE. A.I.M.A.T.S.H.A.P.E. – Advanced and Innovative Models
And Tools for the development of Semantic-based systems for Handling,
Acquiring, and Processing knowledge Embedded in multidimensional
digital objects. online: http://www.aimatshape.net/, 2006.

[Arn06] David Arnold. Procedural methods for 3D reconstruction. Recording,
Modeling and Visualization of Cultural Heritage, 1:355–359, 2006.

[AS72] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical
Functions: with Formulas, Graphs, and Mathematical Tables. Dover
Publications, 10 edition, 1972.

258 Bibliography

[AS93] Günter Aumann and Klaus Spitzmüller. Computerorientierte Geometrie.
BI-Wissenschafts-Verlag, 1993.

[ASCE02] Nicolas Aspert, Diego Santa-Cruz, and Touradj Ebrahimi. MESH: Mea-
suring Error between Surfaces using the Hausdorff distance. Proceed-
ings of the IEEE International Conference on Multimedia and Expo 2002
(ICME), 1:705–708, 2002.

[Aum08] Günter Aumann. Euklids Erbe: Ein Streifzug durch die Geometrie und
ihre Geschichte. Wissenschaftliche Buchgesellschaft, 2008.

[Aut07] Autodesk. Autodesk Maya API. White Paper, 1:1–30, 2007.

[Baa06] Matthias Baas. Python/Maya: Introductory tutorial. online:
http://cgkit.sourceforge.net/maya_tutorials/intro/, 2006.

[Bar86] Andrew R. Barron. Entropy and the Central Limit Theorem. The Annals
of Probability, 14(1):336–342, 1986.

[BB79] Hans Bandemer and Andreas Bellmann. Statistische Versuchsplanung
(english: Statistical Test Planning). Verlag H. Deutsch / BSB B. G. Teub-
ner, 1979.

[BBCS99] Fausto Bernardini, Chandrajit L. Bajaj, Jindong Chen, and Daniel R.
Schikore. Automatic Reconstruction of 3D CAD Models from Digital
Scans. International Journal on Computational Geometry and Applica-
tions, 9:327–369, 1999.

[BBH+08] Christian H. Bischof, Martin Bücker, Paul D. Hovland, Uwe Naumann,
and Jean Utke. Advances in Automatic Differentiation. Springer, 2008.

[BBU+11] Frank Breuel, René Bernd, Torsten Ullrich, Eva Eggeling, and Dieter W.
Fellner. Mate in 3D – Publishing Interactive Content in PDF3D. Pub-
lishing in the Networked World: Transforming the Nature of Communica-
tion, Proceedings of the International Conference on Electronic Publish-
ing, 15:110–119, 2011.

[BBVK04] Mario Botsch, David Bommes, Christoph Vogel, and Leif Kobbelt. GPU-
based tolerance volumes for mesh processing. Proceedings of 12th Pa-
cific Conference on Computer Graphics and Applications, 12:237– 243,
2004.

[BBW+08] Alexander Berner, Martin Bokeloh, Michael Wand, Andreas Schilling,
and Hans-Peter Seidel. A Graph-Based Approach to Symmetry Detec-
tion. Symposium on Volume and Point-Based Graphics, 5:1–6, 2008.

[Ben75] Jon Louis Bentley. Multidimensional Binary Search Trees used for Asso-
ciative Searching. Communications of the ACM, 18:509 – 517, 1975.

259

[BF06] Christian Beder and Wolfgang Förstner. Direct Solutions for Comput-
ing Cylinders from Minimal Sets of 3D Points. Proceedings of the 2006
European Conference on Computer Vision, 3951:135–146, 2006.

[BFH05] René Berndt, Dieter W. Fellner, and Sven Havemann. Generative 3D
Models: a Key to More Information within less Bandwidth at Higher
Quality. Proceeding of the 10th International Conference on 3D Web Tech-
nology, 1:111–121, 2005.

[BGVGP06] Manos Baltsavias, Armin Gruen, Luc Van Gool, and Maria Pateraki.
Recording, Modeling and Visualization of Cultural Heritage. Taylor &
Francis, 2006.

[Bie87] Irving Biederman. Recognition-by-Components: A Theory of Human
Image Understanding. Psychological Review, 94(2):115–147, 1987.

[Bis07] Christopher M. Bishop. Pattern Recognition and Machine Learning.
Springer, 2007.

[BKR04] Tugkan Batu, Ravi Kumar, and Ronitt Rubinfeld. Sublinear Algorithms
for Testing Monotone and Unimodal Distributions. Proceedings of ACM
Symposium on Theory of Computing, 36:1–10, 2004.

[BKSS07] Benjamin Bustos, Daniel Keim, Dietmar Saupe, and Tobias Schreck.
Content-based 3D Object Retrieval. IEEE Computer Graphics and Ap-
plications, 27(4):22–27, 2007.

[BKV+02] Pál Benko, Géza Kós, Tamás Várady, László Andor, and Ralph Martin.
Constrained Fitting in Reverse Engineering. Computer Aided Geomet-
ric Design, 19(3):173 – 205, 2002.

[BLZ00] Henning Biermann, Adi Levin, and Denis Zorin. Piecewise Smooth Sub-
division Surfaces with Normal Control. Proceedings of the 27th annual
conference on Computer graphics and interactive techniques, 27:113 –
120, 2000.

[BMMKN04] Boaz Ben-Moshe, Joseph S. B. Mitchell, Matthew J. Katz, and Yuval
Nir. Visibility Preserving Terrain Simplification - An Experimental Study.
Computational Geometry: Theory and Applications, 28:175 – 190, 2004.

[BMSF06] Silvia Biasotti, Simone Marini, Michela Spagnuolo, and Bianca Falci-
dieno. Sub-part correspondence by structural descriptors of 3D shapes.
Computer-Aided Design, 38(9):1002–1019, 2006.

[BMY05] Michael Brown, Aditi Majumder, and Ruigang Yang. Camera-Based Cal-
ibration Techniques for Seamless Multi-Projector Displays. IEEE Trans-
actions on Visualization and Computer Graphics, 11:193–206, 2005.

260 Bibliography

[BMZ04] Ioana Boier-Martin and Denis Zorin. Differentiable Parameterization of
Catmull-Clark Subdivision Surfaces. Proceedings of the 2004 Eurograph-
ics/ACM SIGGRAPH Symposium on Geometry Processing, 71:155 – 164,
2004.

[Bon09] Peter Bonitz. Freiformflächen in der rechnerunterstützten Karosseriekon-
struktion und im Industriedesign (english: Free-form surfaces in
computer-aided car body design and industrial design). Springer, 2009.

[BP93] Wolfgang Boehm and Hartmut Prautzsch. Numerical Methods. Vieweg,
1993.

[BP94] Wolfgang Boehm and Hartmut Prautzsch. Geometric concepts for geo-
metric design. A. K. Peters, Ltd., 1994.

[BR02] Fausto Bernardini and Holly Rushmeier. The 3D Model Acquisition
Pipeline. Computer Graphics Forum, 21(2):149–172, 2002.

[Bri51] Suzanne Briet. Qu’est-ce que la documentation? ÉDIT - éditions docu-
mentaires industrielles et techniques, 1951.

[BRT95] Lawrence D. Bergman, Bernice E. Rogowitz, and Lloyd A. Treinish. A
rule-based tool for assisting colormap selection. Proceedings of the 6th
Conference on Visualization, 6:118–125, 1995.

[BS07] Hans-Georg Beyer and Bernhard Sendhoff. Robust optimization – A
comprehensive survey. Computer Methods in Applied Mechanics and
Engineering, 196:3190–3218, 2007.

[BSdV01] Robert G. Belleman, Bram Stolk, and Raymond de Vries. Immersive Vir-
tual Reality on commodity hardware. Proceedings of the 7th annual con-
ference of the Advanced School for Computing and Imaging, 7:297–304,
2001.

[BSMM97] Il’ja N. Bronštein, Konstantin A. Semendjajew, Gerhard Musiol, and
Heiner Mühlig. Taschenbuch der Mathematik (english: Handbook of
Mathematics). Verlag Harri Deutsch, 1997.

[BSSZ08] Alexander I. Bobenko, Peter Schröder, John M. Sullivan, and Günter M.
Ziegler, editors. Discrete Differential Geometry. Birkhäuser, 2008.

[BTI07] David Borland and Russell M. Taylor II. Rainbow Color Map (Still) Con-
sidered Harmful. IEEE Computer Graphics and Applications, 27(2):14–
17, 2007.

[Buc97] Michael K. Buckland. What is a “document”? Journal of American Society
of Information Science, 48(9):804–809, 1997.

261

[Bühler01] Katja Bühler. Taylor Models and Affine Arithmetics: Towards a More
Sophisticated Use of Reliable Methods in Computer Graphics. Spring
Conference on Computer Graphics, 17:40–48, 2001.

[BWM+11] Alexander Berner, Michael Wand, Niloy J. Mitra, Daniel Mewes, and
Hans-Peter Seidel. Shape Analysis with Subspace Symmetries. Com-
puter Graphics Forum, 30:277–286, 2011.

[BWS10] Martin Bokeloh, Michael Wand, and Hans-Peter Seidel. A Connection
between Partial Symmetry and Inverse Procedural Modeling. Procced-
ings of ACM SIGGRAPH 2010, 29:104:1–104:10, 2010.

[CADS09] Thomas J. Cashman, Ursula H. Augsdörfer, Neil A. Dodgson, and Mal-
colm A. Sabin. NURBS with extraordinary points: high-degree, non-
uniform, rational subdivision schemes. ACM Transactions on Graphics,
28:46, 1–10, 2009.

[CBC+01] Jonathan C. Carr, Richard K. Beatson, Jon B. Cherrie, Tim J. Mitchell,
Richard W. Fright, Bruce C. McCallum, and Tim R. Evans. Reconstruction
and Representation of 3D Objects with Radial Basis Functions. Proceed-
ings of the 28th annual conference on Computer graphics and interactive
techniques, 28:67 – 76, 2001.

[CC78] Edwin Catmull and Jim Clark. Recursively generated B-spline surfaces
on arbitrary topological meshes. Computer-Aided Design, 10:350–355,
1978.

[CGKV04] TU Graz Computer Graphics & Knowledge Visualization. Genera-
tive Modeling Language. online: http://www.generative-modeling.org/,
2004.

[CGT94] Andrew Conn, Nicholas I. M. Gould, and Philippe L. Toint. Large-Scale
Nonlinear Constrained Optimization: A Current Survey. Algorithms for
continuous optimization: the state of the art, 434:287–332, 1994.

[CM05] Giulio Casciola and Serena Morigi. Inverse spherical surfaces. Journal
of Computational and Applied Mathematics, 176(2):411–424, 2005.

[CMRS08] Artur Czumaj, S. Muthu Muthukrishnan, Ronitt Rubinfeld, and Christian
Sohler. Sublinear Algorithms. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, Germany, 2008.

[Col91] Thomas F. Coleman. Large-Scale Numerical Optimization: Introduction
and Overview. Technical Report: TR91-1236, 9:1–30, 1991.

[Cra77] Bradford R. Crain. An Information Theoretic Approach to Approximat-
ing a Probability Distribution. SIAM Journal on Applied Mathematics,
32:339–346, 1977.

262 Bibliography

[CRE01] Elaine Cohen, Richard F. Riesenfeld, and Gershon Elber. Geometric Mod-
eling with Splines: An Introduction. A. K. Peters, 2001.

[CRS98] Paolo Cignoni, Claudio Rocchini, and Roberto Scopigno. Metro:
Measuring error on simplified surfaces. Computer Graphics Forum,
17(2):167–174, 1998.

[CS00] Charilaos Christopoulos and Athanassios Skodras. The JPEG2000 Still
Image Coding System: An Overview. IEEE Transactions on Consumer
Electronics, 46(4):1103–1127, 2000.

[CSAD04] David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. Variational
shape approximation. ACM Transactions on Graphics, 23(3):905 – 914,
2004.

[CSLR01] Thomas H. Cormen, Clifford Stein, Charles E. Leiserson, and Robert L.
Rivest. Introduction to Algorithms. B&T, 2001.

[CTSO03] Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming Ouhyoung. On
Visual Similarity Based 3D Model Retrieval. Computer Graphics Forum,
22(3):223–232, 2003.

[CWQ+04] Kin-Shing D. Cheng, Wenping Wang, Hong Qin, Kwan-Yee Kenneth
Wong, Huaiping Yang, and Yang Liu. Fitting Subdivision Surfaces to Un-
organized Point Data using SDM. Proceedings of 12th Pacific Conference
on Computer Graphics and Applications, 1:16–24, 2004.

[CWQ+07] Kin-Shing Cheng, Wenping Wang, Hong Qin, Kwan-Yee K. Wong, Huaip-
ing Yang, and Yang Liu. Design and Analysis of Optimization Methods
for Subdivision Surface Fitting. IEEE Transactions on Visualization and
Computer Graphics, 13(5):878–890, 2007.

[Dau92] Ingrid Daubechies. Ten Lectures on Wavelets. Society for Industrial and
Applied Mathematics, 1992.

[DB02] Ioannis Douros and Bernard Buxton. Three-dimensional surface curva-
ture estimation using quadric surface patches. Proceedings of Scanning,
2:1–12, 2002.

[dBCvKO08] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars.
Computational Geometry: Algorithms and Applications. Springer, 2008.

[DC76] Manfredo Do Carmo. Differential Geometry of Curves and Surfaces.
Prentice Hall, 1976.

[dC99] Paul de Faget de Casteljau. De Casteljau’s autobiography: My time at
Citroën. Computer Aided Geometric Design, 16:583–586, 1999.

263

[DDSD03] Xavier Décoret, Frédo Durand, Francois Sillion, and Julie Dorsey. Bill-
board Clouds for Extreme Model Simplification. Proceedings of the ACM
Siggraph 2003, 22(3):689–696, 2003.

[Diw03] Urmila Diwekar. Introduction to Applied Optimization, volume 80 of Ap-
plied Optimization. Springer, 2003.

[DJ94] Marie-Pierre Dubuisson and Anil K. Jain. A Modified Hausdorff Distance
for Object Matching. Proceedings of the 12th IAPR International Confer-
ence on Pattern Recognition, 1:566–568, 1994.

[DKT98] Tony DeRose, Michael Kass, and Tien Truong. Subdivision Surfaces
in Character Animation. Proceedings of the 25th annual conference on
Computer graphics and interactive techniques, 25:85 – 94, 1998.

[DL05] Oliver Deussen and Bernd Lintermann. Digital Design of Nature: Com-
puter Generated Plants and Organics. Springer, 2005.

[Dor95] Jean-Luc Dorier. A general outline of the genesis of vector space theory.
Historia Mathematica, 22(3):227–261, 1995.

[DSVdB08] Bart De Schutter and Ton J. J. Van den Boom. Max-plus algebra and
max-plus linear discrete event systems: An introduction. Proceedings of
the International Workshop on Discrete Event Systems, 9:36–42, 2008.

[EP97] Anton M. Ertl and Christian Pirker. The structure of a Forth native code
compiler. EuroForth ’97 Conference Proceedings, 12:107–116, 1997.

[Eri04] Christer Ericson. Realtime Collision Detection. Morgan Kaufmann, 2004.

[Ert96] Anton M. Ertl. Implementation of Stack-Based Languages on Regis-
ter Machines. PhD-Thesis, Technische Universität Wien, Austria, 1:1–85,
1996.

[ESYAE94] Conal Elliott, Greg Schechter, Ricky Yeung, and Salim Abi-Ezzi. TBAG: a
high level framework for interactive, animated 3D graphics applications.
Proceedings of the 21st annual conference on Computer graphics and in-
teractive techniques, 13:421 – 434, 1994.

[Far99] Gerald Farin. NURBS for Curve and Surface Design from Projective Ge-
ometry to Practical Use. AK Peters, Ltd., 1999.

[FB81] Martin A. Fischler and Robert C. Bolles. Random sample consensus: a
paradigm for model fitting with applications to image analysis and au-
tomated cartography. Communications of the ACM, 24(6):381–395, 1981.

[Fel01] Dieter W. Fellner. Graphics Content in Digital Libraries: Old Problems,
Recent Solutions, Future Demands. Journal of Universal Computer Sci-
ence, 7:400–409, 2001.

264 Bibliography

[FFBS04] Elisabeth Freeman, Eric Freeman, Bert Bates, and Kathy Sierra. Head
First Design Patterns. O’Reilly Media, Inc., 2004.

[FH05a] Gerald Farin and Dianne Hansford. Practical Linear Algebra, A Geometry
Toolbox. A K Peters Ltd., 2005.

[FH05b] Dieter W. Fellner and Sven Havemann. Striving for an adequate vocabu-
lary: Next generation metadata. Proceedings of the 29th Annual Confer-
ence of the German Classification Society, 29:13 – 20, 2005.

[FHH03] Gerald Farin, Bernd Hamann, and Hans Hagen. Hierarchical and Geo-
metrical Methods in Scientific Visualization. Springer, 2003.

[Fin08a] Dieter Finkenzeller. Detailed Building Facades. IEEE Computer Graphics
and Applications, 28(3):58–66, 2008.

[Fin08b] Dieter Finkenzeller. Modellierung komplexer Gebäudefassaden in der
Computergraphik. Universitätsverlag Karlsruhe, 2008.

[Fis02] Robert B. Fisher. Applying knowledge to reverse engineering problems.
Proceedings of Geometric Modeling and Processing, 1:149–155, 2002.

[Fle00] Roger Fletcher. Practical Methods of Optimization. Wiley, 2000.

[FLS04] John Fisher, John Lowther, and Ching-Kuang Shene. If you know b-
splines well, you also nnow NURBS! Proceedings of the 35th SIGCSE tech-
nical symposium on Computer science education, 35:343 – 347, 2004.

[FMA+10] ÂăAlfredo Ferreira, ÂăSimone Marini, ÂăMarco Attene, ÂăManuel J. Fon-
seca, ÂăMichela Spagnuolo, ÂăJoaquim A. Jorge, and Bianca Falcidieno.
Thesaurus-based 3D Object Retrieval with Part-in-Whole Matching. In-
ternational Journal of Computer Vision, 89:327–347, 2010.

[FPRJ00] Sarah F. Frisken, Ronald N. Perry, Alyn P. Rockwood, and Thouis R. Jones.
Adaptively Sampled Distance Fields: A General Representation of Shape
for Computer Graphics. Proceedings of ACM Siggraph 2000, 17:249–254,
2000.

[FR64] Roger Fletcher and C. M. Reeves. Function minimization by conjugate
gradients. The Computer Journal, 7:149–154, 1964.

[FS97] Dieter W. Fellner and Norbert Schenk. MRT - A Tool for Simulations in
3D Geometric Domains. Proceedings of the 11th European Simulation
Multiconference (ESM), 11:185–188, 1997.

[FS06] Thomas A. Funkhouser and Philip Shilane. Partial Matching of 3D
Shapes with Priority-Driven Search. Symposium on Geometry Process-
ing, 4:131–142, 2006.

265

[FSG03] Arnulph Fuhrmann, Gerrit Sobottka, and Clemens Gross. Distance
Fields for Rapid Collision Detection in Physically Based Modeling. Pro-
ceedings of EUROGRAPHICS GraphiCon, 1:58–65, 2003.

[FSK07] Dieter W. Fellner, Dietmar Saupe, and Harald Krottmaier. 3D Docu-
ments. IEEE Computer Graphics and Applications, 27(4):20–21, 2007.

[FUF06] Christoph Fünfzig, Torsten Ullrich, and Dieter W. Fellner. Hierarchical
Spherical Distance Fields for Collision Detection. Computer Graphics
and Applications, 26(1):64–74, 2006.

[FUFB07] Christoph Fünfzig, Torsten Ullrich, Dieter W. Fellner, and Edward N.
Bachelder. Empirical Comparison of Data Strucutres for Line of Sight
Computation. Proceedings of IEEE International Symposium on Intelli-
gent Signal Processing (WISP) 2007, 1:291–296, 2007.

[FUFB09] Christoph Fünfzig, Torsten Ullrich, Dieter W. Fellner, and Edward N.
Bachelder. Terrain and Model Queries Using Scalar Representation With
Wavelet Compression. IEEE Transactions on Instrumentation and Mea-
surement, 58:3079–3085, 2009.

[FZ03] Christian Früh and Avideh Zakhor. Constructing 3D City Models by
Merging Aerial and Ground Views. IEEE Computer Graphics and Appli-
cations, 23(6):52 – 61, 2003.

[GBY91] Gaston H. Gonnet and Ricardo Baeza-Yates. Handbook of Algorithms
and Data Structures. Addison-Wesley Publishing, 1991.

[GCO06] Ran Gal and Daniel Cohen-Or. Salient Geometric Features for Partial
Shape Matching and Similarity. ACM Transactions on Graphics, 25:130–
150, 2006.

[GG04] Natasha Gelfand and Leonidas J. Guibas. Shape Segmentation Using
Local Slippage Analysis. Proceedings of Symposium on Geometry Pro-
cessing, 1:219–228, 2004.

[GI04] Jack Goldfeather and Victoria Interrante. A novel cubic-order algorithm
for approximating principal direction vectors. ACM Transactions on
Graphics, 23(1):45–63, 2004.

[GJ02] Joachim Giesen and Michael John. Surface reconstruction based on a
dynamical system. Computer Graphics Forum, 21(3):363–371, 2002.

[GJH95] Liu Guanghui, Han Jiye, and Yin Hongxia. Global convergence of the
fletcher-reeves algorithm with inexact linesearch. Applied Mathematics
- A Journal of Chinese Universities, 10:75–82, 1995.

266 Bibliography

[GJK88] Elmer G. Gilbert, Daniel W. Johnson, and Sathiya S. Keerthi. A fast pro-
cedure for computing the distance between complex objects in three-
dimensional space. IEEE Journal of Robotics and Automation, 4(2):193–
203, 1988.

[GK07] Björn Ganster and Reinhard Klein. An Integrated Framework for Proce-
dural Modeling. Proceedings of Spring Conference on Computer Graphics
2007 (SCCG 2007), 23:150–157, 2007.

[GL06] Rich Gossweiler and Mark Limber. SketchUp: An Easy-to-Use 3D De-
sign Tool that Integrates with Google Earth. Adjunct Proceedings of the
19th annual ACM Symposium on User Interface Software and Technology
(UIST06), 19:3, 2006.

[GLM96] Stefan Gottschalk, Ming C. Lin, and Dinesh Manocha. OBB-Tree: A Hier-
archical Structure for Rapid Interference Detection. Proceedings of 1996
ACM Siggraph, 30:171–180, 1996.

[GMW82] Philip E. Gill, Walter Murray, and Margaret H. Wright. Practical Opti-
mization. Academic Press, 1982.

[GOT05] Nick Gould, Dominique Orban, and Philippe Toint. Numerical meth-
ods for large-scale nonlinear optimization. Acta Numerica, 14:299–361,
2005.

[Gou09] Brian Gough, editor. Gnu Scientific Library Reference Manual - Third
Edition. Network Theory Ltd, 2009.

[GPMG10] Eric Galin, Adrien Peytavie, Nicolas Marechal, and Eric Guerin. Procedu-
ral Generation of Roads. Computer Graphics Forum, 29:429–438, 2010.

[Gra97] Alfred Gray. Modern Differential Geometry of Curves and Surfaces with
Mathematica. CRC, 1997.

[GRLM03] Naga Govindaraju, Stephane Redon, Ming C. Lin, and Dinesh
Manocha. CULLIDE: Interactive Collision Detection Between Complex
Models in Large Environments using Graphics Hardware. SIG-
GRAPH/EUROGRAPHICS Workshop On Graphics Hardware, 1:25–32,
2003.

[Gro03] CIDOC CRM Special Interest Group. Definition of the CIDOC Conceptual
Reference Model. ICOM/CIDOC Documentation Standards Group, 2003.

[Gru93] Thomas R. Gruber. A translation approach to portable ontology specifi-
cations. Knowledge Acquisition - Special issue: Current issues in knowl-
edge modeling, 5(2):199–220, 1993.

[GW08] Andreas Griewank and Andrea Walther. Evaluating Derivatives: Princi-
ples and Techniques of Algorithmic Differentiation. SIAM, 2008.

267

[GWM01] Stefan Gumhold, Xinlong Wang, and Rob MacLeod. Feature Extrac-
tion from Point Clouds. Proceedings of 10th International Meshing
Roundtable, 1:1–13, 2001.

[GWN+03] Markus Gross, Stephan Würmlin, Martin Naef, Edouard Lamboray,
Christian Spagno, Andreas Kunz, Esther Koller-Meier, Tomas Svoboda,
Luc Van Gool, Silke Lang, Kai Strehlke, Aandrew Vande Moere, and Oliver
Staadt. blue-c: A Spatially Immersive Display and 3D Video Portal for
Telepresence. Proceedings of ACM Siggraph 2003, 22:819–827, 2003.

[Hav05] Sven Havemann. Generative Mesh Modeling. PhD-Thesis, Technische
Universität Braunschweig, Germany, 1:1–303, 2005.

[HDD+92] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and
Werner Stuetzle. Surface reconstruction from unorganized points. Pro-
ceedings of the 19th annual Conference on Computer Graphics and Inter-
active Techniques, 1:71 – 78, 1992.

[Hei07] J.L. Heiberg, editor. Euclid’s Elements of Geometry. Fitzpatrick, Richard,
2007.

[Hen95] Norbert Henze. Stochastik – Einführung in die Wahrscheinlichkeitstheo-
rie und Statistik (english: Stochastics – Introduction to probability calcu-
lus and statistics). Technische Universität Karlsruhe, 1995.

[Hen97] Norbert Henze. Stochastik für Einsteiger (english: Stochastics for Begin-
ners). Vieweg, 1997.

[HF01] Sven Havemann and Dieter W. Fellner. A versatile 3D Model Represen-
tation for Cultural Reconstruction. Proceedings of the 2001 Conference
on Virtual Reality, Archeology, and Cultural Heritage, 1:205 – 212, 2001.

[HF04] Sven Havemann and Dieter W. Fellner. Generative Parametric Design of
Gothic Window Tracery. Proceedings of the 5th International Symposium
on Virtual Reality, Archeology, and Cultural Heritage, 1:193–201, 2004.

[HF07] Sven Havemann and Dieter W. Fellner. Seven Research Challenges of
Generalized 3d Documents. IEEE Computer Graphics and Applications,
3:70–76, 2007.

[HHKR97] Rolf Hammer, Matthias Hocks, Ulrich Kulisch, and Dietmar Ratz. C++
Toolbox for Verified Computing. Springer, 1997.

[HK01] Christoph M. Hoffmann and Ku-Jin Kim. Towards valid parametric CAD
models. Computer Aided Design, 33:81–90, 2001.

268 Bibliography

[HKD93] Mark Halstead, Michael Kass, and Tony DeRose. Efficient, Fair Inter-
polation using Catmull-Clark Surfaces. Proceedings of the 20th annual
conference on Computer graphics and interactive techniques, 20:35–44,
1993.

[HKT92] Gregory J. Hamlin, Robert B. Kelley, and Josep Tornero. Efficient
Distance Calculation using the Spherically-Extended Polytope (S-tope)
Model. Proceedings of Robotics and Automation, 1:2502–2507, 1992.

[HL89] Josef Hoschek and Dieter Lasser. Grundlagen der Geometrischen Daten-
verarbeitung (english: Fundamentals of Computer Aided Geometric De-
sign). Teubner, 1989.

[HN02] Marcus Hudec and Christian Neumann. Stichproben und Umfragen (en-
glish: Random Samples and Polls). Institut für Statistik der Universität
Wien, 2002.

[Hop98] Hugues Hoppe. Efficient implementation of progressive meshes. Com-
puters & Graphics, 22(1):27–36, 1998.

[HOP+05] Michael Hofer, Boris Odehnal, Helmut Pottmann, Tibor Steiner, and Jo-
hannes Wallner. 3D shape recognition and reconstruction based on line
element geometry. Proceedings of the 10th IEEE International Confer-
ence on Computer Vision, 2:1532–1538, 2005.

[HP02] Hans-Christian Hege and Konrad Polthier. Mathematical Visualization:
Algorithms, Applications and Numerics. Springer, 2002.

[HP10] Jörn Höllig, Klaus andHöner and Martina Pfeil. Numerische Methoden
der Analysis. Mathematik-Online, 2010.

[HS52] Magnus R. Hestenes and Eduard Stiefel. Methods of conjugate gradients
for solving linear systems. Journal of Research of the National Bureau of
Standards, 49:409–436, 1952.

[HSKK01] Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura, and Tosiyasu L. Ku-
nii. Topology Matching for Fully Automatic Similarity Estimation of 3D
Shapes. Proceedings of the 28th annual conference on Computer graphics
and interactive techniques, 28:203–212, 2001.

[HT96] Bernd Hamann and Po-Yu Tsai. A tessellation algorithm for the repre-
sentation of trimmed NURBS surfaces with arbitrary trimming curves.
Computer Aided Design, 28:461–472, 1996.

[HTG04] Bruno Heidelberger, Matthias Teschner, and Markus Gross. Detection of
Collisions and Self-collisions Using Image-space Techniques. Proceed-
ings of Winter School of Computer Graphics (WSCG), 1:145–152, 2004.

269

[HUF11] Sven Havemann, Torsten Ullrich, and Dieter W. Fellner. The Meaning
of Shape and some Techniques to Extract It. Multimedia Information
Extraction, page to appear, 2011.

[HZ04] Richard Hartley and Andrew Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2004. ISBN 0521540518.

[Inc85] Adobe Systems Inc. PostScript Language Reference Manual (first ed.).
Addison-Wesley, 1985.

[Ing93] Lester Ingber. Simulated annealing: Practice versus theory. Mathemati-
cal and Computer Modelling, 18:29–57, 1993.

[Ini95] Dublin Core Metadata Initiative. Dublin Core Metadata Initiative.
http://dublincore.org/, 1995.

[Iro05] Mark L. Irons. The Curvature and Geodesics of the Torus. Technical
Report, Raindrop Laboratories, 20:1–19, 2005.

[JBS06] Mark W. Jones, Andreas J. Baerentzen, and Milos Sramek. 3D Distance
Fields: A Survey of Techniques and Applications. IEEE Transactions on
Visualization and Computer Graphics, 12(4):581–599, 2006.

[JF06] Jonas Jacobi and John Fallows. AJAX and Mozilla XUL with JavaServer
Faces. AJAX Developer’s Journal, 2:1–2, 2006.

[JH99] Andrew Johnson and Martial Hebert. Using spin images for efficient ob-
ject recognition in cluttered 3D scenes. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 21:433–449, 1999.

[JLM02] Kenneth I. Joy, Justin Legakis, and Ron MacCracken. Data Structures for
Multiresolution Representation of Unstructured Meshes. Hierarchical
Approximation and Geometric Methods for Scientific Visualization, 1:1–
28, 2002.

[JM90] Cezary Z. Janikow and Zbigniew Michalewicz. A specialized genetic al-
gorithm for numerical optimization problems. Proceedings of the 2nd
International IEEE Conference on Tools for Artificial Intelligence, 2:798 –
804, 1990.

[Jon95] Mark W. Jones. 3D Distance from a Point to a Triangle. Technical
Report CSR-5-95, Department of Computer Science, University of Wales
Swansea, 5:1–5, 1995.

[KBAP04] Karl Kraus, Christian Briese, Maria Attwenger, and Norbert Pfeifer. Qual-
ity Measures for Digital Terrain Models. Proceedings of International
Society for Photogrammetry and Remote Sensing (ISPRS) Conference,
35:113–118, 2004.

270 Bibliography

[KBK+01] Konrad Karner, Joachim Bauer, Andreas Klaus, Franz Leberl, and Markus
Grabner. Virtual Habitat: Models of the Urban Outdoors. International
Workshop on Automatic Extraction of Man-Made Objects from Aerial and
Space Imaging, 3:393–402, 2001.

[KDS99] David Kidner, Mark Dorey, and Derek Smith. What’s the point? Inter-
polation and extrapolation with a regular grid DEM. Proceedings of ’99
GeoComputation, 4:1–17, 1999.

[Kel99] C.T. Kelley. Iterative Methods for Optimization, volume 18 of Frontier in
Applied Mathematics. Society for Industrial and Applied Mathematics
(SIAM), 1999.

[Kel00] Max L. Keler. On the Theory of Screws and the Dual Method. Proceed-
ings of A Symposium Commemorating the Legacy, Works, and Life of Sir
Robert Stawell Ball Upon the 100th Anniversary of "A Treatise on the The-
ory of Screws", 1:1–12, 2000.

[KGL+98] Shankar Krishnan, Meenakshisundaram Gopi, Ming C. Lin, Dinesh
Manocha, and Amol Pattekar. Rapid and Accurate Contact Determina-
tion between Spline Models using ShellTrees. Computer Graphics Fo-
rum, 17(3):315–326, 1998.

[KK11] Lars Krecklau and Leif Kobbelt. Procedural Modeling of Interconnected
Structures. Computer Graphics Forum, 30:335–344, 2011.

[KP03] Dave Knott and Dinesh K. Pai. CInDeR: Collision and Interference De-
tection in Real-time using Graphics Hardware. Graphics Interface, 1:73–
80, 2003.

[KPL98] Shankar Krishnan, Amol Pattekar, and Ming C. Lin. Spherical Shell: A
Higher Order Bounding Volume for Fast Proximity Queries. Proceed-
ings of the third workshop on the algorithmic foundations of robotics on
Robotics, 3:177–190, 1998.

[KPVG00] Reinhard Koch, Marc Pollefeys, and Luc Van Gool. Realistic Surface Re-
construction of 3D Scenes from Uncalibrated Image Sequences. Journal
of Visualization and Computer Animation, 11(3):115–127, 2000.

[KT03] Sagi Katz and Ayellet Tal. Hierarchical Mesh Decomposition using Fuzzy
Clustering and Cuts. ACM Transactions on G, 22:954–961, 2003.

[KW05] Brett D. King and Michael Wertheimer. Max Wertheimer & Gestalt The-
ory. Transaction Publishers, 2005. ISBN 0-7658-0258-9.

[KZ05] Ladislav Kavan and Jiri Zara. Fast Collision Detection for Skeletally De-
formable Models. Computer Graphics Forum, 24(3):363–372, 2005.

271

[LC09] Xin Li and Falai Chen. Exact and approximate representations of
trimmed surfaces with NURBS and BÃl’zier surfaces. Proceedings of
IEEE International Conference on Computer-Aided Design and Computer
Graphics, 11:286–291, 2009.

[LD98] Bernd Lintermann and Oliver Deussen. A Modelling Method and User
Interface for Creating Plants. Computer Graphics Forum, 17(1):73–82,
1998.

[LDMA+04] Johnny C. Lee, Paul H. Dietz, Dan Maynes-Aminzade, Ramesh Raskar,
and Scott E. Hudson. Automatic Projector Calibration with Embedded
Light Sensors. ACM Symposium on User Interface Software and Technol-
ogy, 1:123–126, 2004.

[Ley01] Michael Leyton. A Generative Theory of Shape. Springer, 2001.

[LH92] Haim Levkowitz and Gabor T. Herman. Color Scales for Image Data.
IEEE Computer Graphics and Applications, 12(1):72–80, 1992.

[LH07] Sylvain Lefebvre and Hugues Hoppe. Compressed Random-Access
Trees for Spatially Coherent Data. Rendering Techniques (Proceedings
of the Eurographics Symposium on Rendering), 18:339–349, 2007.

[LM03] Ming C. Lin and Dinesh Manocha. Collision And Proximity Queries.
Handbook of Discrete and Computational Geometry, 35:1–21, 2003.

[LOU+06] Marcel Lancelle, Lars Offen, Torsten Ullrich, Torsten Techmann, and Di-
eter W. Fellner. Minimally Invasive Projector Calibration for 3D Appli-
cations. Proceedings of 3. Workshop Virtuelle und Erweiterte Realität der
GI-Fachgruppe VR/AR, 1(1):1–9, 2006.

[LPZ03] Stefan Leopoldseder, Helmut Pottmann, and Hong K. Zhao. The d2-tree:
A hierarchical representation of the squared distance function. Techni-
cal Report, Institut of Geometry, Vienna University of Technology, 101:1–
12, 2003.

[LS04] Baoxin Li and Ibrahim Sezan. Automatic keystone correction for smart
projectors with embedded camera. Proceedings of 2004 International
Conference on Image Processing, 4:2829–2832, 2004.

[LWW08] Markus Lipp, Peter Wonka, and Michael Wimmer. Interactive Visual
Editing of Grammars for Procedural Architecture. ACM Transactions on
Graphics, 27(3):1–10, 2008.

[LZQ06] Yi Liu, Hongbin Zha, and Hong Qin. Shape topics: A compact represen-
tation and new algorithms for 3d partial shape retrieval. IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 2:2025–
2032, 2006.

272 Bibliography

[Ma05] Weiyin Ma. Subdivision surfaces for CAD - an overview. Computer-Aided
Design, 37(7):693–709, 2005.

[Mac03] David J.C. MacKay. Information Theory, Inference, and Learning Algo-
rithms. Cambridge University Press, 2003.

[Max88] Nelson L. Max. Horizon mapping: shadows for bump-mapped surfaces.
The Visual Computer, 4:109–117, 1988.

[May11] Mark T. Maybury, editor. Multimedia Information Extraction. 2011.

[MB07] Mokshay Madiman and Andrew R. Barron. Generalized Entropy Power
Inequalities and Monotonicity Properties of Information. IEEE Transac-
tions on Information Theory, 53(7):2317–2329, 2007.

[McL99] Michael P. McLaughlin. A Compendium of Common Probability Distri-
butions. Regress+, 1999.

[MDSB03] Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H. Barr. Dis-
crete Differential-Geometry Operators for Triangulated 2-Manifolds. Vi-
sualization and Mathematics III, 3:35–57, 2003.

[MGGP06] J. Mitra, Niloy, Leonidas Guibas, Joachim Giesen, and Mark Pauly. Prob-
abilistic Fingerprints for Shapes. Symposium on Geometry Processing,
4:121–130, 2006.

[MGP06] Niloy J. Mitra, Leonidas J. Guibas, and Mark Pauly. Partial and approxi-
mate symmetry detection for 3D geometry. ACM Transactions on Graph-
ics, 25:560 – 568, 2006.

[MGP07] Niloy J. Mitra, Leonidas J. Guibas, and Mark Pauly. Symmetrization.
International Conference on Computer Graphics and Interactive Tech-
niques, 26:1–8, 2007.

[MH00] Kerstin Müller and Sven Havemann. Subdivision Surface Tesselation
on the Fly using a versatile Mesh Data Structure. Computer Graphics
Forum, 19(3):151–159, 2000.

[MH03] Ying Liang Ma and Terry W. Hewitt. Point inversion and projection for
NURBS curve and surface: control polygon approach. Computer Aided
Geometric Design, 20(2):79–99, 2003.

[Mic95] Zbigniew Michalewicz. A Survey of Constraint Handling Techniques in
Evolutionary Computation Methods. Proceedings of the Fourth Annual
Conference on Evolutionary Programming, 4:135–155, 1995.

[MK05] Martin Marinov and Leif Kobbelt. Optimization methods for scat-
tered data approximation with subdivision surfaces. Graphical Models,
67(5):452 – 473, 2005.

273

[MMTP04] Weiyin Ma, Xiaohu Ma, Shiu-Kit Tso, and Zhigeng Pan. A direct approach
for subdivision surface fitting from a dense triangle mesh. Computer-
Aided Design, 36(6):525–536, 2004.

[MMY06] Ricardo A. Maronna, Douglas R. Martin, and Victor J. Yohai. Robust
Statistics: Theory and Methods. Wiley Series in Probability and Statistics.
John Wiley and Sons, 2006.

[Moo91] Andrew W. Moore. An introductory tutorial on kd-trees. Technical Re-
port, Computer Laboratory, University of Cambridge, 209:1–20, 1991.

[MP09] Ashish Myles and Jörg Peters. Bi3 C2 polar subdivision. Proceedings
of International Conference on Computer Graphics and Interactive Tech-
niques SIGGRAPH, 28:48:1–48:12, 2009.

[MPT99] William A. McNeely, Kevin D. Puterbaugh, and James J. Troy. Six Degree-
Of-Freedom Haptic Rendering using Voxel Sampling. Proceedings of
the 26th annual Conference on Computer Graphics and Interactive Tech-
niques, 26:401 – 408, 1999.

[MRRT53] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall W. Rosenbluth,
and Augusta H. Teller. Equation of State Calculations by Fast Computing
Machines. The Journal of Chemical Physics, 21:1087–1092, 1953.

[MS96] Zbigniew Michalewicz and Marc Schoenauer. Evolutionary Algorithms
for Constrained Parameter Optimization Problems. Evolutionary Com-
putation, 4:1–32, 1996.

[MSF07] Simone Marini, Michela Spagnuolo, and Bianca Falcidieno. Structural
Shape Prototypes for Automatic Classification of 3D Objects. IEEE Com-
puter Graphics and Applications, 27(4):28–37, 2007.

[MSH+08] Erick Mendez, Gerhard Schall, Sven Havemann, Dieter W. Fellner, Dieter
Schmalstieg, and Sebastian Junghanns. Generating Semantic 3D Mod-
els of Underground Infrastructure. IEEE Computer Graphics and Appli-
cations, 28:48–57, 2008.

[MSHS06] Aurélien Martinet, Cyril Soler, Nicolas Holzschuch, and Francois Sillion.
Accurate Detection of Symmetries in 3D Shapes. ACM Transactions on
Graphics, 25:439 – 464, 2006.

[MWH+06] Pascal Müller, Peter Wonka, Simon Haegler, Ulmer Andreas, and Luc
Van Gool. Procedural Modeling of Buildings. Proceedings of 2006 ACM
Siggraph, 25(3):614–623, 2006.

[MZWVG07] Pascal Müller, Gang Zeng, Peter Wonka, and Luc Van Gool. Image-
based Procedural Modeling of Facades. ACM Transactions on Graphics,
28(3):1–9, 2007.

274 Bibliography

[Nas90] John C. Nash. Compact Numerical Methods for Computers: Linear Alge-
bra and Function Minimisation. Adam Hilger, second edition edition,
1990.

[Nex09] NextEngine. User’s Guide. online: http://support.nextengine.com, 2009.

[NW99] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer,
1999.

[OA93] Review Board OpenGL Architecture. OpenGL Reference Manual.
Addison-Wesley Publishing Company, 1993.

[OB07] Björn Ommer and Joachim M. Buhmann. Learning the Compositional
Nature of Visual Objects. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 32:1–8, 2007.

[oC99] Committee on Cataloging, Description & Access. Task Force on Meta-
data - Summary Report. American Library Association, 4:1–16, 1999.

[ÖK08] Mine Özkar and Sotirios Kotsopoulos. Introduction to shape grammars.
International Conference on Computer Graphics and Interactive Tech-
niques ACM SIGGRAPH 2008 (course notes), 36:1–175, 2008.

[ONOT98] Masahiro Okamoto, Taisuke Nonaka, Shuichiro Ochiai, and Daisuke
Tominaga. Nonlinear numerical optimization with use of a hybrid ge-
netic algorithm incorporating the modified Powell method. Applied
Mathematics and Computation, 91:63–72, 1998.

[oST10] National Institute of Standards and Technology. Digital Library of Math-
ematical Functions. online: http://dlmf.nist.gov, 2010.

[Ous98] John K. Ousterhout. Scripting: Higher Level Programming for the 21st
Century. IEEE Computer Magazine, 31(3):23–30, 1998.

[PBP02] Hartmut Prautzsch, Wolfgang Boehm, and Marco Paluszny. Bézier and
B-Spline Techniques. Springer, 2002.

[Pea90] Frederick Pearson. Map Projections: Theory and Applications. CRC,
1990.

[Pet00] Jörg Peters. Patching Catmull-Clark meshes. International Conference
on Computer Graphics and Interactive Techniques, 27:255–258, 2000.

[Pet04] Martin Peternell. Developable Surface Fitting to Point Clouds. Computer
Aided Geometric Design, 21:785–803, 2004.

[PFC+05] Paolo Pingi, Andrea Fasano, Paolo Cignoni, Claudio Montani, and
Roberto Scopigno. Exploiting the scanning sequence for automatic
registration of large sets of range maps. Computer Graphics Forum,
24(3):517–526, 2005.

275

[PG04] Michael D. Proctor and William J. Gerber. Line-of-sight Attributes for a
Generalized Application Program Interface. Journal of Defense Modeling
and Simulation: Applications, Methodology, Technology, 1:43–57, 2004.

[PH03a] Helmut Pottmann and Michael Hofer. Geometry of the squared distance
function to curves and surfaces. Visualization and Mathematics III, H.C.
Hege and K. Polthier (eds.), 3:223–244, 2003.

[PH03b] Emil Praun and Hugues Hoppe. Spherical parametrization and remesh-
ing. International Conference on Computer Graphics and Interactive
Techniques, 22:340 – 349, 2003.

[Pin02] Janos D. Pinter. Global Optimization: Software, Test Problems, and Ap-
plications. Handbook of Global Optimization, P.M. Pardalos and H.E.
Romeijn (eds), 2:515–569, 2002.

[PKG03] Mark Pauly, Richard Keiser, and Markus Gross. Multi-scale Feature
Extraction on Point-Sampled Surfaces. Computer Graphics Forum,
22(3):281–289, 2003.

[PL90] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The Algorithmic
Beauty of Plants. Springer-Verlag, 1990.

[PM01] Yogi Parish and Pascal Mueller. Procedural Modeling of Cities. Proceed-
ings of the 28th annual conference on Computer graphics and interactive
techniques, 28:301–308, 2001.

[PMW+08] Mark Pauly, Niloy J. Mitra, Johannes Wallner, Helmut Pottmann, and
Leonidas J. Guibas. Discovering structural regularity in 3D geometry.
ACM Transactions on Graphics, 27:#43, 1–11, 2008.

[PPV95] Alberto Paoluzzi, Valerio Pascucci, and Michele Vicentino. Geometric
Programming: a Programming Approach to Geometric Design. ACM
Transactions on Graphics, 14:266–306, 1995.

[PR69] Elijah Polak and G. Ribiere. Note sur la convergence de méthodes de di-
rections conjuguées. Revue Francaise Informat. Reserche Opérationnelle,
16:35–43, 1969.

[Pra04] Micheal J. Pratt. Extension of ISO 10303, the STEP Standard, for the Ex-
change of Procedural Shape Models. Proceedings of the Shape Modeling
International, 0:317 – 326, 2004.

[PT97] Les Piegl and Wayne Tiller. The NURBS book. Springer-Verlag New York,
Inc., 1997.

[PTK05] Pralay Pal, A. M. Tigga, and A. Kumar. Feature extraction from large CAD
databases using genetic algorithm. Computer-Aided Design, 37(5):545–
558, 2005.

276 Bibliography

[PU98] Hartmut Prautzsch and Georg Umlauf. Improved Triangular Subdivision
Schemes. Proceedings of the Computer Graphics International, 3:626–
632, 1998.

[PW09] Jorg Peters and Xiaobin Wu. The distance of a subdivision surface to
its control polyhedron. Journal of Approximation Theory, to appear:to
appear, 2009.

[PWL01] Helmut Pottmann, Johannes Wallner, and Stefan Leopoldseder. Kine-
matical methods for the classification, reconstruction and inspection of
surfaces. Comptes rendus du Congres national de mathematiques ap-
pliquees et industrielles, 1:51–60, 2001.

[RA99] Ravi Ramamoorthi and James Arvo. Creating Generative Models from
Range Images. Proceedings of ACM Siggraph, 1:195–204, 1999.

[Rab02] Christophe Rabut. On Pierre Bézier’s life and motivations. Computer-
Aided Design, 34:493–510, 2002.

[Ras00] Ramesh Raskar. Immersive Planar Display using Roughly Aligned Pro-
jectors. Proceedings of 2000 IEEE Virtual Reality, 1:109–116, 2000.

[RB01] Ramesh Raskar and Paul Beardsley. A Self-Correcting Projector. IEEE
Computer Society Conference on Computer Vision and Pattern Recogni-
tion, 2:504–508, 2001.

[RBB01] Holly Rushmeier, Laurent Balmelli, and Fausto Bernardini. Horizon Map
Capture. Computer Graphics Forum, 20(3):85âĂŞ94, 2001.

[Rei90] Glenn C. Reid. Thinking in Postscript. Addison-Wesley, 1990.

[Rem03] Fabio Remondino. From Point Cloud To Surface: The Modeling And
Visualization Problem. International Archives of Photogrammetry, Re-
mote Sensing and Spatial Information Sciences (ISPRS) International
Workshop on Visualization and Animation of Reality-based 3D Models,
34:228–238, 2003.

[RFM95] Arturo A. Rodriguez, Martin Fisher, and Brian Markey. Scripting Lan-
guages Emerge in Standards Bodies. IEEE MultiMedia, 2(4):88 – 92, 1995.

[RFM07] Casey Reas, Ben Fry, and John Maeda. Processing: A Programming Hand-
book for Visual Designers and Artists. The MIT Press, 2007.

[Ron09] Alfredo M. Ronchi. eCulture – Cultural Content in the Digital Age.
Springer, 2009.

[Ros97] Jarek Rossignac. The 3D Revolution: CAD Access for All! Proceedings of
the 1997 International Conference on Shape Modeling and Applications
(SMA ’97), 29:64–70, 1997.

277

[RTB96] Bernice E. Rogowitz, Lloyd A. Treinish, and Steve Bryson. How NOT to
lie with visualization. Computers in Physics, 10:268 – 273, 1996.

[RVB02] Dirk Reiners, Gerrit Voss, and Johannes Behr. OpenSG: Basic concepts.
Proceedings of OpenSG Symposium 2002, 1:1–7, 2002.

[RvdH04] Tahir Rabbani and Frank van den Heuvel. Methods for Fitting CSG Mod-
els to Point Clouds and their Comparison. Proceedings of 2004 Computer
Graphics and Imaging, 1:1–6, 2004.

[Sah00] Subhasis Saha. Image Compression – from DCT to Wavelets: A Review.
Crossroads, 6(3):12–21, 2000.

[SBM+10] Ondrej Stava, Bedrich Benes, Radomir Mech, Daniel G. Aliaga, and Pe-
ter Kristof. Inverse Procedural Modeling by Automatic Generation of
L-systems. Proccedings of EUROGRAPHICS, Computer Graphics Forum,
29:665–674, 2010.

[SBU+10] Andreas Schiefer, René Berndt, Torsten Ullrich, Volker Settgast, and Di-
eter W. Fellner. Service-Oriented Scene Graph Manipulation. Proceed-
ings of the 15th International Conference on Web 3D Technology, 15:55–
62, 2010.

[SBW02] Shigeo Sugimoto, Thomas Baker, and Stuart L. Weibel. Dublin Core:
Process and Principles. Lecture Notes in Computer Science – Digital Li-
braries: People, Knowledge, and Technology, 2555/2010:25–35, 2002.

[SDS96] Eric J. Stollnitz, Tony D. DeRose, and David H. Salesin. Wavelets for Com-
puter Graphics: Theory and Applications. Morgan Kaufmann, 1996.

[Sel06] Ilijas Selimovic. Improved algorithms for the projection of points
on NURBS curves and surfaces. Computer Aided Geometric Design,
23(5):439–445, 2006.

[SGS+05] Brian Salomon, Naga Govindaraju, Avneesh Sud, Ming Gayle, Russel-
land; Lin, Dinesh Manocha, Brett Butler, Maria Bauer, Angel Rodriguez,
Latika Eifert, Audrey Rubel, and Michael Macedonia. Accelerating Line
of Sight Computation Using Graphics Processing Units. Proceedings of
the 2005 Conference on Interservice/Industry Training, Simulation and
Education, 1:1–5, 2005.

[Sha98] Craig M. Shakarji. Least-Squares Fitting Algorithms of the NIST Algo-
rithm Testing System. Journal of Research of the National Institute of
Standards and Technology, 106(6):633–641, 1998.

[Sha02] Vadim Shapiro. Solid Modeling. Handbook of Computer-Aided Geo-
metric Design, G. Farin, J. Hoschek, and M.-S. Kim (editors), 20:473–518,
2002.

278 Bibliography

[SHS02] Wenyu Sun, Jiye Han, and Jie Sun. Global convergence of nonmonotone
descent methods for unconstrained optimization problems. Journal of
Computational and Applied Mathematics, 146:89–98, 2002.

[SHVG02] Tomas Svodoba, Hanspeter Hug, and Luc Van Gool. ViRoom - Low
Cost Synchronized Multicamera System and its Self-Calibration. Pattern
Recognition, 24th DAGM Symposium, 24:515–522, 2002.

[SK92] John M. Snyder and James T. Kajiya. Generative modeling: a symbolic
system for geometric modeling. Proceedings of 1992 ACM Siggraph,
1:369–378, 1992.

[SK98] Yoshihisa Shinagawa and Tosiyasu L. Kunii. Unconstrained Automatic
Image Matching Using Multiresolutional Critical-Point Filters. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(9):994–
1010, 1998.

[SKS06] Patricio Simari, Evangelos Kalogerakis, and Karan Singh. Folding
meshes: hierarchical mesh segmentation based on planar symmetry.
Proceedings of the fourth Eurographics symposium on Geometry process-
ing, 4:111–119, 2006.

[SMFF04] Volker Settgast, Kerstin Müller, Christoph Fünfzig, and Dieter W. Fellner.
Adaptive Tesselation of Subdivision Surfaces. Computers and Graphics,
28(1):73–78, 2004.

[SMKF04] Philip Shilane, Patrick Min, Michael Kazhdan, and Thomas A.
Funkhouser. The Princeton Shape Benchmark. Shape Modeling Inter-
national, 8:1–12, 2004.

[Sny97] John P. Snyder. Flattening the Earth: Two Thousand Years of Map Projec-
tions. University Of Chicago Press, 1997.

[SP97] Rainer Storn and Kenneth Price. Differential Evolution: A simple and ef-
ficient heuristic for global optimization over continuous spaces. Journal
of Global Optimization, 11:341–359, 1997.

[SRO+08] Markus Steiner, Philipp Reiter, Christian Ofenböck, Volker Settgast,
Torsten Ullrich, Marcel Lancelle, and Dieter W. Fellner. Intuitive Naviga-
tion in Virtual Environments. Proceedings of Eurographics Symposium
on Virtual Environments, 14:5–8, 2008.

[SS04] Christoph J. Scriba and Peter Schreiber. 5000 Jahre Geometrie:
Geschichte, Kulturen, Menschen (english: 5000 years of geometry: history,
cultures, men). Springer, 2004.

279

[SSB+10] Thomas Schiffer, Andreas Schiefer, René Berndt, Torsten Ullrich, Volker
Settgast, and Dieter W. Fellner. Enlightened by the Web – A service-
oriented architecture for real-time photorealistic rendering. Kongress
Multimediatechnik, 5:41–48, 2010.

[SSM01] Rahul Sukthankar, Robert G. Stockton, and Matthew D. Mullin. Smarter
Presentations: Exploiting Homography in Camera-Projector Systems.
Proceedings of International Conference on Computer Vision, 1:247–253,
2001.

[SSUF10a] Christoph Schinko, Martin Strobl, Torsten Ullrich, and Dieter W. Fellner.
Modeling Procedural Knowledge – a generative modeler for cultural her-
itage. Proccedings of EUROMED 2010 - Lecture Notes on Computer Sci-
ence, 6436:153–165, 2010.

[SSUF10b] Martin Strobl, Christoph Schinko, Torsten Ullrich, and Dieter W. Fellner.
Euclides – A JavaScript to PostScript Translator. Proccedings of the Inter-
national Conference on Computational Logics, Algebras, Programming,
Tools, and Benchmarking (Computation Tools), 1:14–21, 2010.

[SSUF11a] Thomas Schiffer, Christoph Schinko, Torsten Ullrich, and Dieter W. Fell-
ner. Real-World Geometry and Generative Knowledge. The European
Research Consortium for Informatics and Mathematics (ERCIM) News,
86:to appear, 2011.

[SSUF11b] Christoph Schinko, Martin Strobl, Torsten Ullrich, and Dieter W. Fell-
ner. Modeling Procedural Knowledge – a generative modeler for cultural
heritage. Selected Readings in Computer Graphics 2010, page to appear,
2011.

[Sta98] Jos Stam. Exact evaluation of Catmull-Clark subdivision surfaces at ar-
bitrary parameter values. Proceedings of the 25th annual conference on
Computer graphics and interactive techniques, 1:395 – 404, 1998.

[Ste98] James A. Stewart. Fast Horizon Computation at All Points of a Terrain
with Visibility and Shading Applications. IEEE Transactions on Visual-
ization and Computer Graphics, 4:82 – 93, 1998.

[Ste99] Charles V. Stewart. Robust Parameter Estimation in Computer Vision.
SIAM Review, 41(3):513 – 537, 1999.

[Sto03] Maureen Stone. A Field Guide to Digital Color. AK Peters, Ltd., 2003.

[SUF07] Volker Settgast, Torsten Ullrich, and Dieter W. Fellner. Information Tech-
nology for Cultural Heritage. IEEE Potentials, 26(4):38–43, 2007.

[SUF11] Christoph Schinko, Torsten Ullrich, and Dieter W. Fellner. Simple and
Efficient Normal Encoding with Error Bounds. Poster Proceedings of The-
ory and Practice of Computer Graphics, page to appear, 2011.

280 Bibliography

[SUSF11] Christoph Schinko, Torsten Ullrich, Thomas Schiffer, and Dieter W. Fell-
ner. Variance Analysis and Comparison in Computer-Aided Design. Pro-
ceedings of the International Workshop on 3D Virtual Reconstruction and
Visualization of Complex Architectures, XXXVIII-5/W16:3B21–25, 2011.

[SW06] Arne Schmitz and Martin Wenig. The effect of the radio wave propaga-
tion model in mobile ad hoc networks. Proceedings of the 9th ACM in-
ternational Symposium on Modeling Analysis and Simulation of Wireless
and Mobile Systems, 9:61 – 67, 2006.

[SWK07] Ruwen Schnabel, Roland Wahl, and Reinhard Klein. Efficient RANSAC
for Point-Cloud Shape Detection. Computer Graphics Forum, 26(2):214–
226, 2007.

[SWWK07] Ruwen Schnabel, Roland Wahl, Raoul Wessel, and Reinhard Klein. Shape
Recognition in 3D Point Clouds. Technical report, 1:1–9, 2007.

[Tec04] Torsten Techmann. Unterteilungsflächen: Datenstruktur und Regeln.
Technical Report TUBS-CG, 02:1–27, 2004.

[TGRZ07] Elif Tosun, Yotam I. Gingold, Jason Reisman, and Denis Zorin. Shape
Optimization Using Reflection Lines. Proceedings of the Symposium on
Geometry Processing, 257:193–202, 2007.

[tHCMV05] Frank ter Haar, Paolo Cignoni, Patrick Min, and Remco Veltkamp. A
Comparison of Systems and Tools for 3D Scanning. 3D Digital Imag-
ing and Modeling: Applications of Heritage, Industry, Medicine and Land,
1:1–8, 2005.

[THM+03] Matthias Teschner, Bruno Heidelberger, Matthias Mueller, Danat
Pomeranets, and Markus Gross. Optimized Spatial Hashing for Collision
Detection of Deformable Objects. Proceedings of 2003 Vision, Modeling,
and Visualization, 1:47–54, 2003.

[TKH+04] Matthias Teschner, Stefan Kimmerle, Bruno Heidelberger, Gabriel Zach-
mann, Laks Raghupathi, Arnulph Fuhrmann, Marie-Paule Cani, Fran-
cois Faure, Nadia Magnenat-Thalmann, Wolfgang Strasser, and Volino
Pascal. Collision Detection for Deformable Objects. Eurographics State
of the Art Report, 24(1):1–20, 2004.

[TSHM05] David Tuft, Brian Salomon, Sean Hanlon, and Dinesh Manocha. Fast
Line-of-Sight Computations in Complex Environments. Technical Re-
port TR05-025, 25:1–6, 2005.

[UB05] Ilkay Ulusoy and Christopher W. Bishop. Generative versus Discrimina-
tive Methods for Object Recognition. Proceedings of the 2005 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition,
2:258 – 265, 2005.

281

[UF04a] Torsten Ullrich and Dieter W. Fellner. AlgoViz - a Computer Graphics
Algorithm Visualization Toolkit. World Conference on Educational Mul-
timedia, Hypermedia and Telecommunications (ED-Media), 16:941–948,
2004.

[UF04b] Torsten Ullrich and Dieter W. Fellner. Modulare Inhaltserzeugung nach
dem Baukastenprinzip. DeLFI 2004: Die e-Learning Fachtagung der
Gesellschaft für Informatik 2004, 52:405–406, 2004.

[UF05] Torsten Ullrich and Dieter W. Fellner. Computer Graphics Courseware.
Proceedings of Eurographics 2005 Education, 1:11–17, 2005.

[UF07a] Torsten Ullrich and Dieter W. Fellner. Client-Side Scripting in Blended
Learning Environments. The European Research Consortium for Infor-
matics and Mathematics (ERCIM) News, 71:43–44, 2007.

[UF07b] Torsten Ullrich and Dieter W. Fellner. Robust Shape Fitting and Seman-
tic Enrichment. Proceedings of the 2007 International Symposium of
the International Committee for Architectural Photogrammetry (CIPA),
21:727–732, 2007.

[UF11a] Torsten Ullrich and Dieter W. Fellner. Generative Object Definition and
Semantic Recognition. Proccedings of the Eurographics Workshop on 3D
Object Retrieval, 4:1–8, 2011.

[UF11b] Torsten Ullrich and Dieter W. Fellner. Linear Algorithms in Sublinear
Time – a tutorial on statistical estimation. IEEE Computer Graphics and
Applications, 31:58–66, 2011.

[UFF07] Torsten Ullrich, Christoph Fünfzig, and Dieter W. Fellner. Two Different
Views On Collision Detection. IEEE Potentials, 26(1):26–30, 2007.

[UKF08] Torsten Ullrich, Ulrich Krispel, and Dieter W. Fellner. Compilation of
Procedural Models. Proceeding of the 13th International Conference on
3D Web Technology, 13:75–81, 2008.

[USB10] Torsten Ullrich, Volker Settgast, and René Berndt. Semantic Enrichment
for 3D Documents: Techniques and Open Problems. Publishing in the
Networked World: Transforming the Nature of Communication, Proceed-
ings of the International Conference on Electronic Publishing, 14:374–
384, 2010.

[USF08a] Torsten Ullrich, Volker Settgast, and Dieter W. Fellner. Abstand: Distance
Visualization for Geometric Analysis. Project Paper Proceedings of the
Conference on Virtual Systems and MultiMedia Dedicated to Digital Her-
itage (VSMM), 14:334–340, 2008.

282 Bibliography

[USF08b] Torsten Ullrich, Volker Settgast, and Dieter W. Fellner. Semantic Fit-
ting and Reconstruction. Journal on Computing and Cultural Heritage,
1(2):1201–1220, 2008.

[USF09] Torsten Ullrich, Volker Settgast, and Dieter W. Fellner. Semantic Fit-
ting and Reconstruction. Selected Readings in Computer Graphics 2008,
19:69–84, 2009.

[USF10a] Torsten Ullrich, Andreas Schiefer, and Dieter W. Fellner. Modeling with
Subdivision Surfaces. Proceedings of the 18th WSCG International Con-
ference on Computer Graphics, Visualization and Computer Vision, 18:1–
8, 2010.

[USF10b] Torsten Ullrich, Christoph Schinko, and Dieter W. Fellner. Procedu-
ral Modeling in Theory and Practice. Poster Proceedings of the 18th
WSCG International Conference on Computer Graphics, Visualization
and Computer Vision, 18:5–8, 2010.

[USK+07] Torsten Ullrich, Volker Settgast, Ulrich Krispel, Christoph Fünfzig, and
Dieter W. Fellner. Distance Calculation between a Point and a Subdi-
vision Surface. Proceedings of 2007 Vision, Modeling and Visualization
(VMV), 1:161–169, 2007.

[USOF09] Torsten Ullrich, Volker Settgast, Christian Ofenböck, and Dieter W. Fell-
ner. Short Paper: Desktop Integration in Graphics Environments. Proc-
cedings of the 2009 Joint Virtual Reality Conference of Eurographics Sym-
posium on Virtual Environments (EGVE), International Conference on
Artificial Reality and Telexistence (ICAT), and EuroVR (INTUITION) Con-
ference, 15:109–112, 2009.

[UTF08] Torsten Ullrich, Torsten Techmann, and Dieter W. Fellner. Web-based
Algorithm Tutorials in Different Learning Scenarios. World Conference
on Educational Multimedia, Hypermedia and Telecommunications (ED-
Media), 20:5467–5472, 2008.

[VGSR04] George Vosselman, Ben G. H. Gorte, George Sithole, and Tahir Rabbani.
Recognizing Structure in Laser Scanner Point Clouds. International
Archives of Photogrammetry, Remote Sensing and Spatial Information
Sciences, 46(8):33–38, 2004.

[VMC97] Tamás Vradi, Ralph R. Martin, and Jordan Cox. Reverse Engineer-
ing of Geometric Models - An Introduction. Computer-Aided Design,
29(4):255–268, 1997.

[Voo91] Douglas Voorhies. Space-Filling Curves and a Measure Of Coherence.
Graphics Gems II, 2:26–30, 1991.

283

[VP04] Sébastien Valette and Rémy Prost. A Wavelet-Based Progressive Com-
pression Scheme For Triangle Meshes: Wavemesh. IEEE Transactions
on Visualization and Computer Graphics, 10(2):123–129, 2004.

[VV04] Emily A. Vander Veer. JavaScript for Dummies. For Dummies, 2004.

[WBK08] Raoul Wessel, Rafael Baranowski, and Reinhard Klein. Learning Distinc-
tive Local Object Characteristics for 3D Shape Retrieval. Proceedings of
Vision, Modeling, and Visualization (VMV), 8:167–178, 2008.

[Wei09] Eric Weisstein. MathWorld – A Wolfram Web Resource. Wolfram Re-
search, 2009.

[WGK05] Roland Wahl, Michael Guthe, and Reinhard Klein. Identifying Planes in
Point-Clouds for Efficient Hybrid Rendering. Proceedings of The 13th
Pacific Conference on Computer Graphics and Applications, 1:1–8, 2005.

[WK05] Jianhua Wu and Leif Kobbelt. Structure Recovery via Hybrid Variational
Surface Approximation. Computer Graphics Forum, 24(3):277–284, 2005.

[WK10] Raoul Wessel and Reinhard Klein. Learning the Compositional Struc-
ture of Man-Made Objects for 3D Shape Retrieval. Proceedings of EU-
ROGRAPHICS Workshop on 3D Object Retrieval, 3:39–46, 2010.

[WKZ06] Rene Weller, Jan Klein, and Gabriel Zachmann. A Model for the Expected
Running Time of Collision Detection using AABB Trees. Proceedings
of the 12th Eurographics Symposium on Virtual Environments, 1:11–17,
2006.

[WPL04] Wenping Wang, Helmut Pottmann, and Yang Liu. Fitting B-Spline
Curves to Point Clouds by Curvature-Based Squared Distance Mini-
mization. ACM Transactions on Graphics, 25:214–238, 2004.

[WXL+11] Yanzhen Wang, Kai Xu, Jun Li, Hao Zhang, Ariel Shamir, Ligang Liu, Zhi-
Quan Cheng, and Y. Xiong. Symmetry Hierarchy of Man-Made Objects.
Computer Graphics Forum, 30:287–296, 2011.

[Yan00] Chuan-kai Yang. Integration of Volume Visualization and Compression:
A Survey. Technical Report, State University of New York, USA, 1:1–53,
2000.

[Zac98] Gabriel Zachmann. Rapid Collision Detection by Dynamically Aligned
DOP-Trees. Proceedings of the Virtual Reality Annual International Sym-
posium, 1:90–97, 1998.

[Zha97] Zhengyou Zhang. Parameter Estimation Techniques: A Tutorial with
Application to Conic Fitting. Image and Vision Computing Journal,
15(1):59–76, 1997.

284 Bibliography

[ZKGGK06] Lukas Zebedin, Andreas Klaus, Barbara Gruber-Geymayer, and Konrad
Karner. Towards 3D map generation from digital aerial images. Pro-
ceedings of ISPRS (International Society for Photogrammetry and Remote
Sensing), 60:413–427, 2006.

[Zon06] Zhi Zong. Information-Theoretic Methods for Estimating of Complicated
Probability Distributions. Elsevier, 2006.

[ZPKG02] Matthias Zwicker, Mark Pauly, Oliver Knoll, and Markus Gross.
Pointshop 3D: an interactive system for point-based surface editing.
Proceedings of 2002 ACM Siggraph, 21:322 – 329, 2002.

[ZSD+00] Denis Zorin, Peter Schröder, Tony DeRose, Leif Kobbelt, Adi Levin, and
Wim Sweldens. Subdivision for Modeling and Animation. SIGGRAPH
2000 Course Notes, 1:1–116, 2000.

[ZSS96] Denis Zorin, Peter Schröder, and Wim Sweldens. Interpolating Subdivi-
sion for Meshes with Arbitrary Topology. Proceedings of 1996 ACM Sig-
graph, 23:189–192, 1996.

Biographical and historical information within this thesis are based on the books
“4000 Jahre Algebra: Geschichte, Kulturen, Menschen” (english: 4000 years of algebra:
history, cultures, men) [ADNF+03] and “5000 Jahre Geometrie: Geschichte, Kulturen,
Menschen” (english: 5000 years of geometry: history, cultures, men) [SS04] and on ar-
ticles published on the online encyclopedia “WikiPedia”2 and JOHN J. O’CONNOR’s and
EDMUND F. ROBERTSON’s “MacTutor History of Mathematics archive”.3

2 WikiPedia – the Free Encyclopedia (http://www.wikipedia.org)
3 MacTutor History of Mathematics archive (http://www-history.mcs.st-andrews.ac.uk/index.html)

http://www.wikipedia.org
http://www-history.mcs.st-andrews.ac.uk/index.html

285

Index

A
a-posteriori probability 33, 213
a-priori probability 33
absolute value metric 63
absolute value norm 18
Abstand 66, 67
acquisition pipeline 2, 111, 112, 209
ActionScript 188
administrative metadata 211
affine space 60–62, 69–72, 75, 76, 132

completion 70–72
coordinate system 61, 62, 71
dimension 60, 70, 71
real 60
subspace 60
transformation 75, 76, 132

airborne light detection and ranging (LIDAR)
98

algorithm 3–7, 18, 25–27, 30, 31, 38, 39, 48,
50, 52–55, 66, 95, 99, 103, 108, 109, 112–
117, 119–126, 133, 134, 136, 137, 147–158,
176, 182, 188, 203, 214, 218–222, 226–239,
244–247, 250–254

automatic differentiation 52, 53, 231, 247
collision detection 66, 112–117, 119–126,
250

conjugated gradients 54, 230
crust algorithm 6
de Boor 136, 137
de Casteljau 133, 134, 137
differential evolution 55, 230
Euclidean 203
fitting 222, 226–229, 235–239, 244–247, 252–

254
genetic 55
Gilbert-Johnson-Keerthi 116
Gram-Schmidt 18
hashing 66, 113, 149, 152, 153
image compression 31
intersection test 109, 114, 115
iterative closest point (ICP) 6
linear 48, 232
Metropolis 55
nearest neighbor search 66, 95, 99

random sample consensus (RANSAC) 6, 38,
39, 48, 218–220, 226, 232

Runge-Kutta 176
scanline 123
simulated annealing 55
steepest gradient 50
subgraph matching 218
wavelet

decomposition 26, 30, 103
reconstruction 27, 30, 103
transformation 25, 103

alignment 5, 6, 11, 66, 110
analysis filter 22, 104
angle 18, 51, 86, 87, 89–91, 94, 110, 118, 122,

236–239
angle-preserving 87–89
annotation 188, 210, 211, 252
approximation space 22
arc length 79, 80, 86
area 86, 87, 89, 94, 118, 162, 164, 170

element 85
area-preserving 87–89
array 190–192
associativity 14
atlas 88
AutoLISP 178
automatic differentiation 52, 53, 231, 247
axis 20, 71, 88, 102, 114, 115, 120, 122, 123,

128
axis-aligned bounding box (AABB) 103, 112,

114, 115, 152, 155, 156

B
B-spline 130, 134–137, 140, 141, 144, 146, 147

curve 135–137
non-uniform rational (NURBS) 136, 139,
157, 172, 173, 177, 219, 220

surface 138–141, 144, 147, 157
uniform 135, 136, 140

barycentric coordinate 62, 124
basis 15–25, 58, 69, 70, 104–107, 131, 134–136

orthogonal 17, 18
orthonormal 18–20, 61
standard 15

286 Index

topological 58
transformation 15, 20
vector space 15–21, 23–25, 69, 70, 104–107,

131, 134
Bayes theorem 33, 213
Bernoulli experiment 43
Bernstein polynomial 131–133, 135, 138
Bézier

approximation 151
curve 132–134, 136, 137, 241, 244
point 132
polygon 132, 133
surface 138, 139, 147, 149–152, 156, 157,
172

binomial
coefficient 35
distribution 34, 35, 43, 45
theorem 35

binormal vector 79, 80
boolean 190, 191
boundary 59
bounding volume 103, 112–117, 119, 124–126,

128, 147, 149, 152, 231
axis-aligned bounding box (AABB) 103, 112,

114, 115, 152, 155, 156
cone 120, 123
cylinder 120
discrete orientation polytope (DOP) 112,
122, 125, 126

oriented bounding box (OBB) 112, 113, 125,
126

sphere 117, 119
spherical shell 113, 116, 119, 124, 126, 128

box 113, 118, 215, 217
function 23

C
calibration 76, 77
camera 3, 4, 76, 110, 208, 214

extrinsic parameter 3, 4
intrinsic parameter 3, 4

candidate solution 49
Cartesian

coordinate system 61
product 58

Catmull-Clark subdivision 140, 141, 144–146,
150, 151, 156–159

center 72, 81, 113, 116, 118–123, 126, 128, 215,
236–238

vector 19
central

limit theorem 42, 43, 45, 47, 48, 233
processing unit (CPU) 185
projection 72, 74

CGA shape 179, 180
chain rule 53, 86
change of parameter 79, 84, 86, 90
choice set 49
CityEngine 179, 180
classification 6, 7, 66, 213, 214, 218, 220, 221
clipping plane 77
coefficient 14, 15, 19, 22, 25, 28, 29, 31, 35, 50,

72, 85–87, 89, 92, 103, 105, 106, 116, 140,
141, 176

binomial 35
detail 25, 28, 29, 31, 103, 105, 116
details 29
scaling 25

collision detection 66, 112–117, 119, 121–129,
208, 250

color 29, 66, 67
comment 210
commutativity 14
compilation 185, 187, 188, 247, 250–253
complement 32
component 15, 17, 19
compression 31, 99, 103, 107, 113, 178
computer tomography 2, 209
computer vision 65, 208, 209, 213, 223
computer-aided design (CAD) 7, 63, 94, 111,

112, 158, 168, 172, 173, 178, 182
computer-aided geometric design (CAGD) 112,

130, 147
conceptual reference model (CRM) 8, 211
conditional probability 32, 33, 115
cone 66, 119–124, 218
confidence

interval 45–48
level 45–48, 232
region 45

conjugated gradients 54, 230
construction 215
constructive solid geometry (CSG) 6, 217, 219
continuity 58

correction 44

287

continuous distribution 40
control

flow 189, 195, 198, 199, 206, 251
mesh 138, 141, 145, 147, 150, 151, 155, 156,

158–164, 166–169, 172, 217
point 132, 134–137, 139–141, 149, 159–163,

166, 168, 169, 171
polygon 132–135, 137, 171
vertex 112, 114, 134, 158, 163, 164, 171, 172,

177
convex 61, 62

hull 61, 62, 116, 132, 135, 138, 151
property 132
set 61

coordinate 3, 4, 15, 20, 61, 62, 69–71, 75, 94,
110, 113, 116–118, 122–124, 158–160, 209,
237, 239, 250

coordinate system 4, 15, 61, 62, 69–71, 75, 79,
95, 110, 113, 114, 116–118, 122, 124, 250

affine 61, 62, 71
barycentric 62, 124
Cartesian 61
local 79
projective 69–71, 75
spherical 110, 113, 116–118, 122, 124, 250

corresponding point 3–5
cost function 49, 115, 253
covariance matrix 21
cross-over process 55
cube 48, 159–161, 226
cultural heritage 8–11, 187, 211, 233, 234, 251
cumulative

density function 46
distribution function 40–42
Gaussian distribution function 43

curvature 6, 80–82, 85, 90–95, 151, 158, 166,
172–175, 177

flow 172, 174, 175
Gaussian 92, 93, 95, 172
mean 92, 94, 95, 172
normal 90, 91
principal 90–92, 95, 158, 172, 174
signed 90
vector 79, 81, 90

curve 78–84, 86, 87, 90, 91, 130–139, 168–172,
221, 223, 241, 244

curvature 80, 82
cut 168–172

length 79
regular 78–80, 83, 90
simple 78
surface 83, 84, 90
torsion 80, 82

cut curve 168–172
cylinder 67, 88, 120, 217, 218, 226

D
data structure 66, 99, 107, 118, 124, 147, 149,

150, 154, 184, 189, 190, 195
array 190–192
boolean 190, 191
dictionary 190, 192, 193
function 190, 192, 193
graph 181, 214, 217, 218, 229
grid 66, 99, 101, 103, 112, 113, 118, 149–
153, 156, 157, 163–166, 169, 170, 231, 232

heightfield 2, 4, 51, 98–105, 107–110, 112,
118, 119, 162

horizon map 99
number 190, 191, 195
object 190, 192
range map 4–6, 11, 66, 110–112
slate 154
stack 186, 187, 189–193
string 179, 190, 191
tree 53, 66, 99–103, 107–109, 112–114, 180,

188, 190, 203, 217, 218, 223, 229, 251
abstract syntax tree (AST) 53, 188, 190,

203, 251
binary 99, 100
kd 66, 99–103, 107–109

undefined 190, 191, 198
Daubechies-5/3 wavelet 31
Daubechies-9/7 wavelet 31
de Boor

algorithm 136, 137
point 135, 136

de Casteljau
algorithm 133, 134, 137
scheme 133, 134

de Moivre-Laplace theorem 43, 45
decreasing exponential 224–226
degree elevation 134
dense matching 4
density 6, 37

function 37

288 Index

derivation 133, 231
descriptive information 211
design pattern 185, 214
detail coefficient 25, 28, 29, 31, 116
determinant 80, 84, 85, 87, 89, 90
diagonal 152, 156, 226

matrix 19
diameter 94
dictionary 190, 192, 193, 212, 213
differential evolution 55, 158
differentiation 52

arithmetic 52, 53
automatic 52, 53, 189, 231, 247
numerical 52
symbolic 52

digital library 8, 11, 209, 214, 238
dimension 15, 16, 19, 59, 60, 63, 68–72, 99–

101, 104, 209, 221, 227
discrete

distribution 34
metric 63
orientation polytope (DOP) 112, 122, 125,

126
distance 5, 58, 63–67, 72, 98, 99, 110, 113, 116,

117, 120–129, 147–152, 154–161, 167, 214,
221–223, 225–228, 230–232, 236, 239, 244–
246, 250, 253

Euclidean 63, 147, 223, 226
field 147
Hausdorff 64–66, 227, 244
non-oriented 64
normal 66
one-sided 66, 227, 244
oriented 64, 65, 222
ranked 64
signed 65, 67
visualization 66

distortion 3, 76, 77, 89, 118
distribution 33–36, 38–48, 113, 149, 152, 155,

160, 236
binomial 34, 35, 43, 45
continuous 40
discrete 34
exponential 40
function 36, 37, 40
Gaussian 40
geometric 35
hypergeometric 36, 38, 44, 45, 47

Laplace 34
negative binomial 35
normal 40–43, 229
standard normal 40–43, 46
uniform 34, 40, 113, 152, 155, 160

distributivity 14
document 210, 211

3D 209–211
generalized 209–211
text 209–211

domain 23, 82, 83, 86, 88, 99, 101, 102, 104,
123, 131, 132, 135, 137, 139, 141, 147, 166,
217

double point 78
dual

number 53
space 72

duality principle 72, 73
Dublin Core 211

E
earth 88
edge 4, 5, 114, 115, 158, 159, 161, 162
eigenanalysis 19, 20, 144, 147
eigenvalue 19–21
eigenvector 19–21
Einstein notation 85
elliptic point 93
energy consumption 253
energy function 49
entity 210
entropy 233
equator 88
Erlanger Programm 68
error 4, 6, 19, 20, 31, 55, 66, 151, 160–172, 174,

175, 221, 233, 236, 244
function 4
minimization 4
quadratic 19

error function 221
estimation 44–48, 115, 224, 232, 233

confidence region 45
interval 45
maximum likelihood 44, 45, 224
point 45, 47

Euclidean 59
algorithm 203
ball 59

289

distance 63, 147, 223, 226
geometry 63, 68
metric 63
norm 18
space 49, 59, 78

Euclides 188, 197, 199, 203, 206, 231, 251, 252
Euler theorem 91
event 32, 33, 35

statistically independent 32
expectation value 33–37, 40, 42–44, 115
exponential distribution 40

F
feasible solution 49
feature 5, 7

extraction 7, 220
line 7, 220
space 213
vector 7, 213, 220

Fibonacci 203
field 14, 16, 60, 68
filter 4, 5, 22, 104, 105, 117, 124

analysis 22, 104
critical-point 4
edge detection 4
Laplace 4, 5
maximum 104, 105, 117, 124
minimum 124
synthesis 22

finite population correction factor 47
fitting 222, 224–229, 235–240, 244–247, 252–

254
complete 219, 220
subpart 219, 220, 226

focal length 3
font 132
FORTH 186
forward difference 133
Frenet

formulas 80
frame 79

function 190, 192, 193
fundamental form 85

first 85–87, 89, 90, 92
second 90, 91
third 85

fusing 110
fuzzy geometry 229, 230, 238, 240, 246, 252

G
Gauss error distribution curve 40, 42
Gaussian

curvature 92, 93, 95, 172
distribution 40

general position 69
generative modeling 178–180, 182, 183, 187,

188, 214, 218, 220–222, 227–231, 234, 236,
238, 239, 241, 244–246, 250–254

AutoLISP 178
CGA shape 179, 180
CityEngine 179, 180
GENMOD 178
GML 183, 184, 186, 188–201, 203, 205, 206,

251
JavaScript 188–201, 203, 205, 206, 231, 251
Lindenmayer system 179
MaxScript 178
Maya 182
MEL 178
model graph 180
PLaSM 178
ProcMod 181
Python 182
shape grammar 179, 180
TBAG 178

Generative Modeling Language (GML) 183, 184,
186, 188–201, 203, 205, 206, 251

genetic algorithm 55
GENMOD 178
geography 88
geometric

distribution 35
series 35

geometry 3, 4, 7, 60, 63, 68, 72, 73, 75, 78, 82,
88, 94, 112, 147, 158, 159, 167, 169, 170,
172, 181, 209, 214, 218, 229

affine 60, 68
differential 78, 82, 88, 94, 172
epipolar 3, 4
Euclidean 63, 68
metric 68
projective 4, 68, 72, 73, 75

glyph 132
gradient 21, 50, 51, 54, 94

conjugated 54
descent 50, 51
steepest 50, 51

290 Index

Gram-Schmidt orthonormalization 18
graph 181, 214, 217, 218, 229
graphics processing unit (GPU) 99, 147
grid 66, 99, 101, 103, 112, 113, 118, 149–153,

156, 157, 163–166, 169, 170, 231, 232

H
Haar wavelet 23–28, 30, 31, 104, 116
half-space 59, 72
Hausdorff 58, 59

distance 64–66, 227, 244
metric 65
space 58, 59

heightfield 2, 4, 51, 98–105, 107–110, 112, 118,
119, 124, 162

hierarchy 4, 112, 115, 116, 118, 121, 128, 181,
208, 213, 218, 220–222, 227–229, 244, 246,
250, 252

histogram 67
homeomorphism 58
homogeneous

coordinate 75
form 75
scaling factor 68

horizon map 99
hyperbolic point 93
hypergeometric distribution 36, 38, 44, 45, 47
hyperplane 60, 68, 70–73
hypothesis 6, 38, 48, 209, 244

I
ideal point 70, 71
identifier 191
identity condition 63, 222
image 2–4, 16, 28, 29, 31, 72, 74, 75, 99, 105,

113, 116, 179, 208, 209, 213, 214, 217, 239
compression 31
plane 72, 74, 75

indexing 8, 178, 212, 238, 246, 252
inequality 49, 63

quadratic 45, 47
triangle 63, 65
Tschebyshev 42

inflection point 168, 169, 171, 172
information 2, 8–11, 19, 44, 49, 108–110, 113,

125, 178, 185, 190, 208–212, 217, 238
technology 233
theory 233

initial value problem 172–175
inner product 16–18, 21, 60
interpolation 95, 99, 101, 108, 130–133, 135,

138, 172, 177
interpretation 188, 209
intersection 61, 64, 68, 72–74, 78, 83, 87, 88,

90, 91, 98, 100–102, 106–109, 112–114, 116–
124, 126, 128, 159, 171

point 87, 98, 100, 101, 108, 109
test 100–102, 109, 112, 114, 118, 119, 121,
122, 124, 126, 128

intersection test 115–117
interval arithmetics 119
inverse

cumulative density function 46
element 104
geometry 230, 236, 246, 252
problem 50, 214, 215, 226, 246, 247, 251
vector 14

invertible matrix 19
isometric transformation 81, 234, 235
isomorphism 72
iterative closest point (ICP) 6

J
Java 186, 188, 193, 231, 251

differentiated 188, 231, 251
JavaScript 187–201, 203, 205, 206, 231, 251
join space 69
Joint Photographic Experts Group (JPEG) 31,

103

K
kernel 16
knot 81, 82, 134–137

vector 134–137
Kronecker symbol 18, 225

L
Lagrange

interpolation 130, 131
polynomial 130, 131

Lagrangian multiplier 21
Laplace distribution 34
laser scanner 2, 4, 8–11, 66, 110, 172, 173, 208,

209, 212, 217, 222, 227, 228, 230, 232, 233,
235, 238, 241–246, 253, 254

time-of-flight 110

291

triangulation 110, 111
length 18, 79, 80, 85–87, 99, 119, 121, 152
length-preserving 87
letter 132
level-of-detail (LOD) 25, 119, 252
limit 36, 43, 46, 51, 146, 147, 149

point 36, 51, 144, 146, 149, 151, 154
surface 144, 147, 149
tangent 146

Lindeberg-Lévy central limit theorem 42
Lindenmayer system 179
line 39, 60, 68, 73, 78, 79, 90, 99, 100, 120, 121,

133, 168, 224
element 85

line-of-sight (LOS) 98, 99, 101, 102, 108, 250
linear

algorithm 232
combination 15, 16, 61, 104, 106
form 70
hull 15
map 16

linearly independent 15, 17, 19, 61, 69, 82
Lipschitz condition 51
Loop subdivision 158
Lp norm 18, 31

M
machine learning 213
manifold 59, 94, 155, 172

boundary 59
dimension 59
topological 59
triangulated 94

map 88
markup 8, 183, 211, 212, 214, 252
matrix 15, 19, 21, 22, 29, 74–77, 80, 81, 86, 140,

141, 147
calibration 76, 77
covariance 21
diagonal 19, 141
diagonalizable 19
fundamental 86
identity 74
invertible 19
modelview 76
projection 75, 76
skew symmetric 81
splitting 141

square 19
subdivision 147
symmetric 19

max-plus algebra 104, 250
maximization 49, 225, 230
maximum 20, 63–65, 90, 91, 101, 103–107, 114,

116, 120, 122–124, 150, 171
filter 104, 105, 124
metric 63
norm 18

MaxScript 178
Maya 182
mean 40, 92

curvature 92, 94, 95, 172
normal operator 94

median 64
MEL 178
mesh 6, 11, 110, 111, 113, 123, 140, 141, 145–

152, 154–156, 158–164, 166–169, 172, 184,
208, 217, 219, 243, 253

meta-modeler 189
metadata 8, 190, 210–212

administrative 211
structural 211

metric 63–65, 86, 222, 223
absolute value 63
discrete 63
Euclidean 63
geometry 68
Hausdorff 64, 65
maximum 63

Metropolis algorithm 55
minimization 4, 5, 19–21, 49, 50, 54, 55, 94,

149–151, 158, 159, 188, 221, 225–228, 230,
231, 233, 235, 252, 253

problem 49
minimum 49–51, 54, 55, 64, 90, 91, 103, 104,

106, 107, 114, 116, 122–124, 148, 149, 157,
166, 169, 171, 214, 221, 223, 226, 232, 244

filter 124
global 49, 55
local 49

model 3, 4, 6, 38, 39, 112–114, 116, 117, 119,
122–126, 128, 130, 147–149, 151, 153, 155,
158, 173, 178, 183, 185, 209, 212–214, 218,
219, 222, 226–236, 238, 240, 241, 244–246,
250, 251, 253

modelview matrix 76

292 Index

monkey saddle 162
monotony property 32, 36
Moores Law 178
multi step method 175
multiresolution 4

analysis 21, 22
multivariate analysis 20

N
natural topology 59
nearest neighbor search 66, 95, 99
negative binomial distribution 35
neighborhood 6, 7, 49, 51, 59, 94, 95, 103, 107,

123, 154, 218, 220
Newton method 223
noise 39, 48, 130, 217, 218, 225, 232, 236, 238–

240, 243
non-oriented distance 64
nonstandard approach 28–30, 103–105, 124
norm 17, 31

absolute value 18
Euclidean 18
induced 18
Lp 18, 31
maximum 18
p 18

normal
approximation 43, 45, 47
curvature 90, 91
distance 66
distribution 40, 42, 43, 229
plane 80
vector 66, 72, 74, 79–81, 83, 84, 90, 94, 95,

100
normalized

distribution 34, 35
function 24
vector 18, 79, 83, 119

number 190, 191, 195
numerical differentiation 52

O
object 190, 192
objective function 49–51, 55, 188, 222, 227,

230, 231, 235, 247, 253
occlusion test 99
one-sided distance 66, 227, 244
ontology 9, 209–211, 217

open set 36, 58, 59, 82
OpenGL 75, 76
optimal solution 49
optimization 6, 49–51, 54, 76, 112, 121, 149–

151, 156, 158, 159, 161–163, 166–169, 171,
172, 188, 215, 221, 223, 227, 228, 230–233,
235, 244, 247, 251–253

global 49, 50
problem 49, 51, 54

orientation 3, 4, 6, 67, 79, 110, 120, 122, 234,
238, 239, 241, 244, 245

orientation-preserving 79, 81, 84, 90
oriented

bounding box (OBB) 112, 113, 125, 126
distance 64, 222

origin 61, 62, 95, 99, 110, 123
orthogonal

basis 17, 18
complement 17, 21
projection 17, 19, 72, 113
vector 17–19, 21, 22, 24

orthonormal basis 18–20, 61
oscillation 130, 131
osculating plane 80
over-fitting 236
over-modeling 161, 171

P
p norm 18
parabola 50, 101
parabolic point 93
paradata 211
parameter 23, 38, 78, 79, 82–84, 86, 88, 99–

101, 112, 119, 122–124, 130–135, 137, 139,
150, 151, 159, 161–163, 166–170, 178, 209,
214, 220, 221, 223, 224, 226–228, 234, 236–
239, 241, 244, 246, 251, 253, 254

change 79
domain 83, 86, 88
line 83, 84
space 44
transformation 86

parametric design 178
parametrization 78, 79, 82–85, 88, 113, 118,

147, 150, 166
partition of unity 131, 132, 135
perception 66, 67, 217
periodicity 82

293

permutation 55
perspective division 76, 77
photogrammetry 2–4, 11, 98, 209, 217, 238
plane 7, 38, 39, 48, 60, 62, 68, 72, 74, 75, 77,

80, 83, 84, 91, 99–101, 103, 121, 182, 209,
218, 226, 237

PLaSM 178
point 3–7, 39, 48, 51, 59–66, 68–76, 78, 79, 82,

83, 85–88, 90–95, 98–101, 107–110, 112–
114, 116, 118–123, 130–137, 139–144, 146–
157, 159–162, 168, 169, 171, 208, 209, 215,
220, 222–227, 230, 232, 233, 236–241, 244

corresponding 3–5
double 78
elliptic 93
fundamental 69
general position 69
hyperbolic 93
ideal 70, 71
intersection 87, 98, 100
limit 36, 51, 146
linearly independent 69
parabolic 93
regular 78, 82
singular 78
umbilic 91, 92, 162
unit 69

point cloud 2, 6, 7, 11, 110, 147, 208, 209, 217–
220, 222, 226–230, 232, 239, 240

polynomial 130–135, 138
Bernstein 131–133, 135, 138
Lagrange 130, 131
power 131

population 55
position 3, 4, 8, 61–63, 65, 69, 72, 74, 99, 110,

118, 132, 158, 166, 169–171, 226, 234, 241,
244, 245

vector 61, 63, 72, 74
positivity 131
PostScript 132, 183, 184, 189, 195, 206, 251
precision 45, 47
preservation 2, 9
principal

component analysis (PCA) 7, 19, 20, 220
curvature 90–92, 95, 158, 172, 174

tangent 90, 91
prism 67

probability 32–40, 43, 44, 48, 213, 229, 232,
240

a-posteriori 33, 213
a-priori 33
conditional 32, 33, 115
density function 37, 40, 42
distribution 33
measure 32, 36, 37
normalized 34, 35
space 32, 33, 44

discrete 33
finite 33

total 33
ProcMod 181
product

Cartesian 58
topological 58
topology 58

programming language 178, 182, 185, 187, 188,
193, 197, 206, 214, 221

projection 17–19, 72, 74–77, 88, 89, 99, 113,
114, 118, 121, 214, 236, 239

center 72, 74
central 72, 74
cylindrical 88, 89
matrix 75, 76
orthogonal 17, 19, 72, 113
plane 72
ray 74

projective space 68–73, 75, 76, 136
completion 70–72
coordinate system 69–71, 75
dimension 68–73
dual 72, 73
hyperplane 68
line 68
plane 68
real 68
subspace 68, 69, 72
transformation 76

Python 182

Q
quadratic

error 19
function 54
inequality 45, 47
search 50

294 Index

query 9, 99, 107–109, 112, 113, 115, 148, 149,
153–156, 209, 218, 250, 252

R
radius 110, 116, 119–122, 166, 167, 215, 226,

236, 237, 244, 245
random 6, 33–35, 37, 39, 40, 42–45, 48, 55, 99

process 43, 55
sample consensus (RANSAC) 6, 38, 39, 48,

218–220, 226, 232
variable 33–35, 37, 40, 42–45

random sample consensus (RANSAC) 38, 39
range map 4–6, 11, 66, 110–112
ranked distance 64
rasterization 123, 124
ray 74, 98–101, 107, 123

casting 113, 123–125
tracing 98

realization 44
recognition 4, 208, 213, 218, 241, 250, 252
reconstruction 2–4, 6–8, 10, 11, 99, 101–103,

108, 111, 124, 158, 172, 173, 177, 212, 217–
220, 223, 234, 236, 238, 250

rectifying plane 80
recursion 131, 133, 134, 136, 137, 213
registration 4–6, 11, 110, 223
regular

curve 78–80, 83, 90
point 78, 82
surface 82–86, 90

render pipeline 76, 99
residual 223
restoration 2
retrieval 8, 178, 208, 209, 212, 214, 218, 252
reverse engineering 6, 157, 158, 214, 215, 217–

219, 224
robotics 112, 147, 223
rotation 76, 77, 88, 113, 122, 125, 162, 214,

234, 235
Runge-Kutta method 176
running time 115

S
sample 6, 38, 39, 47, 48, 66, 99, 101, 102, 116–

118, 122, 123, 125, 126, 128, 160, 166, 215,
219, 222, 224–226, 232

space 32
sampling fraction 47

scalar 14, 16
scaling 76, 77

coefficient 25
factor 24, 68–70, 115
function 21–24

scanline algorithm 123
scene graph 6, 122, 181, 183, 185, 208
scope 190, 192, 193, 195, 198, 199
scripting language 185
search

engine 8
space 49, 55

segmentation 4, 6, 208, 213, 218–220, 223–226
semantic

enrichment 9, 208–211, 221
error 236
gap 209
information 2, 8–11, 208–212, 217, 218, 220,

221, 236, 238, 250
network 9, 10, 211

set 3–5, 7, 8, 14, 17, 19–21, 23, 28, 29, 31–34,
36, 38, 39, 44, 45, 48, 49, 58–66, 68, 70,
78, 82, 98, 99, 102, 108, 113, 130–132, 139,
197, 208, 209, 212, 213, 221, 222, 224, 226,
227, 235, 236, 239, 242

open 36, 58, 59, 82
shape 93, 112, 113, 116, 118, 124–126, 134, 135,

147, 159, 178, 182, 183, 188, 208, 209, 212–
215, 217, 218, 220, 221, 227, 228, 236, 238,
241, 244–246, 250–254

box 113, 118, 215, 217
cone 66, 119–124, 218
cube 48, 159–161, 226
cylinder 67, 88, 120, 217, 218, 226
generative 178, 183, 188, 250–254
grammar 179, 180
modeling 209
plane 7, 38, 39, 48, 60, 62, 68, 121, 182, 209,

218, 226
prism 67
retrieval 209
semantic 209
similarity 209
sphere 39, 88, 112, 116–120, 123, 215, 217,

218
star 118, 125
start 124, 126

295

template 227, 236, 238, 241, 244–246, 250–
254

tetrahedron 113
torus 81, 82, 166, 167, 172, 218

shearing 76, 77
σ-algebra 32, 33, 36
signal 28, 29, 31, 98
signed

curvature 90
signed distance 67
similarity 209, 213, 214, 221, 227, 234, 235, 253
simple

curve 78
surface 82, 83, 85, 90–92

simulated annealing 55
single step method 174
singular point 78, 82
slate 154
software engineering 185, 214, 221
solution 49
source code 186–188
spatial coherence 99, 107, 109, 113, 147–149,

208, 250, 252
spectrum 19
sphere 39, 88, 112, 116–120, 123, 215, 217, 218
spherical

coordinate 113, 116–118, 122, 124
shell 113, 116, 119, 124, 126, 128

spline curve 220
square matrix 19
squared distance 223
stack 186, 187, 189–193, 195
standard

approach 28, 29
basis 15
deviation 34
normal distribution 40–43, 46

statement 72, 73, 198–201, 203
block 198
for 200, 201
if 198
switch 201
while 199, 200

statistically independent 32
statistics 32, 34, 44, 213
steepest gradient 50, 51
string 179, 190, 191
structural decomposition 217, 218

subdivision 149
Catmull-Clark 140, 141, 144–146, 150, 156–

159
Loop 158
matrix 147
process 133, 134, 137, 139–141, 144–147,
154, 155, 220

scheme 140, 141, 145, 146
surface 6, 111, 130, 140–142, 144–151, 154–

160, 163, 171–173, 177, 184, 217, 219
edge point rule 142, 143
face point rule 142, 143
vertex point rule 142, 144

subgraph matching 218
support 23, 106, 134, 135
surface 6, 7, 66, 77, 78, 82–95, 99, 101, 110,

111, 113, 119, 130, 136, 138–141, 144–151,
154–164, 168–173, 177, 184, 209, 217, 219,
223, 225, 226, 239, 243

curve 83, 84, 90
normal 91
regular 82–86, 90
simple 83, 85, 90–92
subdivision 6, 111, 130, 140–142, 144–151,

154–160, 163, 171–173, 177, 217, 219
tangent 83, 91
tensor product 136, 138
triangulated 94, 148
trimmed 139
vector 83, 85, 86, 90

symbolic differentiation 52
symmetry 41, 131, 163–165, 172, 209, 218, 220,

244
condition 41, 63, 222

synthesis filter 22

T
tangent 78–85, 88, 90, 91, 132, 133, 135, 146

limit 146
line 78, 79, 90
plane 83, 84
principal curvature 90, 91
surface 83, 91
vector 78–85, 133

TBAG 178
template 218, 220, 227, 236, 238, 241, 244–246
tensor product 104, 105, 136, 138
terrain model 98, 99, 101, 102, 250

296 Index

tessellation 149, 154–156
tetrahedron 113
text document 209
theorem 33, 35, 42, 43, 45, 47, 48, 68, 70, 72,

73, 81, 91, 92, 213, 233
Bayes 33, 213
binomial 35
central limit 42, 43, 45, 47, 48, 233
de Moivre-Laplace 43, 45
dimensions 68
dual 72, 73
Euler 91
Lindeberg-Lévy 42
self-dual 72, 73
space curves 81
Theorema Egregium 92
total probability 33

threshold 6, 31, 120, 124, 151, 154, 227, 232,
233, 244

topology 6, 58, 59, 99, 113, 123, 138–140, 146,
158, 159, 161–172, 217–219

basis 58
manifold 59
natural 59
product 58
space 58, 59

torsion 80–82
torus 81, 82, 166, 167, 172, 218
total probability 33
transformation 5, 15, 16, 20, 25–31, 49, 53, 58,

75, 76, 95, 99, 103–105, 110, 116, 119, 124,
132, 208, 225, 234, 235

affine space 132
basis 15, 20
continuous 58
isometric 81, 234, 235
vector space 15, 16, 20, 25, 28, 29, 31
wavelet 25–31, 99, 103–105, 116

translation 75–77, 122, 186–203, 206, 231, 234,
235, 250–252

tree 53, 66, 99–103, 107–109, 112–114, 180, 188,
190, 203, 217, 218, 223, 229, 251

abstract syntax tree (AST) 53, 188, 190, 203,
251

binary 99, 100
kd 66, 99–103, 107–109

trial vector 55

triangle 63, 65, 116, 123–129, 149, 151–153,
155–158, 161, 172, 208, 217, 243, 253

inequality 63, 65
triangulation 94, 98, 110, 111, 148–157, 172,

217
trimmed surface 139
trimming curve 139
Tschebyshev inequality 42
typeface 132

U
umbilic point 91, 92, 162
undefined 190, 191, 198
unicode 191
uniform distribution 34, 40, 113, 152, 155, 160
unit

point 61, 69
vector 15, 83, 90

United Nations Educational, Scientific and Cul-
tural Organization (UNESCO) 233

V
valence 146
validator 227, 228
variable

random 33–35, 37, 40, 42–45
variance 6, 20, 21, 33–37, 40, 42–44, 244
variational shape approximation 220
vector 3, 7, 14–22, 24, 31, 55, 60–63, 69–72,

74, 75, 78–86, 90, 94, 95, 99, 100, 104, 119,
132–137, 140, 158, 213, 220, 223

binormal 79, 80
center 19
coefficient 15
component 15, 17, 19
coordinate 15, 61, 62, 69, 71
curvature 79, 81, 90
eigenvector 19–21
feature 7, 213, 220
inverse 14
knot 134–137
length 18, 85
linear combination 15, 16
linearly independent 15, 17, 19, 61, 82
norm 17, 31
normal 72, 74, 79–81, 83, 84, 90, 94, 95, 100
normalized 18, 79, 83, 119
orthogonal 17–19, 21, 22, 24

297

position 61, 63, 72, 74
surface 83, 85, 86, 90
tangent 78–85, 133
trial 55
unit 15, 83, 90
zero 14, 16, 17, 79

vector space 14–25, 28, 29, 31, 60, 61, 63, 68–
70, 72, 104–107, 131

basis 15–25, 61, 69, 70, 104–107, 131, 134
coordinate system 15
dimension 15, 16, 19, 60, 68
inner product 16–18, 21, 60
kernel 16
linear hull 15
norm 18
real 15, 60, 63, 68
subspace 14–19, 21, 60, 68
transformation 15, 16, 20, 25, 28, 29, 31, 99,

104, 105, 116
vertex 94, 112, 114, 144, 146, 154, 162–164,

171, 172, 177
control 112, 114

virtual reality (VR) 76
visual computing 213
visualization 66, 67, 105, 161, 183, 188, 189,

212

W
wave propagation 98
wavelet 21–31, 99, 103, 104, 108, 109, 113, 116,

250
compression 31, 103
Daubechies-5/3 31
Daubechies-9/7 31
decomposition 25, 26, 30, 103, 104
function 25
Haar 23–28, 30, 31, 104, 116
reconstruction 25, 27, 30, 103, 104
space 21
transformation 25–31, 99, 103–105, 116

nonstandard approach 28–30, 103–105
standard approach 28, 29

weighting function 222–225, 230, 231
wireframe 84

Z
zero

element 104
vector 14, 16, 17, 79

298 Index

	Abstract
	Contents
	Introduction
	Cultural Heritage
	Acquisition Pipeline
	Assembling Object Parts

	Geometric Reconstruction and Semantic Enrichment
	Fitting Techniques
	Semantic Enrichment

	Open Problems and Overview
	Note: Selected Readings on Digital Cultural Heritage

	Mathematical Basis
	Linear Algebra
	Vector Space
	Bases and Dimension
	Change of Bases
	Transformations
	Inner Products and Orthogonality
	Projection
	Normalization
	Eigenanalysis
	Principal Component Analysis
	Multiresolution Analysis
	Note: Wavelets for Image Compression

	Probability and Statistics
	Probability Space
	Discrete Probabilities
	Discrete Distributions
	Continuous Probabilities
	Note: Random Sample Consensus
	Continuous Distributions
	Inequalities and Limits
	Statistical Estimation
	Note: Linear Algorithms in Sublinear Time

	Numerical Optimization
	Quadratic Search
	Gradient Descent
	Note: Automatic Differentiation
	Conjugated Gradients
	Genetic Algorithms
	Differential Evolution

	Geometry
	Topology
	Topological Space
	Maps and Bases
	Manifold

	Affine Geometry
	Affine Space
	Affine Coordinate System
	Convex Hull and Barycentric Coordinates

	Euclidean Geometry
	Metric
	Point Sets
	Signed distance
	Note: Distance Visualization

	Projective Geometry
	Projective Space
	Projective Coordinates
	Affine Spaces Projective Spaces
	Duality Principle
	Projections
	Note: Projector Calibration

	Differential Geometry
	Differential Geometry of Curves
	Change of Parameter
	Arc Length Parametrization
	Local Coordinate System
	Frenet Formulas
	Differential Geometry of Surfaces
	Change of Parameter
	Fundamental Forms
	First Fundamental Form
	Note: Map Projections
	Second Fundamental Form
	Euler Curvature Formula
	Mean Curvature and Gaussian Curvature
	Note: Curvature on Discrete Structures

	Computer-Aided Geometric Design
	Heightfields and Polygonal Surfaces
	Line-Of-Sight Calculation
	KD-Tree Ray Casting
	Nonstandard Decomposition in Max-Plus-Algebra
	Nonstandard Decomposition in Real Algebra
	Note: Max Plus Algebra
	Optimizations and Empirical Comparison
	Note: Laser Scanning

	Collision Detection
	Spherical Distance Fields
	Note: Axis-Aligned Bounding Boxes
	Spherical Model Representation
	Spherical sampling
	Intersection Test
	Technical Details
	Benchmark

	Subdivision Surfaces
	Bézier and B-Spline Techniques
	Note: Vector Fonts
	Tensor Product Surfaces
	Catmull-Clark Subdivision Surfaces
	Distance Fields
	Technical Details
	Benchmarks
	Modeling with Subdivision Surfaces
	Curvature-Driven Modeling

	Generative Modeling
	Generative Modeling Techniques
	Note: Generative Modeling Language
	Procedural Model Compilation

	Reconstructive Geometry
	Information Extraction
	2D/3D Analogy
	Semantic Gap
	Digital Libraries
	Note: Documents, Metadata, and Annotations

	Shape Description
	Description by Definition
	Taxonomic Examples
	Statistical Approaches and Machine Learning
	Algorithmic Description

	Reverse Engineering
	Structural Decomposition
	Symmetry Detection
	Complete Fitting
	Subpart Fitting with Segmentation
	Subpart Fitting without Segmentation

	Generative Object Definition and Semantic Recognition
	Distance Function
	Weighting Function
	Parameter Estimation

	Implementation
	Hierarchical Shape Description
	Fuzzy Geometry
	Inverse Geometry
	Optimization
	Distance Calculation
	Linear Algorithms in Sublinear Time

	Applications
	Selfsimilarity
	Parameter Estimation
	Shape Recognition

	Conclusion & Future Work
	Collision Detection
	Contribution
	Benefit

	Generative Modeling
	Contribution
	Benefit

	Semantic Reconstruction
	Contribution
	Benefit

	Future Work
	Generative Modeling
	Procedural Optimization

	Bibliography
	Index

