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Abstract

A typical industrial design modeling scenario involves defining the overall shape of a product followed by adding detail features.
Procedural features are well-established in computer aided design (CAD) involving regular forms, but are less applicable to free-
form modeling involving subdivision surfaces. Current approaches do not generate sparse subdivision control meshes as output,
which is why free-form features are manually modeled into subdivision control meshes by domain experts. Domain experts change
the local topology of the subdivision control mesh to incorporate features into the surface, without increasing the mesh density
unnecessarily and carefully avoiding the appearance of artefacts.

In this paper we show how to translate this expert knowledge to grammar rules. The rules may then be invoked in an interactive
system to automatically apply features to subdivision surfaces.

Keywords: Procedural features; feature-based modeling; free-form surface features; graph grammars; Catmull-Clark subdivision
surfaces; automating changes in mesh topology

1. Introduction1

The design of products that have to fulfil engineering re-2

quirements as well as aesthetic criteria, typically involves free-3

form shapes. The styling activity of aesthetic product design4

comprises two steps [1]: First the product’s overall shape is de-5

fined. This is followed by local refinements where features are6

added to the overall shape. Often, the same or similar features7

are repeatedly applied to one design.8

A procedural feature consists of a set of parameters along9

with an algorithm for applying the feature to an underlying10

model. The designer can then manipulate the feature directly11

on a high semantic level of abstraction. The underlying shape12

can be edited while leaving the procedural features in place.13

Also, the designer is able to control specific aspects of a feature14

shape, while the overall shape remains fixed. This is referred to15

as feature-based modeling.16

For feature-based modeling to work, features must be well-17

defined in terms of their parameters. Therefore, feature-based18

modeling was first introduced in the context of solid modeling,19

where procedural features have become firmly established. A20

cylindrical hole drilled into an overall shape is the classic ex-21

ample of a procedural feature. The use of free-form surface22

features, rather than regular-shaped features, is an active area23

of research [2].24

Because feature-based modeling systems need to be com-25

patible with a larger modeling pipeline, it is desirable for the26

system’s input and output to be a standard CAD representation.27

Non-uniform rational B-splines (NURBS), a patch-based28

surface representation, are the current standard for free-form29

modeling in CAD. Adding features to free-form surfaces repre-30

sented by NURBS frequently involves increasing the resolution31

of surface patches, which leads to many redundant vertices in32

the representation.33

Subdivision surfaces, already established in the animation34

industry, have recently gained popularity as an alternative to35

NURBS in CAD. Subdivision methods are a generalisation of36

traditional spline patch methods to arbitrary topology; for ex-37

ample, Catmull-Clark [3] generalises bi-cubic patches.38

Because subdivision surfaces may also include extraordi-39

nary vertices, that is vertices with a valency either more or less40

than the regular valence, features may be introduced into the41

surface by locally changing the topology of the control mesh.42

However, changes to the topology of the control mesh may43

give rise to artefacts in the limit surface. To apply free-form44

design features to a subdivision surface, a CAD expert meticu-45

lously adjusts the resolution and the mesh topology of the sub-46

division control mesh in order to keep changes to the overall47

shape small and to avoid or hide the visual appearance of arte-48

facts [4]. Once a good topology change is identified, the expert49

applies the same procedure each time the same or a similar fea-50

ture has to be applied.51

In this paper we describe how this expert knowledge can52

be formulated as graph grammar rules. We propose to use a53

graph grammar on top of a scripting language; the basic local54

modifications are scripted, and the graph grammar allows us to55

organize the problem.56

2. Related Work57

Grammars have proved very useful for the procedural mod-58

eling of buildings where contex-free split grammars have been59

used [5, 6]. There, too, a grammar provides the organizing60
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paradigm for something that could theoretically also be hard-61

coded.62

Procedural free-form features have been a lively area of re-63

search since the 1990s. For a comprehensive introduction to64

and overview of feature-based modeling in CAD, we refer the65

reader to Pernot et al. [2].66

2.1. B-spline based methods67

In [7], Pernot et al. introduce a method for using three-68

dimensional curves for defining deformations applied to B-spline69

surfaces. This method was later extended [8, 9, 10] as a method70

for defining a range of freeform surface features on freeform71

surfaces. Application of the features is done using a force-based72

deformation system. The method can operate on NURBS data,73

but no new control points are added. The input geometry must74

have sufficient resolution to represent the features.75

Chen et al. [11] solve this limitation by using hierarchical76

NURBS [12] to represent the resulting surface. In this approach,77

higher-resolution patches are used to refine the lower-resolution78

input patches and add high-frequency detail. The resulting ge-79

ometry is tied to the use of non-standard hierarchical NURBS80

as a geometry representation and can therefore not be used in81

existing modeling pipelines.82

Another way to avoid the problem of insufficient resolu-83

tion in the input control mesh is to generate the feature during84

rendering instead of attempting to output a control mesh. Dis-85

placement mapping [13] is a wide-spread and efficient method86

for applying high-frequency detail to surfaces when the output87

is only used for visualization.88

2.2. Subdivision based methods89

A popular method for adding a limited repertoire of fea-90

tures to subdivision surfaces has been defined by De Rose et91

al. [14]. In their approach, edges of a subdivision control mesh92

may be marked as being exempt from the subdivision process.93

This introduces sharp and semi-sharp creases into an otherwise94

smooth limit surface. However, the output surface is not a gen-95

eralisation of traditional spline patch methods, which typically96

is a requirement further down the product design pipeline.97

Khodakovsky and Schröder [15] describe an algorithm al-98

lowing the creation and manipulation of fine scale feature curves99

on subdivision surfaces. Creation of the features happens dur-100

ing the subdivision process, so there is no sparse control net for101

the resulting surface.102

In the context of Sketch based modeling, Olsen et al. [16]103

have developed a method for incorporating linear features into104

subdivision control nets by locally increasing the mesh resolu-105

tion. The transition between the higher-resolution patched faces106

and the lower-resolution surroundings is handled by a set of107

fixed patching template. However, this approach may increase108

control mesh density more than necessary.109

In product design today, topolgical changes to a subdivision110

control net to incorporate high frequency features are still mod-111

eled manually by the CAD expert.112

3. Adding Features to Subdivision Surfaces113

The problem of applying free-form features to a subdivi-114

sion surface can be seen as consisting of three subproblems,115

namely 1) defining the feature, 2) changing the topology of the116

subdivision control mesh, and 3) shifting the control points ap-117

propriately.118

Of these, the second step is the most time consuming and119

the one where expert knowledge is required.120

Typically, a CAD expert with a thorough understanding of121

the surface representation carefully designs the subdivision con-122

trol mesh in order to locally increase the resolution around the123

area where the feature is to be placed. This is not a trivial task:124

CAD modelers typically take great care to avoid the appear-125

ance of surface artefacts.126

In regular regions surface artefacts are known to arise if fea-127

tures are not aligned but run skew to grid lines of the control128

mesh [4, 17, 18]. Because of this CAD modelers take great129

care to align features with the underlying grid.130

Locally refining a subdivision control mesh to incorporate131

the feature typically gives rise to irregular regions: For a subdi-132

vision scheme based on quadrilateral meshes these occur around133

vertices with more or less than four edges, referred to as extraor-134

dinary vertices, and non-quad faces, which give rise to extraor-135

dinary vertices after one subdivision step.136

Subdivision surfaces do not guarantee C2 continuity at ex-137

traordinary vertices [19], and undesirable artefacts are likely to138

appear [4, 20, 21].139

Typically, when applying features to a subdivision surface,140

expert mesh modelers meticulously identify changes to the topol-141

ogy of subdivision control meshes such that the visibility of un-142

avoidable artefacts around irregular regions is minimized.143

Furthermore, when different features meet in one place on144

a surface, they have to interact. The interaction of features is145

domain-specific and cannot be determined without access to146

domain-specific expert knowledge.147

As is clear from the above, incorporating features to a free-148

form design is time consuming and often requires an expert un-149

derstanding of the underlying geometric representation in order150

to integrate features.151

Once a method for good integration of a feature to a subdivi-152

sion control mesh has been identified, the expert CAD designer153

has to use the same methods repeatedly in order to manually154

incorporate free-form features of similar type into subdivision155

surface control meshes. There are currently insufficient intelli-156

gent tools to support or automate this laborious task.157

Automating some of the repetitive tasks of the feature-based158

subdivision modeling will accelerate the design process and159

frees the designer from needing extensive knowledge of the un-160

derlying geometry representation.161

4. Contribution of the Paper162

We demonstrate that grammar rules are suitable to translate163

expert knowledge of how to change the topology of a control164

mesh to incorporate a feature. Compared to existing methods165

for automatically applying features to subdivision meshes, the166
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rule-based approach adds significantly fewer control points to167

the mesh.168

Changing the topology of a control mesh unavoidably intro-169

duces changes to the limit surface. To keep the alteration of the170

original surface to a minimum we apply an optimization step171

after the changes in mesh topology.172

To demonstrate our approach, we have developed a proto-173

type system to automatically change the topology of a Catmull-174

Clark subdivision control mesh [3] to apply various surface fea-175

tures with only a minor increase in resolution to achieve good176

visual properties.177

5. Our Approach178

A mesh data structure can be interpreted as a graph. There-179

fore, graph grammars can be used to define operations on meshes.180

We employ graph grammars to express the expert knowledge of181

how to integrate features into a subdivision control mesh in a182

way that changes its mesh topology with respect to pre-defined183

requirements.184

The vertices and halfedges of the subdivision control mesh185

form the nodes of the graph. Arbitrary attributes can be added to186

the nodes. Relationships between these objects are represented187

as edges in the graph.188

Features are defined in terms of rules that find the position189

of a given pattern in the graph and then apply some local pre-190

defined operation to the mesh at that position. These rules cap-191

ture the CAD expert’s knowledge of the required changes in the192

topology of the subdivision control mesh to integrate a feature.193

The feature may then be applied using a simple point-and-194

click interface by non-expert users.195

Our prototype system is built on top of the Generative Mod-196

eling Language (GML) [22], a scripting language with special197

support for the manipulation of Catmull-Clark [3] subdivision198

surfaces. Local modifications to the mesh are described using199

the scripting language; the questions of where and when the200

local modifications are to be applied, and of how they interact201

with each other, are handled by the graph grammar. While any202

scripting language with library support for manipulating subdi-203

vision control meshes could be used, using a GML script has204

two advantages: First, GML’s use of Euler Operators as mesh205

manipulation primitives always guarantees that the invariants of206

the mesh data structure are preserved. Second, the description207

is often shortened because unchanged parts of the graph need208

not be repeated.209

5.1. Meshes and Graphs210

Using a standard halfedge datastructure, a mesh consists of211

vertices, halfedges and faces. Each halfedge connects exactly212

two vertices, its source and its target, and belongs to exactly213

one face. Each halfedge is related to exactly one other halfedge214

by a symmetric relation. These two halfedges connect the same215

two vertices, but in opposite directions, i.e. source and target216

are swapped. For each vertex, all outgoing halfedges form a217

cycle, and all halfedges belonging to a face form a cycle. As218

an example, Figure 1 shows a two-dimensional representation219

A B

C

D

Figure 1: A halfedge mesh representing a tetrahedron. Vertices A, B, C and D
are connected with pairs of halfedges in opposing directions.

of the halfedge mesh of a tetrahedron. Meshes with a boundary220

can be handled by representing the boundary as a single, non-221

planar face that is marked as invisible.222

Figure 2 shows a tetrahedron represented as a graph. To ob-223

tain a graph representation of a mesh, we choose to map each224

element of the mesh, i.e. each vertex and each halfedge, to a225

node in the graph, and the relationships between the elements226

to edges in the graph. Furthermore, grammar rules are allowed227

to add arbitrary additional labeled edges to the graph, and to228

assign arbitrary attributes to nodes (name-value pairs). Geo-229

metric information, such as the position of a vertex, is stored as230

an attribute for each vertex.231

For the purpose of our system, we can define:232

Definition 1. A graph G is a tuple (N,E,A,L,V ) where233

• N is a set of nodes234

• E ⊆ N ×N ×L is a set of edges235

• L is a set of labels236

• V is a set of possible attribute values237

• A ∈ N ×L→ V is a function defining attributes for each238

node.239

The set V of attribute values corresponds to the set of all240

values supported by the scripting language. The set L is the set241

of identifiers.242

Definition 1 defines a directed graph whose edges are unique243

for each label, i.e. given a pair of nodes a,b ∈N, there is at most244

one edge from a to b for each edge label.245

5.2. Graph Grammars246

Graph grammars, by definition, consist of a set of rules ap-247

plied to a graph [23]. Each rule matches a subgraph against the248

graph; this subgraph is then replaced by a different subgraph as249

defined in the rules. Rules are applied until no rule matches any250

more.251

As an example let us look at the simple rule that replaces252

one quad with two triangles, as seen in Figure 3. In this example253

the rule defines what elements (nodes and edges) of the graph254

on the left side correspond to which elements of the graph on255

the right side.256
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CD

BA

Figure 2: The graph corresponding to the mesh of a tetrahedron. The circled
nodes A, B, C and D correspond to the vertices of the tetrahedron. The two-letter
nodes correspond to the halfedges, i.e. node AB represents the halfedge leading
from A to B, and node BA represents its “mate”, going from B to A. The various
graph edges represent different relationships between vertices and halfedges.
Blue and green denote relations of halfedges to their source and target vertices,
respectively. Red edges denote a symmetric relation between halfedges. The
dotted edges represent faces for which associated halfedges form a circle. Thus,
the edges AB−BD−DA form a cycle corresponding to the face ABD.

In our system, the left sides of the rules are represented us-257

ing a straightforward textual representation of the graph to be258

matched, and the right sides are represented as a script that de-259

scribes the operation performed to change the subgraph matched260

by the left side. This approach is analogous to the use of oper-261

ations in split grammar systems such as CGA shape [6].262

Our example rule from Figure 3 can be textually represented263

as follows in our system:264

rule Example {265

e1(color="red")266

faceCCW> e2 faceCCW> e3267

faceCCW> e4 faceCCW> e1268

} {269

action { e1 e3 makeEF pop }270

}271

The “left side” of the rule — the code between the first pair272

of curly braces above — represents a graph pattern. We match273

against four nodes in the graph, e1 through e4, which are re-274

lated to each other by faceCCW edges, which correspond to the275

dotted edges in Figure 2. Additionally, to match our pattern,276

the first of these nodes must be marked by a color="red"277

attribute. The “right side” of the rule consists of GML code278

that defines what should happen whenever the left side of the279

rule is matched: e3 e1 makeEF pop. Because GML is a280

stack-based language, this means that the makeEF operation281

is applied to two parameters, e1 and e3 (which were defined282

while matching the left side of the rule), and its result is dis-283

A B

CD

e1

e2

e3

e4 Rule

A B

CD

Match Apply

Step

Rule

Mesh

Figure 3: Example of a graph grammar rule (top) and its application to a mesh
(bottom): Find a quad-face, made up of vertices A, B, C, and D connected
via halfedges e1, e2, e3 and e4, where one edge (e1) is marked with the "red"
attribute, as shown on the left. Split this quad-face into two triangles along
the AC diagonal. The system matches the pattern to the mesh (lower left) and
applies the rule everywhere it matches, yielding a new mesh (lower right).

carded (pop). The makeEF Euler operator (supplied by GML)284

creates a new face (F) by adding a new edge (E) between its285

parameters.286

We can also script arbitrary additional conditions to the pat-287

tern to formulate any special cases used by the expert. In the288

above example, we could decide to make the rule apply to all289

quads, but with the orientation of the diagonal split chosen in290

such a way that the newly inserted diagonal is the shorter diag-291

onal.292

For more complex rules, where new vertices are inserted,293

the scripting language code calculates their coordinates. In294

practice, this is often a simple linear combination of the existing295

vertices.296

This is not the first time grammar concepts have been ap-297

plied to meshes. Spicher et al. [24] describe a system based on298

topological collections rather than graph grammars, intended299

for the declarative specification of subdivision algorithms. By300

contrast with our system, the right sides of the rules in [24] are301

defined using declarative expressions that evaluate to topolog-302

ical collections of cells (i.e., collections of vertices, edges and303

faces). While the declarative approach leads to a more mathe-304

matically beautiful formulation, the fact that cells on the right-305

hand side have to be explicitly generated by this expression may306

lead to increased verbosity.307

5.3. Surface Optimization308

It is important that the application of a feature keeps the309

alteration of the original overall shape to a minimum.310
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Changing the topology of a control mesh inadvertently in-311

troduces changes to the surface. After performing the topol-312

ogy changes, but before shifting the control points to create313

the feature, we therefore add an optimization step to minimize314

the changes to the limit surface of the overall shape. Introduc-315

ing this optimization step allows many graph grammar rules to316

make the simplifying assumption that the surface is flat; and317

new control points need only be placed correctly within the flat318

face of the control mesh. Errors introduced by the assumption319

of flatness are corrected by the optimization.320

We have chosen a simple optimization algorithm that yields321

reasonable results very quickly. Essentially, for each control322

point we pick a fixed direction and move the control point along323

that direction until its limit point falls on the desired surface.324

Below, L∗ is the original limit surface before any rules were325

applied, c0
i are the control points after application of the graph326

grammar rules, and ck
i are the control points after iteration k of327

the optimization algorithm.328

1. Determine the normal vectors ni of the control mesh at329

each control point c0
i .330

2. Let l0
i be the limit points corresponding to the control331

points c0
i .332

3. Determine scalars si and points p0
i = l0

i + sini such that333

p0
i ∈ L∗.334

4. Let mi be the normal vector of L∗ at point p0
i .335

5. Repeat for k = 0,1,2, . . .:336

6. Calculate the limit points lk
i corresponding to the337

control points ck
i .338

7. Determine scalars tk
i and points pk

i = lk
i + tk

i mi such339

that pk
i ∈ L∗.340

8. Let ck+1
i = ck

i +(pk
i − lk

i ).341

9. Terminate when |tk
i |< ε.342

For any of the meshes used in this paper the optimisation343

required less than twenty iterations.344

Minimizing the error only for the limit points of the con-345

trol points, as opposed to over the entire surface between the346

control points, makes this optimization algorithm very cheap,347

but also bears the risk of causing oscillation in the optimized348

surface. However, the effect is strongest in the area where it is349

dominated by the displacement introduced by the feature itself,350

and thus mostly hidden from view.351

6. Results352

To demonstrate the approach presented in this paper we353

have built a prototype system to apply free-form surface fea-354

tures to a Catmull-Clark subdivision surface.355

In our prototype interface, the location where the feature356

is to be applied is defined by the user by marking, via mouse357

click, edges in a subdivision control net. The system allows358

the user to either mark edges to automatically add the feature at359

the centre of the edges or the user may choose specific locations360

along an edge in the subdivision control mesh which the feature361

is meant to cross. These markings are represented as attributes362

according to Definition 1. The designer can pre-select different363

types of features, which leads to different attributes being set.364

The feature is then incorporated to the subdivision control mesh365

by applying pre-defined rules at locations in the control mesh366

where these attributes are found. Rules are applied until no367

further rules match.368

In this section, we will demonstrate how several standard369

types of surface features can be created from very simple rules.370

Figure 4 shows a set of diagrams that describe a simple rule371

set for creating linear surface features. For brevity’s sake, we372

only show the graphical representation of the rules, and we omit373

trivial variations of the depicted rules.374

Figure 5 shows the application of a groove-feature on a sub-375

division surface. It is modeled by choosing the type of feature376

to be applied ("groove") and then marking edges in the con-377

trol mesh via mouse click with the attribute "red". The system378

then automatically inserts three new vertices along each marked379

edge in the control mesh according to Rule #1 shown in Figure380

4. The topology changes are the same, independent of the pa-381

rameters of the feature, i.e. the width or depth of the groove.382

When the marked edges are on opposite sides of a face in the383

control mesh, as in Figure 5, the feature is applied like a sim-384

ple translational sweep. This involves #2 from Figure 4. Using385

the graph grammar approach, an arbitrary number of different386

scenarios of feature application may be formalised, handling387

various situations, such as corners (Rule #3), crossings (Rule388

#4) and three-way junctions (Rules #5 and #6). T-junctions in389

subdivision surfaces have to be handled very carefully. The in-390

serted control mesh lines cannot simply end at a T-junction, as391

this would lead to irregular faces that markedly degrade sur-392

face quality due to the appearance of artefacts. The patterns393

seen in Rules #5 and #6 are often used to minimize these prob-394

lems. Observe how the right sides of these rules contain only395

quadrilateral faces. Rule #6 also moves the geometric position396

of the vertex originally at the top right of the pattern to be in397

line with the feature that ends in the T-junction. Just like with398

the new vertices added by the rules, the scripting language code399

can calculate the coordinates using the simplifying assumption400

that the surface is flat; the placement with respect to the third401

dimension is determined by optimization (section 5.3).402

Figures 6(b) to 6(e) show the results of applying features403

to the Catmull-Clark subdivision surface shown in Figure 6(a).404

The three columns show on the left the control mesh modi-405

fied to incorporate the feature, in the centre the limit Catmull-406

Clark surface with the feature and on the right the limit sur-407

face colourised to highlight differences between the new and408

the original limit surface. By extending the rule database with409

more rules, different feature types can be applied, such as a410

groove feature (Figure 6(b)), a ridge feature (Figure 6(c)) or411

the two-dimensional “dent” feature shown in Figure 6(d). Sur-412

faces 6(b) to 6(d) are applied by choosing the type of feature413

followed by marking the control mesh as shown in Figure 6(a).414

More elaborate markings may create features with intersections415

and T-junctions as in Figure 6(e).416

Figure 7 illustrates the effect of the optimization step de-417

scribed in section 5.3 applied to the feature applied in Figure418

6(e). Without the optimisation step (left), the error introduced419
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Rule #1

Rule #2

Rule #3

Rule #4

Rule #5

Rule #6

Figure 4: A rule set for generating simple seams, grooves or ridges as surface
features. Initially, all mesh edges to be crossed by the seam are marked in red
by the user. Rule #1 splits those edges into smaller edges by adding three ver-
tices along each marked edge. The remaining rules connect the newly created
points in different situations: straight feature across a quad (Rule #2), corners
(Rule #3), crossings (Rule #4), tee-crossings (Rule #5 and #6). Two extra graph
edges, shown as blue dashed arrows, are added by Rule #1 to communicate to
the later rules which mesh edges belong together. When none of the rules apply
anymore, the actual feature is created by shifting all vertices marked in green
along the surface normal vector towards the interior of the surface for simple
seams and grooves, or away from the surface for ridges.

(a) (b)

(c) (d)

Figure 5: Topology changes to incorporate a groove-feature into a subdivision
surface by applying graph grammar rules shown in Figure 4: The designer
marks the affected edges in the control mesh (a). The system automatically
applies Rule #1 to each marked edge: Marked edges are split by inserting ad-
ditional control points (b). The resulting control mesh (b) contains several 10-
gons that match the left side of Rule #2. Rule #2 is applied, that is new points
are connected across the faces (c). Finally, the centre vertices of the seams are
shifted along the negative direction of their normal vectors, resulting in the final
control mesh (d), the limit surface of which includes the groove feature.

by applying the feature is more pronounced, especially in ar-420

eas where the underlying surface has a higher curvature. With421

the optimisation, the error is not eliminated but significantly re-422

duced (right).423

An experienced designer will align features with grid lines.424

If a feature does not follow the existing control lines, artefacts425

will appear [4, 17, 18]. Typically, CAD experts will avoid426

this situation in practice by planning ahead when designing the427

overall shape of a model.428

Our method is, however, not restricted to aligning features429

with grid lines. It can be used to also formulate changes to430

the topology to also apply features skew to the grid lines. In431

Figure 8 we used the system presented in this paper to apply432

features not aligned with the control mesh. The three columns433

in the figure show again the modified control mesh (left), the434

limit surface (centre) and the error of the new surface to the435

original saddle shape without the feature (right). In Figure 8(a)436

a free-shape feature intersects a feature aligned with the grid437

lines. In Figure 8(b) the boundaries of the dent feature follow438

an arbitrary curve. As long as the feature to be added keeps439

clear of existing control points, the existing rules for straight440

(Rule #2) and corner (Rule #3) features are sufficient. For the441

case where the feature comes too close to an existing vertex,442

we can add special-case rules, Rules #7 and #8 (Figure 9), that443

shift the vertex out of the way. This introduces additional error444

into the surface, but it allows the feature to be realised without445

adding many new vertices and without non-local changes to the446

control mesh.447

It is worth noting that the graph grammar concept is capa-448

ble of expressing different approaches to the problem of adding449

features to the mesh; for example, patch patterns for adaptive450

subdivision described in [16] map directly to grammar rules451

(Figure 10). These rules serve as a general mechanism for lo-452

cally increasing the resolution of a mesh in order to add high-453

frequency detail to an otherwise sparse control mesh. By com-454
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(a)

(b)

(c)

(d)

(e)

Figure 6: After marking the affected edges on the original mesh (a), various
features can be automatically applied: grooves (b) and ridges (c), as well as
two-dimensional features like an indentation (d). Given different markings,
features may also interact with each other or form T-junctions and crossings as
in (e).

(a) (b)

Figure 7: Effect of the optimization step described in Section 5.3. Without
optimization (a), the error is much more pronounced than with optimization
(b).

(a)

(b)

Figure 8: Non-grid-aligned features, created using two additional rules (Fig-
ure 9) that move aside the control points of the underlying surface where they
would otherwise interfere with the features.

Rule #7

Rule #8

Figure 9: Two rules for enabling non-grid-aligned features by moving aside
control points that are in the way. As before, a half-edge marked red indicates
that a feature will cross this edge; the exact place where the feature should cross
is stored as a further attribute. These rules are conditional — they are only
applied if the feature would otherwise be too close to the vertex in the center
of the pattern. The amount by which the central vertex is shifted is likewise
determined by script code.
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Figure 10: Adaptive control mesh refinement using the patching patterns from
[16] can be directly implemented using graph grammar rules to serve as a gen-
eral mechanism for adding detail. Compared to specialized rules, this usually
leads to a greater increase in resolution.

Figure 11: Complex features may be defined using graph grammars: A piped
seam is a seam where an extra piece of material, the piping, is sewn into the
seam. For our purposes, we can model this by using a variant of Rule #1 that
applies a different profile to the edges.

parison, a special-purpose ruleset as described in this paper uses455

far fewer control points to model a feature.456

7. Example Application457

Let us now consider the real-world application of a system458

which supports a non-expert designer to incorporate different459

types of seam features to the upholstery of chairs modeled using460

Catmull-Clark subdivision surfaces (Figure 13).461

The most important attribute for defining a seam feature is462

its profile, where the user may adjust parameters such as width463

and depth of the seam.464

We demonstrate the ability of our system to deal with in-465

teractions between different features by using different profiles466

to create different kinds of seams, such as piped seams, where467

an extra piece of material, the so-called piping, is sewn into the468

seam. This gives the seam a characteristic appearance with a469

protruding center. We can simulate this using a more complex470

profile for the seam, as shown in Figure 11. Figures 13(d) and471

(e) show a surface feature pattern involving piped seams applied472

to our example model.473

When two features cross it is sometimes sufficient to apply474

existing rules to the mesh. In other situations new mesh patterns475

are required to avoid artefacts caused by the interaction of both476

features. The ability to formulate ad-hoc special cases used by477

experts as rules that can be applied automatically is one of the478

strengths of the approach presented in this paper.479

Interactions between piped seams and regular seams are480

such special cases; a three-way junction where a regular seam481

ends in a piped seam (Figure 13(d)) is very similar to the a regu-482

lar three-way junction, but a crossing between a piped seam and483

(a)

(b)

Figure 12: The crossing between two features (a regular seam and a piped seam)
may lead to artefacts if standard crossing rules (Rule #4, Figure 4) are applied
(a). To avoid artefacts special rule may be employed to handle these situations.
In this example, visually more pleasing results are achieved if the regular seam
ends where it meets the piped seam and starts again on the other side (b).

a regular seam feature, as shown in Figures 13(e), leads to arte-484

facts in the surface if handled by a variant of Rule #4 . Figure485

12(a) shows a piped seam crossing a regular seam, constructed486

using the regular crossing rule, Rule #4. Artefacts occur in the487

limit surface where the many parallel edges running cause a488

“kink” in the piping, see Figure 12(a) on the right. To improve489

the appearance of the subdivision surface we add another rule490

to the graph grammar to handle this special case in a more ap-491

propriate manner, such as to use the strategy from Rule #5 to492

eliminate the extra control points. The result is shown in Figure493

12(b), where no artefacts are visible in the limit surface.494

Note that the case of two piped seams crossing each other495

is yet another special case. It is not a trivial crossing, since496

the pipings for the two seams cannot occupy the same space.497

One of the pipings needs to end where it meets the other seam,498

and resume on the other side. This special case can also be499

automated by our system; it cannot be dealt with by a general500

algorithm, as it is a special case that arises purely from the ap-501

plication domain.502

8. Discussion503

The methods that experts use to manually add a feature to a504

mesh depend on the existing structure of the mesh, and so does505

the graph-grammar based approach.506

Some of the other methods described in Section 2 apply507

brute force to this problem: While the grid lines of the control508

mesh do not follow the generated feature, thus decreasing the509

quality of the surface due to artefacts, the resulting errors can510

be made arbitrarily small by increasing the resolution [17].511

This is a general trade-off. Generating a higher-resolution512

output reduces the amount of artefacts, while at the same time513

makes the output less useful further down the product design514

8



(a) (b)

(c) (d)

(e) (f)

Figure 13: Various different patterns of seam features applied to the same model of a chair. Figures (a), (b) and (c) showcase the crossing rule (Rule #4), the corner
rule (Rule #3) and a T-junction rule (Rule #6) when applying regular seams. Figures (d) and (e) demonstrate the application of different feature types, namely
regular and piped seams. While the T-junction in (d) follows the same rule as involved in (c), the crossing in Figure (e) requires a special case rule to improve the
appearance of the limit surface. Finally, (f) shows that features need not be aligned to grid lines.
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pipelines, since alterations to the dense control mesh are more515

difficult to realise.516

In our approach the output is a modified subdivision control517

mesh which incorporates a chosen surface feature at a small in-518

crease in control mesh density which is only locally applied.519

Therefore, the resulting control mesh is ideally suited for fur-520

ther manual modification.521

At this point, writing or extending a graph grammar rule-522

set is not a trivial task and cannot be left to the designer; while523

the graph grammar abstraction markedly reduces the effort re-524

quired compared to hard-coding the mesh manipulations as a525

monolithic script or program, an expert is still required. Apply-526

ing surface features by invoking the rules, by contrast, is now527

open to non-experts. Once a rule has been formulated it may be528

applied countless times via a mouse click.529

Special-purpose rules are not to be understood as rules that530

are used only once, but rather as a way of creating domain-531

specific modeling tools.532

If no rule is available for a specific situation, a modeling533

system can signal the failure to the user by marking that specific534

part of the model. The designer can then deal with this particu-535

lar special case by hand while still profiting from the automated536

feature application everywhere else in the model. Manual post-537

modification is made possible by the fact that the output is a538

subdivision control mesh that is still as sparse as possible.539

Graph rewriting is Turing complete, so concerns about the540

undecidability of the halting problem are reasonable at a first541

glance. We have, however, found that this is no more a con-542

cern than the Turing completeness of the underlying scripting543

language used for defining the local mesh modifications. Al-544

most all rules that were used for the figures in this paper are545

non-recursive, with the exception of Figure 10, which shows546

a recursive refinement process that can easily be controlled by547

including the desired refinement level as a condition.548

9. Conclusion549

We have shown that graph grammars can be employed to550

capture expert knowledge about what mesh operations are nec-551

essary to incorporate surface features into subdivision control552

meshes. Compared to other methods to automatically apply sur-553

face features, this method produces an output mesh that has sig-554

nificantly fewer redundant control points and thus better quality555

control meshes.556

Using this method to automate the application of surface557

features into existing subdivision surface based modeling work-558

flows will significantly speed up the modeling process. Adop-559

tion in practice is likely to happen more quickly than for other560

automated approaches as the output mesh is not only more ef-561

ficient in terms of the number of control points used, but also562

very close to the result of manual modeling, allowing for a mix-563

and-match approach during the adoption phase.564
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