
Computers & Graphics (2018)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Physics-based Deformation of Subdivision Surfaces for shared Virtual Worlds?,??

Andreas Riffnaller-Schiefera,∗, Ursula H. Augsdörfera, Dieter W. Fellnera,b

aInstitute of Computer Graphics and Knowledge Visualization, Graz University of Technology, Austria
bFraunhofer IGD, TU Darmstadt, Germany

A R T I C L E I N F O

Article history:
Received 7 November 2017

Keywords: subdivision surfaces, isoge-
ometric analysis, interactive, soft-body,
web service

A B S T R A C T

Creating immersive interactive virtual worlds not only requires plausible visuals, but it
is also important to allow the user to interact with the virtual scene in a natural way.
While rigid-body physics simulations are widely used to provide basic interaction, re-
alistic soft-body deformations of virtual objects are challenging and therefore typically
not offered in multi user environments.

We present a web service for interactive deformation which can accurately replicate
real world material behavior. Its architecture is highly flexible, can be used from any
web enabled client, and facilitates synchronization of computed deformations across
multiple users and devices at different levels of detail.

c© 2018 Elsevier B.V. All rights reserved.

1. Introduction1

The computation of physically accurate deformations of ob-2

jects in response to user interaction is usually slow, which is3

why accurate soft-body deformations are often not available in4

interactive virtual reality (VR) environments. In VR, interac-5

tion and feedback need to be immediate to create a feeling of6

immersion. In the real world we are used to interacting with7

things, e.g. to assess material properties of an object upon how8

it responds to interaction. Therefore, having only rigid objects9

in VR reduces immersion since many real world objects are10

easily deformed.11

Many virtual worlds are accessed by multiple users with var-12

ious different devices ranging from mobile devices to powerful13

workstations, making consistent soft-body deformations even14

?https://doi.org/10.1016/j.cag.2017.12.005
?? c© 2018. This manuscript version is made available under the CC-BY-NC-

ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.

0/
∗Corresponding author
e-mail: a.schiefer@cgv.tugraz.at (Andreas Riffnaller-Schiefer),

u.augsdorfer@cgv.tugraz.at (Ursula H. Augsdörfer),
d.fellner@igd.fraunhofer.de (Dieter W. Fellner)

harder due to differences in computing and rendering capabili- 15

ties. 16

To provide realistic interaction with objects in VR environ- 17

ments for a range of devices with various capabilities, a client- 18

server approach which makes use of recent advances in subdi- 19

vision based analysis is proposed. Deformations are computed 20

on a central server and results are available to multiple clients. 21

Subdivision surfaces, i.e. smooth surfaces derived through it- 22

erative refinement from a coarse control polygon, are used to 23

represent the geometry and to perform simulations. Bandwidth 24

usage is kept low by sending only the coarse control polygon, 25

and different clients can easily render different levels of detail 26

according to their capabilities by adjusting the number of sub- 27

division steps performed on the control polygon. 28

Many existing techniques to deform surfaces, discussed in 29

Section 2, are either not based on physical principles, hard to 30

synchronize or too slow to allow real-time interaction. In Sec- 31

tion 3 we explain how to compute physically accurate deforma- 32

tions of surfaces represented by subdivision surfaces and how to 33

accelerate the computation to achieve interactive rates for mod- 34

erately sized meshes. This simulation is used as the basis for 35

our main contributions: 36

• We provide physically accurate deformation of surfaces 37

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag
https://doi.org/10.1016/j.cag.2017.12.005
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 Preprint Submitted for review / Computers & Graphics (2018)

through a web service. We define a client-server architec-1

ture and an HTTP API, described in Section 4, to provide2

analysis results to clients, ranging from web applications3

to high end workstations.4

• Interaction with virtual objects on the client side is dis-5

cussed in Section 5, where we present a new fast and sim-6

ple algorithm to pick arbitrary parameter locations on a7

subdivision surface.8

We also look at simulation of different levels of detail of a9

surface and discuss possible solutions to the challenge of10

applying consistent forces and constraints across subdivi-11

sion levels.12

• We demonstrate the advantages of the proposed architec-13

ture in Section 6 with several applications for different use14

cases. Section 7 discusses the performance of the proposed15

architecture and shows that it is well suited for interactive16

use and synchronization between multiple clients.17

We conclude the paper with a discussion of limitations of the18

proposed architecture and possible future research directions in19

Section 8.20

This paper is based on and extends the conference paper [1].21

Here, we expand the discussion of the limitations of a linear22

simulation and explain what defines a small deformation in Sec-23

tion 3.4. We add Section 5.2, for a discussion on simulation of24

different levels of detail of a surface, and how constraints and25

forces can be applied consistently across different subdivision26

levels. Further, we expand the use cases of the proposed archi-27

tecture with web related technologies in Section 6.3. Regarding28

the choice of solver, we provide a comparison between the CPU29

based solver and the CUDA based solver in Section 7.2.30

2. Related Work31

Many existing techniques allow interactive deformation of32

surfaces. Good overviews can be found in [2] and [3]. The dif-33

ferent approaches differ in physical accuracy and performance.34

Simple mass spring systems and mesh processing based ap-35

proaches are very fast, but they provide only a rough approx-36

imation of real physics. Because such methods are not based37

on the actual physical behavior of real materials they are some-38

times difficult to tweak to get the expected results. To overcome39

this, methods like [4] attempt to derive the parameters for the40

mass spring system from an accurate simulation of a reference41

model. This allows mass spring systems to approximate the42

behavior of more realistic methods. However, because mass43

spring systems and mesh processing based approaches usually44

work directly with the dense mesh used for rendering, synchro-45

nizing the deformation to multiple users may require a lot of46

bandwidth, making it impractical to perform synchronization47

across a network.48

There are highly accurate numerical methods, for example49

the finite element method (FEM), to solve partial differential50

equations describing various physical effects. FEM requires a51

geometry to be expressed in a dense polygon mesh for the sim-52

ulation. Typically, the simulation mesh does not match exactly53

the representation used for rendering which makes it difficult 54

to translate simulation results to the geometry used for render- 55

ing in virtual worlds. Additionally, the same restriction as for 56

dense triangle meshes apply, i.e. because simulation meshes are 57

dense, they require a lot of bandwidth for synchronization. 58

For isogeometric analysis (IGA) [5], a variant of FEM, a sim- 59

ulation mesh is no longer necessary. In IGA the basis function 60

of the geometry representation are also used for representing the 61

domain and the solution space for the analysis. Therefore, de- 62

sign, rendering, and the finite element simulation are based on 63

the same representation of the geometry. The concept of IGA 64

has been extended to many 3D representations used in mod- 65

eling/CAD, including NURBS [5], T-splines [6] and subdivi- 66

sion surfaces [7, 8, 9]. Having the same representation for both 67

simulation and rendering eliminates the problem of translating 68

simulation results to objects in virtual environments. Instead, 69

simulation results can be directly exported to be rendered in 70

e.g. VR applications. 71

With some restrictions, IGA can also be used for interactive 72

applications. In [10] physics-based surface design tools based 73

on IGA of Catmull-Clark subdivision surfaces have been inte- 74

grated into a standard 3D modelling software. The approach 75

described in [10] requires integrating the simulation into the 76

client application and is therefore unsuitable for clients with 77

limited capabilities and provides no support for multiple users. 78

However, it demonstrates IGA based surface deformation using 79

constraints and forces. 80

Other approaches like e.g. [11] or [12] do support sharing de- 81

formations with multiple users by using a client-server architec- 82

ture, but are limited to mass spring simulation to approximate 83

the physical behavior respectively a single shared object for all 84

clients. Moreover, both approaches are based on custom net- 85

work protocols which cannot be accessed e.g. behind corporate 86

firewalls or from a web based application. 87

We extend ideas from [10] and present a client-server archi- 88

tecture for interactive simulations using IGA, that provides ac- 89

cess to the simulation for any web enabled client and supports 90

multiple users and deformable objects. 91

3. Deformation of Subdivision Surfaces 92

To define smooth surfaces of arbitrary topology using just a 93

small number of control points, a common representation used 94

in the entertainment industry are subdivision surfaces. A subdi- 95

vision surface is the smooth limit surface of a recursive refine- 96

ment operation, the subdivision algorithm, infinitely applied to 97

a coarse polygon mesh, the control mesh. A subdivision surface 98

is fully defined by a coarse control polygon and a subdivision 99

algorithm. Many subdivision algorithms exist. The Catmull- 100

Clark subdivision [13] is the de-facto standard for modelling in 101

the entertainment industry and is available in most major mod- 102

elling applications. Using Catmull-Clark, each subdivision step 103

splits all faces into n quads, where n is the number of corners 104

in the face, by inserting new points in the middle of each face 105

and edge [13]. In practical use this algorithm is only applied a 106

limited number of times, until the surface appears smooth when 107

rendered. The coarse control polygon can be efficiently sent via 108

Preprint Submitted for review / Computers & Graphics (2018) 3

a network. Each application or client can apply the subdivision1

algorithm to the coarse control mesh to derive a smooth sub-2

division surface. By adjusting the number of subdivision steps3

applied to the control mesh, each client can render the surface4

at a different level of detail (LOD), thus adapting the LOD to its5

capabilities.6

3.1. Thin Shells7

Typically, 3D objects in CAD or the entertainment industry8

are represented as surfaces, rather than volumes. To compute9

the response of a surface to environmental impact we perform10

an isogeometric thin shell simulation on a Catmull-Clark subdi-11

vision surface. Thin shells are structures where one dimension12

(the thickness) is very small compared to the other two. Such13

structures are very common in the automotive and aerospace14

industries, but also in everyday life in the form of e.g. objects15

made of metal sheets or thin plastic materials.16

Thin shells are particularly suited for IGA because their ge-17

ometry is usually defined by their middle surface, rather than18

a volumetric representation. This matches how such structures19

are typically modelled in a VR environment. Although we will20

interact with a range of different geometries in VR, thin shell21

structures cover a large array of geometries.22

The control points of the subdivision surface are the only de-23

grees of freedom (DOF) for the isogeometric thin shell simu-24

lation. They define both the initial surface geometry as well as25

the deformed configuration. All computations for the simula-26

tion are performed on the subdivision limit surface defined by27

the control points and their corresponding basis functions. The28

number of DOF can be easily increased without changing the29

surface geometry, by simply subdividing the control mesh. For30

regular regions of a Catmull-Clark surface, the basis functions31

employed to represent the design as well as the solution space,32

are uniform B-splines of degree 3. The basis functions around33

extraordinary vertices, where the topology differs from a regu-34

lar grid, can be evaluated as described by Stam [14]. For more35

details on computing isogeometric thin shell analysis using sub-36

division surfaces, we refer the reader to [7, 15, 8, 16, 9].37

3.2. Forces38

The response of a surface to environmental impact is deter-
mined by the physical material of the object. For the thin shell
simulation, an isotropic material is defined by three values: the
thickness t of the material, its Young’s modulus E and its Pois-
son’s ratio ν. For example, to simulate a sheet of aluminum
with a thickness of 1mm, the material is defined by

t = 0.001m E = 6.9 · 1010N/m2 ν = 0.32

Using the material definition, an element stiffness matrix can39

be constructed for each face in the subdivision control mesh [7].40

These element matrices are then assembled into the complete41

stiffness matrix K, which is of size 3n × 3n for n control points42

in the subdivision control mesh.43

Forces causing the surface to deform can be applied to all44

DOF, i.e. to the individual x, y, z components of the control45

points of the subdivision surface. The simplest form is to ap-46

ply a force to a single control point. In contrast to classical47

FEM, which typically employs linear basis functions, for IGA 48

this does not define a true point force concentrated to a sin- 49

gle point of the Catmull-Clark subdivision surface. Instead, the 50

force spreads over all basis functions which are non-zero at that 51

control point. If a force is applied to a region, or the whole ob- 52

ject, the force is distributed over all control points which have 53

their support within the region of interest. The vector of forces 54

f for all DOF is used as the right hand side of the equation for 55

the thin shell simulation: 56

Ku = f (1)

Solving Equation 1 yields the unknown displacements u. 57

Adding the displacements u to the initial DOF, i.e. the control 58

point positions, results in new control point positions, namely 59

those of the deformed surface. The smoothly deformed limit 60

surface can then be computed from the new control mesh by 61

employing the subdivision algorithm. 62

3.3. Constraints 63

To be able to solve Equation 1, we need to specify the bound- 64

ary conditions for the problem, i.e. we need to apply some con- 65

straints to the system of equations. The physical interpretation 66

of this requirement is that without any constraints the object is 67

free floating in space, and any applied force will move it in- 68

finitely. Therefore, in three dimensions, at least six DOF need 69

to be constrained to prevent any rigid body translation and ro- 70

tation. The simplest constraints just prescribe some unknown 71

displacement ui to zero, enforcing that DOF i does not change. 72

Similarly, an unknown ui can also be prescribed to a nonzero 73

value, imposing a particular displacement at DOF i. These con- 74

straints can be directly enforced by modifying corresponding 75

rows and columns in Equation 1. 76

More complex constraints can be defined as linear combina- 77

tions of unknowns, e.g.: 78

aui + bu j + cuk = d (2)

Constraints of the form shown in Equation 2 can be added to 79

the system of equations using the Lagrange multiplier method, 80

resulting in an augmented system of equations 81[
K AT

A 0

] [
u
λ

]
=

[
f
b

]
(3)

where A is a matrix with the coefficients of the left hand sides 82

of all Lagrange multiplier constraints, i.e. a, b, c from Equa- 83

tion 2, and b contains the right hand sides of these constraints, 84

i.e. d from Equation 2. The unknowns λ are the Lagrange mul- 85

tipliers and can be interpreted as forces required to satisfy the 86

constraints. 87

Such constraints are very useful for IGA with subdivision 88

surfaces. Because Catmull-Clark is an approximating subdi- 89

vision scheme, the displacement of the limit surface cannot 90

be directly controlled by the displacement of a single control 91

point. To directly constrain the displacement of the subdivi- 92

sion limit surface we define the linear combination of control 93

points which compute the limit point position. The linear com- 94

binations are derived from the Catmull-Clark subdivision basis 95

4 Preprint Submitted for review / Computers & Graphics (2018)

Fig. 1. A plate with a fixed boundary: The subdivision limit surface is dis-
placed with a single Lagrange multiplier constraint. The coefficients of the
constraint are defined by the subdivision basis functions for the point on
the surface.

functions, as discussed in Section 3.1. These linear combina-1

tions can in turn be used to define Lagrange multiplier con-2

straints to enforce certain displacements of the limit surface.3

Fig. 1 shows how the limit surface can be exactly displaced us-4

ing a single Lagrange multiplier constraint. This can be applied5

to any point on the surface, independent of the actual control6

points. The control points are automatically moved by the thin7

shell simulation so that the constraint is satisfied.8

3.4. Interactive Simulation9

Having the basic building blocks for a thin shell simulation10

available, a deformation of a subdivision surface can be com-11

puted by constructing the stiffness matrix K and applying the12

desired forces and constraints to the system of equations. Un-13

fortunately, this is generally too slow for interactive use of the14

simulation, with building the stiffness matrix being the most15

time consuming part. However, as already observed in [10], if16

the goal is to apply different forces and constraints to the same17

initial subdivision surface, the stiffness matrix stays the same18

and has to be computed only once for the initial surface. There-19

fore, to use the isogeometric thin shell simulation interactively,20

the stiffness matrix is precomputed for the initial geometry and21

subsequently used with different sets of forces and constraints22

to compute deformed surfaces. This computes a linear approxi-23

mation to the solution of the partial differential equations de-24

scribing the physical deformation. Therefore, given enough25

DOF to represent the solution, this results in highly accurate26

deformations as long as the overall deformations are small. Un-27

fortunately, what exactly is considered a small deformation can-28

not be easily checked. The linear simulation assumes that the29

resulting stress and strain are proportional [17]. This implies30

that the resulting stress must be below the yield-strength of the31

simulated material. However, to check this, one needs to per-32

form a non-linear simulation. For the use case of interactive de-33

formation in virtual worlds, however, the linear simulation also34

provides plausible deformations in many cases where overall35

deformations are large. One notable exception are large rota-36

tional deformations which can cause artifacts where the surface37

area increases unrealistically, as shown in [2].38

4. Server39

To provide the thin shell simulation from Section 3 to differ-40

ent applications running on different types of devices, we de-41

Fig. 2. Isogeometric analysis web service architecture: Using the HTTP
API, many different clients have access to the thin shell simulation to com-
pute deformations.

fine an HTTP API to access the simulation running on a central 42

server. This web-based simulation service can be accessed from 43

any web enabled client, ranging from apps running on mobile 44

devices to VR applications running on high end workstations. 45

This separation of the simulation and the client allows for flex- 46

ible use cases. For example, the simulation may run on a pow- 47

erful server to be accessed by multiple mobile devices, or, the 48

simulation can run on the same computer as the client to mini- 49

mize latency for high performance VR applications. 50

4.1. Server Architecture 51

Fig. 2 shows the architectural overview of our isogeometric 52

thin shell simulation web service. The server itself consists of 53

three main parts: 54

• the thin shell simulation, 55

• an in-memory cache to store results, and 56

• the web server providing the HTTP API. 57

Each of these parts can be easily extended or replaced. For 58

example, in addition or as a replacement for the thin shell sim- 59

ulation another back-end to compute the deformation could be 60

added. Similarly, other APIs can be added to access the sim- 61

ulation, for example a WebSocket-based API to allow for bi- 62

directional communication. However, this paper focuses only 63

on the HTTP API to access the isogeometric thin shell simula- 64

tion. 65

The thin shell simulation is responsible for precomputing the 66

stiffness matrix, as explained in Section 3.4, and to compute 67

the final deformation for a given set of forces and constraints. 68

The precomputed matrix and computed deformation results are 69

stored in the in-memory cache for fast access. The API pro- 70

vides easy access to this for clients, as detailed in the following 71

section. 72

4.2. HTTP API 73

To access the simulation service, an API based on the HTTP 74

protocol is provided. The main advantage of the HTTP pro- 75

tocol is that it is available almost everywhere. This enables 76

using the web service from any client, ranging from web appli- 77

cations running in a browser, or mobile applications running on 78

tablets or phones to VR applications displayed in a CAVE or 79

head mounted display (HMD). Another advantage is that dis- 80

tributed clients can seamlessly connect to the web service over 81

Preprint Submitted for review / Computers & Graphics (2018) 5

the Internet, without requiring special rules, e.g. for firewalls,1

because the HTTP protocol is allowed in most cases, which2

might not be true for a custom protocol based on UDP or TCP.3

The API is kept intentionally simple for ease of use and is4

split into two parts: the core API to compute deformations, and5

optional additional functionality that is useful in different appli-6

cations.7

4.2.1. Core API8

A small core API is enough to provide the minimum func-9

tionality to compute deformations for single user applications,10

where synchronization between multiple clients is not required.11

It consists of the following HTTP endpoints:12

POST /geometries?namespace= to upload a new geom-13

etry resource to the web service. The request data includes14

the geometry and material parameters. This returns a unique15

geom id for the geometry, based on a hash of its optional16

namespace and the geometry and material data. This allows17

multiple clients to share the same geometry. If the clients work18

in the same namespace, the geom id of a particular geometry19

is equal for all clients. Therefore, all clients share the same20

geometry and its deformation results. At the same time, using21

different values for the optional namespace enables clients to22

upload the same geometry, but treat them as different resources.23

Once the geometry is uploaded, the server starts precomput-24

ing the stiffness matrix, as described in Section 3.4. After this25

precomputation is performed, deformations can be computed26

quickly.27

POST /geometries/{geom id}/results to compute a de-28

formation for the geometry with the given geom id. All data29

needed to compute the deformation, like constraints and forces,30

is sent in the body of the POST request. This endpoint returns31

the displacements of the DOF together with a monotonically32

increasing res id value, starting at 1.33

If the precomputed stiffness matrix for this geometry is not34

yet available in the cache, this endpoint blocks until the pre-35

computation finishes and then computes the deformation.36

4.2.2. Additional Functionality37

The core API to compute deformations can be extended with38

additional functionality on the server, which is required for ex-39

ample to synchronize deformations across multiple clients and40

to implement more complex use cases. In the following, sev-41

eral optional endpoints are presented that provide additional42

useful features for the simulation service. Many additional, ap-43

plication specific API endpoints are possible and can be easily44

added.45

GET /geometries and46

GET /geometries/{geom id} to list and download subdivi-47

sion control meshes and material data for geometries uploaded48

by a different client.49

GET /geometries/{geom id}/results and50

GET /geometries/{geom id}/results/{res id} to list all51

computed deformation results for the given geometry and to52

download individual results. These endpoints can be used,53

among other things, to implement undo functionality into54

clients.55

GET /geometries/{geom id}/latest result?have= 56

can be used to get the latest deformation result for the given 57

geometry. The optional parameter have can be used by the 58

client to indicate which res id it already has. The res id 0 59

is special in that it indicates that the client only has the initial, 60

undeformed geometry. If there is a newer result, with a higher 61

ID, available, the server returns the deformed geometry and 62

res id of the latest result. If the client already has the latest 63

result, the server can keep the request open and send a response 64

once a new result is available. This minimizes the number of 65

round trips between client and server. Alternatively, the server 66

could also return an empty response to the client if keeping the 67

request connection open is not desired or not supported by the 68

server. 69

GET /geometries/{geom id}/ 70

limit comb?u=&v=&face-index= is used to get the lin- 71

ear combination of control points defining the limit point 72

for a certain parameter location (u, v) on the face with index 73

face-index in the subdivision control mesh. This returns the 74

linear combinations for the limit position as well as for the 75

tangents at the given location. This can be used by the client 76

to get linear combinations needed e.g. for Lagrange multiplier 77

constraints of the limit surface. Using this API, the client does 78

not need to implement complex evaluations of the subdivision 79

surface itself. 80

5. Client 81

The HTTP API presented in Section 4 can be used by any 82

client that can send HTTP requests to access the simulation. In 83

particular, this allows e.g. web browsers, mobile applications 84

and most game engines to access and use the simulation web 85

service. 86

For simple use cases the client needs to provide only the ge- 87

ometry data for a Catmull-Clark control mesh and a set of forces 88

and constraints to compute a deformed surface. However, in 89

some cases, e.g. to apply constraints to the subdivision limit 90

surface, more information is required. 91

5.1. Catmull-Clark Parameter Estimation of Ray Intersections 92

As discussed in Section 3.3, the linear combination of con- 93

trol points that defines a limit position is needed to apply a con- 94

straint directly on the limit surface. To compute these linear 95

combinations, either within the client application or with the 96

API from Section 4.2.2, the (local) parameter location of the de- 97

sired point on the corresponding subdivision patch is required. 98

Fig. 3 summarizes a simple approach to estimate the parameter 99

values of the limit point using a slightly extended implementa- 100

tion of Catmull-Clark subdivision on the client. This method 101

is similar to some pre-tessellation methods to evaluate Catmull- 102

Clark surfaces for ray tracing [18]. Here, the tessellation is used 103

to estimate the parameter location of a ray intersecting the sur- 104

face, e.g. for user interaction or collision detection, and not to 105

evaluate the limit surface itself. 106

During each subdivision step, the index i of the original root 107

face (Fig. 3 top-left) in the control mesh, from which each sub- 108

divided face originated, is stored as r. Additionally, for each 109

6 Preprint Submitted for review / Computers & Graphics (2018)

Fig. 3. Parameter estimation for a ray intersection with a tessellated
Catmull-Clark subdivision surface: New faces created during subdivision
(top-right, bottom-left), store an index r, referencing the corresponding
root face i (top-left), and the path p from the root to the given face. In
each subdivision step the corresponding corner index of the parent face,
displayed in boxes, is appended to the path. The path is used to determine
the parameter range of a given quad, consisting of two triangles. The final
parameter value is a linear interpolation of the triangle corner parameters
based on the barycentric coordinates of the intersection (bottom-right).

face in the subdivided mesh the index of the corresponding cor-1

ner vertex in its parent face, i.e. 0, 1, 2 or 3 for quads, is stored.2

This index is stored for every subdivision level and defines the3

path p from the root face to a given face in the quadtree of sub-4

divided faces (Fig. 3 top-right and bottom-left). So, a face at5

subdivision level 2 stores two values, e.g. [2, 1] for the right6

most face just above the vertical center. For rendering, each7

quad is split into two triangles (Fig. 3 bottom-right), each of8

which refers to the same information stored for the quad. This9

information requires one additional index and 2 bits per subdi-10

vision level of additional storage for each subdivided face.11

To find the control face and parameter location of a ray inter-12

secting the Catmull-Clark surface, the intersection is first com-13

puted with the triangle mesh used for rendering. If there is14

an intersection, the previously stored information for that tri-15

angle/quad is retrieved. From path p the possible range of pa-16

rameter values can be derived, i.e. the face with path [2, 1] con-17

tains the (u, v) parameter domain from (0.75, 0.5) to (1.0, 0.75).18

The first path item 2 limits the the u domain to [0.5 . . . 1.0] and19

the v domain also to [0.5 . . . 1.0]. The second item 1 then re-20

stricts these domains further, for u to [0.75 . . . 1.0] and for v to21

[0.5 . . . 0.75].22

An approximation of the final parameter value can be com-23

puted as a linear interpolation of the corresponding range24

boundaries based on the barycentric coordinates of the ray in-25

tersection with the triangle (Fig. 3 bottom-right). The higher26

the subdivision level of the mesh used for intersection testing,27

the more accurate the approximation of the parameter values.28

The face index in the control mesh used for evaluation is29

found by using the stored index r of the selected face. The30

linear combination of control points defining the limit position31

at the approximated parameter location are derived from the32

Fig. 4. Simulation of different levels of detail of a subdivision surface can
lead to very different results. The top row shows three control meshes
defining similar surfaces, from left to right: the initial coarse control mesh,
a subdivided control mesh derived from the coarse control mesh, and a
subdivided control mesh with added details not present in the coarse mesh.
The corresponding surfaces are shown in the center row, together with
forces and constraints highlighted in orange. The corners are fixed in place
while a force is applied at the center of each surface. The results in the bot-
tom row, computed using the same forces and constraints for each surface,
are very different. Either due to different DOF (left, center), where more
DOF improve the accuracy of the result. Or due to different surface geom-
etry with different stiffness properties (center, right).

Catmull-Clark basis functions. Because the simulation service 33

already needs to perform such evaluations for the isogeometric 34

thin shell analysis, see Section 3.1, it can also provide func- 35

tionality to compute these linear combinations, as described in 36

Section 4.2.2. However, the face index and parameter location 37

always need to be provided by the client. 38

5.2. Level of Detail Simulation 39

One advantage of subdivision surfaces is that the level of de- 40

tail for the visualization can be easily adapted by rendering a 41

different subdivision level of the surface. Therefore, objects 42

close to the virtual camera can be rendered at a high subdivision 43

level, resulting in many triangles to represent a smooth surface, 44

while objects far away can be rendered at a low subdivision 45

level or even without subdivision. 46

Subdivision can also be applied to increase the DOF of the 47

surface for analysis. Providing surfaces with more DOF to the 48

simulation leads to more accurate and detailed deformation re- 49

sults. However, the number of DOF also directly affects the 50

time needed to compute the deformation, as discussed later in 51

Section 7. Therefore, there is always a tradeoff between accu- 52

racy and computation time. 53

To achieve a fast response time but eventually also get a very 54

accurate result, a parallel simulation scheme can be used. The 55

basic idea is to perform the simulation on multiple subdivision 56

levels of the surface at the same time. The result for the coarse 57

mesh can be computed quickly and can therefore be presented 58

to the user immediately. Meanwhile, a variant of the same sur- 59

face with more DOF takes longer to compute, but provides the 60

user with a more accurate deformation result, once it is avail- 61

able. 62

Preprint Submitted for review / Computers & Graphics (2018) 7

The parallel simulation can be controlled entirely by the1

client, without modifying or extending the HTTP API from2

Section 4.2. However, it assumes that the server can handle3

multiple requests simultaneously, to compute several deforma-4

tions in parallel. To be able to simulate multiple subdivision5

levels of a surface, the client uploads each level as a separate6

geometry to the server. In other words, instead of just upload-7

ing the initial control mesh of an object, the client uploads the8

initial control mesh and additionally also subdivides this con-9

trol mesh and uploads the resulting subdivided geometry as a10

separate object to the server. It is important to note that both11

control meshes define the exact same subdivision limit surface,12

on which all simulations are based. While simply subdividing13

the control mesh for the simulation could also be performed by14

the server, often, additional details are added to the subdivision15

surface for visualization on the client, e.g. using displacement16

maps. The client can also add these additional visualization17

details as geometric details to the subdivided control mesh by18

displacing the control points. This way, the details in the geom-19

etry are part of the simulation and can therefore lead to a more20

accurate deformation result.21

Fig. 4 highlights the differences in results and problems that22

can arise from different levels of detail and additional geometric23

details. The coarse mesh on the left results in a very large defor-24

mation, because it has too few DOF to accurately represent the25

solution for the given forces and constraints. The subdivided26

control mesh in the center, describing exactly the same surface,27

results in a small, but visible deformation. However, the sub-28

divided mesh with added details on the right, having the same29

number of DOF, results in almost no displacement at all. This30

is because the slightly rippled surface is much stiffer than the31

perfectly flat surface. While typically the differences are not32

as extreme as in this example, it is important to consider the33

amount of DOF and the influence of geometric details on the34

structural stability of surfaces when simulating multiple levels35

of detail.36

Another challenge with this approach is to find correspond-37

ing constraints and forces for the subdivided control meshes.38

Often, the client only has constraints and forces for the initial39

control mesh, e.g. because only the coarse initial control poly-40

gon is shown in the user interface for manipulation, but a more41

accurate, higher resolution simulation result of the limit surface42

should eventually be visualized. In that case, the client needs43

to derive constraints and forces for the higher subdivision level,44

which has different DOF, from the user interaction with the ini-45

tial control points. Having the corresponding constraints and46

forces, the client can then separately request deformation re-47

sults for each subdivision level from the server.48

Simple constraints of single DOF, as mentioned in Sec-49

tion 3.3, are difficult to apply exactly on a subdivided control50

mesh. The reason is, that the influence of a single DOF of the51

coarse control mesh on the surface is spread to multiple DOF52

in the subdivided mesh. If we spread the constraint itself in a53

similar way, multiple neighboring DOF are constraint, instead54

of just one. Unfortunately, this not only results in the desired55

displacement, defined by the constraint, but also prevents any56

rotation of the surface, as all neighboring DOF are constraint,57

Fig. 5. The same constraint, a displacement of one x-coordinate - visualized
with an orange arrow, is applied to different subdivision levels of the same
curve (left, center), of which the bottom end is fixed. Even though the DOF
of the curves are different, the resulting deformation is very similar. In
the comparison on the right, the blue result is the constraint applied to the
original control polygon and the orange result is for the subdivided curve.
By minimizing the energy caused by the deformation, the simulation au-
tomatically moves nearby control points in a similar way as the constraint
DOF. Therefore, the limit surface moves approximately as specified by the
single displacement constraint, independent of the number of DOF.

which is not desired. 58

Interestingly, we found that in many cases a good approxi- 59

mation of the constraint on the coarse control mesh is to just 60

apply the same constraint to the corresponding control point of 61

the subdivided control mesh, as demonstrated in Fig. 5. As the 62

thin shell simulation tries to minimize the deformation energy 63

required to satisfy the constraints, control points nearby con- 64

strained DOF are automatically moved similar to the defined 65

constraint to avoid deforming the surface, if possible. And due 66

to the Catmull-Clark subdivision rules, moving a control point 67

and its one-ring neighborhood directly relates to the movement 68

of the corresponding region on the subdivision limit surface. 69

Therefore, neglecting the influence of other constraints and 70

forces, a single displacement constraint causes approximately 71

the same displacement of the limit surface, independent of the 72

subdivision level it is applied to. 73

Forces applied at DOF are also valid on the subdivided con- 74

trol mesh, but the area of influence is reduced because the sup- 75

port of each DOF on the limit surface shrinks with each subdi- 76

vision level. To spread the force to the same region as on the 77

initial coarse control mesh, the force vectors can be subdivided 78

according to the Catmull-Clark subdivision rules in the same 79

way as the control points are subdivided. This way, a force ap- 80

plied to a single DOF in the coarse control mesh is split into 81

multiple forces, applied to the corresponding DOF and its one- 82

ring neighborhood in the subdivided control mesh. The sub- 83

division rules ensure that the total force applied to the surface 84

stays constant. 85

Finally, constraints defined directly for the limit surface, as 86

explained in Section 3.3 and visualized in Fig. 1, are also valid 87

for subdivided surfaces, because they are defined for a certain 88

position on the subdivision limit surface, independent of the 89

control points. However, the linear combination of DOF that 90

define the limit constraint need to be computed separately for 91

each control mesh, as shown in Section 5.1. Limit constraints 92

always ensure that surfaces displace exactly the desired dis- 93

tance, independent of the control mesh. Therefore, they are the 94

8 Preprint Submitted for review / Computers & Graphics (2018)

Fig. 6. Synchronizing soft-body deformations across multiple devices: Both
the workstation and the tablet run the same application connected to the
simulation web service. Deformations are immediately synchronized be-
tween both devices.

preferred way to apply constraints from direct user interaction.1

6. Applications2

This section presents several applications using the proposed3

simulation web service in various environments for different use4

cases.5

6.1. Multi Client6

A challenge of multi-client VR environments is the correct7

and efficient synchronization of the different clients. This espe-8

cially includes the synchronization of soft-body deformations.9

If a dense polygon mesh is used for deformation, transferring10

the deformed surface can require a lot of bandwidth. On the11

other hand, if each client computes the deformations indepen-12

dently, inconsistencies can appear due to different timing or13

computing capabilities of the devices.14

Using the central simulation web service based on Catmull-15

Clark subdivision surfaces to synchronize deformed surfaces16

across multiple devices overcomes these issues. First, only17

the subdivision control mesh needs to be synchronized between18

clients, using less bandwidth. And second, all clients get the19

exact same deformation because it is only computed once by20

the server for any given geometry. Each client then performs21

Catmull-Clark subdivision on the control mesh to derive the22

smooth limit surface for visualization. This allows each client23

to render different levels of detail of surfaces without inconsis-24

tencies, because the limit surface is fully defined by the control25

mesh and the subdivision scheme.26

Fig. 6 shows two devices, a workstation and a tablet, run-27

ning the same application connected to the central simula-28

tion server. Surface deformations caused by user interaction29

are immediately synchronized between both devices, using the30

latest result API endpoint described in Section 4.2.2.31

Currently, the applied forces and constraints are not synchro-32

nized between clients, only the deformation results are shared.33

Therefore, deformations requested from one device override34

Fig. 7. Subdivision surfaces can be interactively deformed in an intuitive
way using hand controllers and a head mounted display. Users interact
directly with the subdivision limit surface and can define constraints, visu-
alized with small red spheres, by pushing and pulling the surface. Addi-
tionally, users can also pick up and move rigid body objects, like the white
ball in the scene, which can also cause deformations by colliding with sur-
faces.

previous results requested on other devices, as usually only the 35

last deformation result is shown. The server and the API could 36

be extended to also store and synchronize the constraints and 37

forces provided by the requesting client together with the defor- 38

mation result. This would allow multiple clients to deform an 39

object alternately. A difficulty with this approach are race con- 40

ditions due to simultaneous deformation requests by multiple 41

clients. However, synchronizing constraints and forces is cur- 42

rently not implemented and we therefore have a master client 43

for each object who defines the applied constraints and forces. 44

One use case for this type of synchronization is rendering 45

multiple projections of the same scene on multiple devices, as 46

it is usually done in a CAVE [19] environment or on a large 47

tiled display [20]. Using the approach described in this paper, it 48

is ensured that all projections render the exact same soft-body 49

deformation, controlled by a single master device. 50

6.2. High Performance VR 51

Current state-of-the-art computer graphics techniques can be 52

used to create immersive virtual worlds that look almost real, 53

however these worlds do not feel real because the interaction 54

with objects is very limited. Many real world objects are not 55

rigid and users expect to be able to deform them. To improve 56

realism, interactive soft-body deformation of virtual objects can 57

be provided using the simulation web service described in this 58

paper. However, visualizing such virtual worlds using immer- 59

sive head mounted displays like the HTC Vive or Occulus Rift 60

requires high frame rates and low latency processing of user 61

inputs. 62

To ensure high performance and low latency of the VR ap- 63

plication, the deformation service can run on the same high end 64

workstation as the visualization. It does not slow down the ren- 65

dering loop of the visualization because it runs in a separate 66

process and network latency is minimized by running the server 67

and the client on the same computer. 68

In a prototype application for the HTC Vive HMD, shown 69

in Fig. 7, interactive deformation has been implemented using 70

a simple push/pull interface using the tracked hand controllers. 71

Users can simply grab and move a surface directly with their 72

Preprint Submitted for review / Computers & Graphics (2018) 9

hands, similar to the real world. Grabbing the surface adds1

a constraint on the subdivision limit surface which is updated2

when the user moves the controller. To compute the selected3

point, a ray based on the position and orientation of the users4

hand is intersected with the triangulated mesh used to render5

the subdivision surface. The face index in the subdivision con-6

trol mesh and the parameter location of the intersection is then7

computed as discussed in Section 5.1. The deformed surface is8

asynchronously computed by the simulation web service and,9

once the result is available, updated in the visualization to inter-10

actively reflect the user input. The grabbed surface point there-11

fore exactly follows the users hand movement, while the rest12

of the surface deforms according to its material properties. Ap-13

plying the constraint on the limit surface uses the limit comb14

API endpoint described in Section 4.2.2 and allows the user to15

not only change the position of the surface but also to control16

the tangent plane at the grabbed surface point.17

However, as explained in Section 3.3 multiple DOF of the18

surface need to be constrained to prevent any rigid body mo-19

tion. As a simple intuitive metaphor to fix virtual objects in20

place, all parts of an object touching the floor are automatically21

constrained to the floor at that position.22

For additional feedback, vibrations of the controller are used23

to let the user feel the deformation. The more deformation the24

interactions cause, the stronger the vibrations of the controller.25

In addition to direct user input also interaction of the soft-26

body deformation with traditional rigid body physics has been27

implemented. This lets users deform virtual surfaces by28

e.g. throwing rigid objects on them. Once a collision with a29

rigid body object is detected, the parameter location of the col-30

lision point can be computed similar to how it is done for the31

user interaction. But instead of constraints, forces derived from32

the colliding objects are applied to the surface. Each surface33

will respond to collisions according to its material properties,34

improving realism.35

6.3. Interactive Collaborative Web Based Tools36

A big advantage of the HTTP based API described in Sec-37

tion 4.2 is that it can be accessed from any client that can use38

the HTTP protocol. This also includes web browsers, which39

use HTTP natively to transfer data from web servers. Together40

with other features of modern web browsers like fast JavaScript41

implementations, WebGL [21] and more recently WebVR [22],42

they can be used to create interactive visualizations of virtual43

worlds or virtual objects. Users can easily access such visual-44

izations on the web without installing any special software be-45

sides a web browser. Using the presented deformation web ser-46

vice now also enables users to interactively, and possible collab-47

oratively, deform objects in a web browser, as shown in Fig. 8.48

Providing simulation tools for web based applications has many49

use cases, for example in games, product customization or en-50

gineering.51

One possible use case is for example collaborative design and52

evaluation. To collaboratively evaluate designed objects, plug-53

ins for modelling or CAD software can send the subdivision54

geometry directly from the modelling application to the simu-55

lation server. A web based application allows to share access to56

Fig. 8. The simulation server can also be accessed from web applications
running in a browser. On the left, a cactus model is shown in its initial state.
The deformed surface, after applying some constraints, is shown on the
right. Scripts running in the browser control the simulation parameters
based on user interaction and efficiently render the surfaces in real time
using WebGL.

these models with other users and to interactively perform sim- 57

ulations. This enables users to discuss design ideas and to sim- 58

ulate and analyse structural properties. This use case is equally 59

applicable to designing virtual worlds as it is to rapid prototyp- 60

ing of objects that are manufactured for the real world. 61

Different interfaces can also be combined, as the only re- 62

quirement for collaboration is that all users access the same 63

simulation server. Therefore, one user can, for example, control 64

simulation parameters with a web based interface on a mobile 65

device, while the simulation results are visualized in a VR envi- 66

ronment. Meanwhile, a designer can create and edit geometry 67

in a CAD application and seamlessly upload new geometry to 68

the simulation server for other users to simulate. 69

This type of application makes use of all of the additional 70

APIs defined in Section 4.2.2. Depending on the application, 71

also more APIs can be defined on the server, e.g. to compute 72

stresses in the material of a simulated object intended for man- 73

ufacturing or to compute an accurate non-linear simulation non- 74

interactively for engineering analysis. 75

7. Performance 76

This section discusses several performance related topics of 77

the presented simulation web service. All timing measurements 78

were performed on a workstation with an Intel Core i7-3820 79

CPU running at 3.6 GHz and 12 GB of main memory. 80

7.1. Precomputation 81

For computing a thin shell deformation, the most time con- 82

suming part is the derivation of the stiffness matrix. As noted in 83

Section 3.4, this has to be done only once per object to compute 84

linear simulation results and can be cached for subsequent uses 85

of the model. 86

Table 1 lists the time needed to perform this initial precom- 87

putation for various models. Generally, the computation time 88

depends on the number of faces in the subdivision control mesh, 89

i.e. the number of elements in terms of FEM. However, it also 90

depends on the number of extraordinary vertices (EVs), vertices 91

with a valence other than four, in the control mesh. Regions 92

10 Preprint Submitted for review / Computers & Graphics (2018)

Table 1. Time needed to precompute the stiffness matrix and to solve the
system of equations for various models

Model Cactus Barrel Car door Horse
Control Vertices 60 210 218 472

thereof EVs 32 8 24 64
Faces 58 208 218 470
Precomputation 14 s 7 s 20 s 82 s
Solving 2 ms 18 ms 18 ms 75 ms

Fig. 9. Average latency and standard deviation (visualized as black bars)
for deforming various objects: The biggest part, solving the system of
equations, is performed using a CPU based sparse matrix solver for smaller
meshes and using a GPU based solver for the Horse model. The remaining
overhead includes request processing and network latency.

of the Catmull-Clark subdivision surface containing EVs can-1

not be evaluated as cubic B-splines but require a more complex2

evaluation [14]. Usually, the precomputation takes between a3

few seconds and a few minutes, depending on the complexity4

of the subdivision control mesh.5

Once the stiffness matrix has been either precomputed or6

loaded from a cache, a deformed version of the surface can7

be computed quickly, depending on the size of the system of8

equations, by applying forces and constraints and solving the9

resulting system of equations from Equation 1 or Equation 3.10

7.2. Latency11

It is very important for interactive applications to minimize12

the time between user interaction and visualization of the corre-13

sponding changes. This applies especially to VR applications.14

High latency limits immersion and can cause nausea for users15

of the VR application [23].16

Fig. 9 shows the total latency, from request until the result17

is available at the client, for deforming different objects. The18

stiffness matrix for each object was already precomputed be-19

fore. The values show the average latency observed during an20

interactive modelling session creating approximately 300 defor-21

mations for each object using varying combinations of vertex22

constraints, Lagrange constraints and forces. The black error23

Fig. 10. A GPU based solver based on the cuSOLVER CUDA library im-
proves performance for larger systems of equations, but has a higher over-
head compared to a CPU based solver. Therefore, the solver is dynamically
chosen based on the DOF of the simulated mesh.

bars visualize the standard deviation of the measured timings. 24

Most of the time is spent solving the linear system of equations 25

on the server. This also includes building the deformed result by 26

adding the computed deformations to the initial control points. 27

The effect of additional Lagrange constraints, which increase 28

the size of the system of equations, is small compared to the 29

overall solving time. The remaining overhead includes process- 30

ing the HTTP requests on the client and server and transferring 31

the data over the network. 32

The systems of equations are either solved with a standard 33

CPU based sparse matrix solver or using a GPU based solver 34

based on the cuSOLVER CUDA library, depending on the num- 35

ber of DOF. Using the GPU based solver has higher setup costs 36

and therefore slower performance for solving the equations re- 37

sulting from smaller meshes. A comparison of the two solvers 38

for random systems of equations with varying DOF is shown in 39

Fig. 10. At around 1400 DOF, the GPU based solver tends to 40

be as fast as the CPU based solver in most cases. For even 41

larger systems of equations the GPU based solver is signifi- 42

cantly faster. Therefore, for larger meshes with more than ap- 43

proximately 1400 DOF, like the Horse model, we use the GPU 44

based solver, while for smaller meshes the CPU based solver is 45

used. 46

The perceived latency for the user depends on the frame rate 47

of the visualization. For desktop applications, typically ren- 48

dering 60 frames per second (FPS), the deformed result for a 49

moderately sized mesh will be visualized 1-2 frames after user 50

interaction. This delay of up to 33 ms is acceptable and usu- 51

ally not noticed by the user. The Horse mesh has a latency of 5 52

frames at 60 FPS, or 83 ms, which is already noticeable but still 53

allows interactive deformation. 54

7.3. Bandwidth 55

One of the challenges for synchronizing soft-body deforma- 56

tions over a network is the required bandwidth. In addition to 57

object position, velocity, etc., which also need to be synchro- 58

nized in rigid-body physics common in multiplayer games, soft- 59

body deformations also need to synchronize each vertex of the 60

Preprint Submitted for review / Computers & Graphics (2018) 11

Fig. 11. Size of initial mesh data in bytes: The subdivision control mesh
requires significantly less bandwidth than the triangulated dense meshes
used for rendering. By taking advantage of isogeometric analysis, the con-
trol mesh can be directly used to compute deformations.

mesh.1

For rendering, the subdivision control mesh is typically sub-2

divided at least once or twice before triangulation to get a3

smooth looking surface. By taking advantage of IGA based4

on subdivision surfaces, only the subdivision control mesh is5

sent to the server when uploading new geometry. Other mesh6

based deformation approaches mentioned in Section 2 require7

synchronizing the complete mesh that is visualized to get accu-8

rate and consistent deformation results across different clients,9

because all DOF are required to compute a deformation result.10

As a baseline, Fig. 11 compares the required bandwidth in11

bytes for transferring the initial control mesh and the triangu-12

lations of the first and second subdivision level of that mesh13

respectively. This assumes that vertices are defined using three14

single precision floating point values and n-sided faces are de-15

fined by n 32-bit unsigned integer indices. Using the subdivi-16

sion control mesh, instead of the denser meshes used for ren-17

dering, saves a significant amount of bandwidth.18

When sending the resulting deformed mesh data back to the19

client, only the vertices of the subdivision control mesh have to20

be transmitted. This also results in similar savings compared21

to a dense triangulated mesh. Therefore, the network overhead22

of transferring the result, included in the timings in Fig. 9, is23

very low compared to the time needed to solve the system of24

equations.25

For all mesh based deformation techniques, including our26

subdivision based approach, many existing methods for 3D27

mesh compression could be used to further reduce the required28

bandwidth for the mesh upload [24].29

8. Conclusion and Future Work30

We present a flexible client-server architecture of a simula-31

tion web service to interactively compute and synchronize de-32

formations of moderately complex subdivision surfaces. The33

defined HTTP API provides this simulation to all web enabled34

devices, enabling physically accurate deformation also in re- 35

source constrained environments like mobile devices or web 36

applications. 37

Users can directly interact with the subdivision limit surface, 38

while only the control mesh needs to be synchronized. By us- 39

ing subdivision surfaces, we can also simulate different levels 40

of detail of a surface. To do so, we show how to apply con- 41

straints and forces defined on a coarse control mesh to a finer 42

subdivision level of the same surface. 43

The web service architecture has many different use cases, 44

e.g. realistic deformations for interactive virtual worlds, interac- 45

tive physics-based product customization or collaborative anal- 46

ysis of designs. Using the presented architecture, different types 47

of clients, like web applications, mobile devices or CAD appli- 48

cations, can seamlessly interact with the same geometry. 49

One remaining limitation of the presented approach is that 50

only a linear thin shell simulation can be performed interac- 51

tively. The linear simulation results in physically accurate de- 52

formations as long as the overall deformations are small. For 53

larger deformations this approach also yields plausible results 54

in many cases, but may lead to distortion artifacts as demon- 55

strated in [2]. An accurate simulation of larger deformations 56

necessitates a non-linear simulation, which requires repeated 57

updating of the stiffness matrix, which is too time consuming 58

for interactive use cases. Further, the topology of the subdi- 59

vision surface used for deformation cannot change as this also 60

requires recomputing the stiffness matrix. 61

Another limitation are complex subdivision meshes with 62

many control points, where computations are too slow for in- 63

teractive deformation. Even neglecting the long precomputa- 64

tion time to setup the stiffness matrix, solving the system of 65

equation alone is today still too time consuming on an average 66

computer. The Horse example can still be deformed interac- 67

tively, as shown in Table 1 and Fig. 9, but solving the system of 68

equations for significantly larger meshes is too slow. We will 69

therefore explore whether a more efficient approach to solving 70

the equations on the GPU, e.g. as presented in [25], might en- 71

able deformation of larger models at interactive rates. 72

As the presented architecture is very flexible, the web ser- 73

vice could easily be extended to include other types of simula- 74

tions by adapting the simulation computation at the server. A 75

possible future extension are also volumetric representations, 76

e.g. based on an extension of Catmull-Clark to solids [26]. 77

References 78

[1] Riffnaller-Schiefer, A, Augsdörfer, UH, Fellner, DW. Interactive 79

physics-based deformation for virtual worlds. In: 2017 International Con- 80

ference on Cyberworlds (CW). 2017, p. 88–95. 81

[2] Nealen, A, Müller, M, Keiser, R, Boxerman, E, Carlson, M. Physi- 82

cally based deformable models in computer graphics. Computer Graphics 83

Forum 2006;25(4):809–836. 84

[3] Botsch, M, Sorkine, O. On linear variational surface deformation 85

methods. IEEE Transactions on Visualization and Computer Graphics 86

2008;14(1):213–230. 87

[4] da Silva, JP, Giraldi, GA, Apolinário Jr., AL. A new optimization 88

approach for mass-spring models parameterization. Graphical Models 89

2015;81(Supplement C):1 – 17. 90

[5] Hughes, T, Cottrell, J, Bazilevs, Y. Isogeometric analysis: CAD, finite 91

elements, NURBS, exact geometry and mesh refinement. Comp Methods 92

Appl Mech Engrg 2005;194:4135–4195. 93

12 Preprint Submitted for review / Computers & Graphics (2018)

[6] Bazilevs, Y, Calo, V, Cottrell, J, Evans, J, Hughes, T, Lipton, S, et al.1

Isogeometric analysis using T-splines. Computer Methods in Applied2

Mechanics and Engineering 2010;199:229–263.3

[7] Cirak, F, Ortiz, M, Schröder, P. Subdivision surfaces: A new4

paradigm for thin-shell finite element analysis. Int J Numer Meth Eng5

2000;47(12):2039–2072.6

[8] Wawrzinek, A, Hildebrandt, K, Polthier, K. Koiter’s thin shells on7

Catmull-Clark limit surfaces. In: Proceedings of the Vision, Modeling,8

and Visualization Workshop 2011. 2011, p. 113–120.9

[9] Riffnaller-Schiefer, A, Augsdörfer, UH, Fellner, DW. Isogeometric shell10

analysis with NURBS compatible subdivision surfaces. Applied Mathe-11

matics and Computation 2016;272, Part 1:139 – 147. Subdivision, Geo-12

metric and Algebraic Methods, Isogeometric Analysis and Refinability.13

[10] Riffnaller-Schiefer, A, Augsdörfer, UH, Fellner, DW. Isogeometric14

analysis for modelling and design. In: Bickel, B, Ritschel, T, editors.15

EG 2015 - Short Papers. The Eurographics Association; 2015, p. 17–20.16

[11] Lin, S, Narayan, RJ, Lee, YS. Hybrid client-server architecture and17

control techniques for collaborative product development using haptic in-18

terfaces. Computers in Industry 2010;61(1):83 – 96.19

[12] Tang, Z, Yang, Y, Guo, X, Prabhakaran, B. On supporting collab-20

orative haptic interactions with physically-based 3d deformations. In:21

2010 IEEE International Symposium on Haptic Audio Visual Environ-22

ments and Games. 2010, p. 1–6.23

[13] Catmull, E, Clark, J. Recursively generated B-spline surfaces on arbi-24

trary topological meshes. Computer Aided Design 1978;10(6):183–188.25

[14] Stam, J. Exact evaluation of Catmull-Clark subdivision surfaces at ar-26

bitrary parameter values. In: Proceedings of SIGGRAPH 1998. 1998, p.27

395–404.28

[15] Green, S. Multilevel, subdivision-based, thin shell finite elements: de-29

velopment and an application to red blood cell modeling. Ph.D. thesis;30

University of Washington; 2003.31

[16] Barendrecht, PJ. Isogeometric analysis with subdivision surfaces.32

Master’s thesis; Eindhoven University of Technology: Eindhoven, The33

Netherlands; 2013.34

[17] Slaughter, W. The Linearized Theory of Elasticity. Birkhäuser Boston;35

2012. ISBN 9781461200932.36

[18] Benthin, C, Boulos, S, Lacewell, D, Wald, I. Packet-based ray tracing of37

Catmull-Clark subdivision surfaces. Tech. Rep.; SCI Institute, University38

of Utah; 2007.39

[19] Cruz-Neira, C, Sandin, DJ, DeFanti, TA. Surround-screen projection-40

based virtual reality: The design and implementation of the cave. In:41

Proceedings of the 20th Annual Conference on Computer Graphics and42

Interactive Techniques. SIGGRAPH ’93; ACM; 1993, p. 135–142.43

[20] Hereld, M, Judson, IR, Stevens, RL. Introduction to building projection-44

based tiled display systems. IEEE Computer Graphics and Applications45

2000;20(4):22–28.46

[21] Marrin, C. WebGL Specification. Khronos WebGL Working Group;47

2011.48

[22] Vukicevic, V, Jones, B, Gilbert, K, Wiemeersch, C. WebVR. World49

Wide Web Consortium; 2016.50

[23] Allison, RS, Harris, LR, Jenkin, M, Jasiobedzka, U, Zacher, JE.51

Tolerance of temporal delay in virtual environments. In: Virtual Reality,52

2001. Proceedings. IEEE. IEEE; 2001, p. 247–254.53

[24] Maglo, A, Lavoué, G, Dupont, F, Hudelot, C. 3D mesh compres-54

sion: Survey, comparisons, and emerging trends. ACM Comput Surv55

2015;47(3):44:1–44:41.56

[25] Weber, D, Bender, J, Schnoes, M, Stork, A, Fellner, D. Efficient GPU57

data structures and methods to solve sparse linear systems in dynamics58

applications. Computer Graphics Forum 2013;32(1):16–26.59

[26] Burckhart, D, Hamann, B, Umlauf, G. Iso-geometric finite element60

analysis based on Catmull-Clark subdivision solids. Computer Graphics61

Forum 2010;29(5):1575–1584.62

Appendix A. Transferred Data63

The exact data sent and received for each API endpoint listed64

in Section 4.2 can be considered an implementation detail. De-65

pending on the use case, different data formats are possible. For66

example, compressed binary data could be used to save band-67

width, or JSON encoded structures for ease of use in web based68

applications. In the following, the binary format used for com- 69

parisons in Fig. 9 and Fig. 11 is shown in detail for the relevant 70

core API endpoints from Section 4.2.1. The datatypes are ab- 71

breviated as u32 for an unsigned 32 bit integer and f32 for a 32 72

bit single precision floating point number. 73

Using POST /geometries to upload new geometry, the sub- 74

division control mesh is transmitted as raw binary data with a 75

small header. The header contains the number of vertices n, the 76

number of faces m, and the material parameters Young’s Mod- 77

ulus E, Poisson Ratio ν and thickness t. Following the header, 78

the control points and quad face indices are transmitted: 79

Header u32 n u32 m f32 E f32 ν f32 t
f32 x1 f32 y1 f32 z1

Vertices
f32 xn f32 yn f32 zn

u32 a1 u32 b1 u32 c1 u32 d1
Faces

u32 am u32 bm u32 cm u32 dm

80

The response from the server is the unique geom id trans- 81

mitted as a sequence of 16 bytes. 82

Computing a new deformation with POST 83

/geometries/{geom id}/results requires the applied 84

forces and constraints. Following the definitions in Section 3, 85

clients can send a combination of v vertex displacement 86

constraints, l Lagrange constraints and f force vectors: 87

u32 v vertex constraints data
u32 l Lagrange constraints data
u32 f force data

88

The vertex constraints data consists of a sequence of 89

dxi, dyi, dzi displacement constraint values and a sequence of 90

maski and indexi values: 91

f32 dx1 f32 dy1 f32 dz1
Constraints

f32 dxv f32 dyv f32 dzv

u32 mask1 u32 index1
Masks & indices

u32 maskv u32 indexv

92

Constraint i is applied to control point indexi of the control 93

mesh, according to maski. The mask can be used to only en- 94

force the constraint for certain coordinates, e.g. only for the x 95

and z coordinates of the control point. 96

The Lagrange constraints data contains p control point in- 97

dices ci, 3p coefficients cxi, cyi, czi for all DOF of these control 98

points, and 3 constraint values cvx, cvy, cvz for each of the l La- 99

grange constraints: 100

Preprint Submitted for review / Computers & Graphics (2018) 13

#Coefficients u32 p1
Indices u32 c1,1 . . . u32 c1,p1

f32 cx1,1 f32 cy1,1 f32 cz1,1
Coefficients

f32 cx1,p1 f32 cy1,p1 f32 cz1,p1

Values f32 cvx1 f32 cvy1 f32 cvz1

.
#Coefficients u32 pl

Indices u32 cl,1 . . . u32 cl,pl

f32 cxl,1 f32 cyl,1 f32 czl,1
Coefficients

f32 cxl,pl f32 cyl,pl f32 czl,pl

Values f32 cvxl f32 cvyl f32 cvzl

1

Each of these Lagrange constraints adds 3 rows and columns2

to the system of equations, one for each component x, y, z of the3

affected control points, as described in Section 3.3.4

Finally, force data is a sequence of three floats f xi, f yi, f zi5

for the forces and a sequence of control point indices f pi, to6

which the forces are applied:7

f32 f x1 f32 f y1 f32 f z1
Forces

f32 f x f f32 f y f f32 f z f

Indices u32 f p1 . . . u32 f p f

8

After the deformation is computed, the server returns a9

monotonically increasing res id and the updated control point10

positions for the deformed subdivision surface:11

Result ID u32 res id

f32 x1 f32 y1 f32 z1
Positions

f32 xn f32 yn f32 zn

12

The client uses the updated control points together with the13

unchanged face indices to visualize the deformed subdivision14

limit surface.15

	Introduction
	Related Work
	Deformation of Subdivision Surfaces
	Thin Shells
	Forces
	Constraints
	Interactive Simulation

	Server
	Server Architecture
	HTTP API
	Core API
	Additional Functionality

	Client
	Catmull-Clark Parameter Estimation of Ray Intersections
	Level of Detail Simulation

	Applications
	Multi Client
	High Performance VR
	Interactive Collaborative Web Based Tools

	Performance
	Precomputation
	Latency
	Bandwidth

	Conclusion and Future Work
	Transferred Data

