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a b s t r a c t 

With the growing amount of digital collections of visual CH data being available across different reposito- 

ries, it becomes increasingly important to provide archaeologists with means to find relations and cross- 

correspondences between different digital records. In principle, existing shape- and image-based similar- 

ity search methods can aid such domain analysis tasks. However, in practice, visual object data are given 

in different modalities, and often only in incomplete or fragmented state, posing a particular challenge 

for conventional similarity search approaches. In this paper we introduce a methodology and system for 

cross-modal visual search in CH object data that addresses these challenges. Specifically, we propose a 

new query modality based on 3D views enhanced by user sketches (3D+sketch). This allows for adding 

new context to the search, which is useful e.g., for searching based on incomplete query objects, or for 

testing hypotheses on existence of certain shapes in a collection. We present an appropriately designed 

workflow for constructing query views from incomplete 3D objects enhanced by a user sketch, based on 

shape completion and texture inpainting. Visual cues additionally help users compare retrieved objects 

with the query. The proposed approach extends on a previously presented retrieval system by introducing 

improved retrieval methods, an extended evaluation including retrieval in a larger and richer data collec- 

tion, and enhanced interactive search weight specification. We demonstrate the feasibility and potential 

of our approach to support analysis of domain experts in Archaeology and the field of CH in general. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

With advancing technologies, more and more Cultural Heritage

CH) content becomes available as digital objects. The content is

ypically given in a number of different modalities, including 2D

mages, 3D models, sketches, conventional drawings like profile

ections and unwrappings, or related texts. At the same time,

xisting data are in most cases only weakly cross-linked, with

ata being spread over a vast number of printed publications, web

epositories and web pages, virtual museums, etc. Domain expert

nowledge is required to find similar objects or detect links,

specially if the reference data are only available as illustrations in

rinted volumes with little or no associated metadata. The com-

arison of shapes is a fundamental task in archaeological research.

n important example is the research area of ancient pottery,

here cross-correspondences between different vessels are mostly

stablished via their shape. However, as the amount of digitized

ases is huge, the availability of an enhanced system for digital
∗ Corresponding author. 
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bject retrieval gains increasing importance in the archaeological

ommunity. A major challenge for a computer-aided search is

hat only a fraction of the excavated CH objects are complete, but

ost of them are present in various degrees of fragmentation or

rosion, making it difficult to use them directly as input for shape

omparison and search. Our proposed method addresses this issue

y defining an appropriate workflow for content-based retrieval

f 2D image data from incomplete 3D objects. The workflow is

uilt around a human-in-the-loop approach, allowing experts to

rovide sketch-aids for adding missing shape information, query

eighting, and visual result comparison. 

Missing parts of CH objects can be estimated with high pre-

ision by domain experts. The basic idea of sketch-aids is to

llow users to create additional object structure, which is filled

y a texture inpainting step ( Fig. 1 , left). A rendering of the

econstructed object serves as input for a content-based retrieval,

isting relevant result objects ranked by similarity ( Fig. 1 , middle).

ased on these results, our system supports a detailed similarity

ssessment based on shape and/or texture by the user, which in

urn allows for specializing the query by interactively defining

ocal focus regions ( Fig. 1 , right). 

https://doi.org/10.1016/j.cag.2020.02.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2020.02.001&domain=pdf
mailto:s.lengauer@cgv.tugraz.at
https://doi.org/10.1016/j.cag.2020.02.001
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Fig. 1. Our proposed system. Left: The user specifies missing geometry of an incomplete 3D model by sketch and automatic texture filling. Middle: The retrieval returns 

similar objects in a ranked list. Right: Using dedicated visualizations, the results can be assessed and iteratively refined by setting foci. 
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The retrieval system presented in this paper represents an

extended and revised approach of the method we previously

published in [1] . Specifically, this paper extends on the previous

work in the following ways: 

1. Improvements in our query completion pipeline, in particular a

more faithful texture inpainting method, enhancing the results

obtained by our retrieval system ( Section 5.2 ). 

2. An inclusion, comparison and evaluation of an alternative fea-

ture descriptor for the similarity-based retrieval ( Sections 6.2

and 7.3 ) 

3. An updated similarity distance metric, which now allows for

reflection invariant retrieval results, e.g. robustly handles cases

where the handle of a vessel is depicted on the wrong side.

( Sections 6 and 7.3 ) 

4. A more salient and flexible interactive weighting method

allowing for pixel-accurate importance foci ( Section 6.3 ) 

5. An extended qualitative evaluation with a more diverse search

space (over 3300 vessel images as opposed to ∼ 340 in [1] )

and an analysis of an alternative and more challenging retrieval

use-case in the face of only few domain-relevant matches in

this search space ( Section 7.3 ). 

6. A quantitative evaluation of the robustness of our pipeline

in the face of various degrees of fragmentation and various

inaccuracies of the sketch completion ( Section 7.4 ). 

In the remainder of this paper, we define the approach in detail

and show the advantage of sketch-aided queries by several use

cases on actual archaeological object data. Compared to purely

sketch-based approaches, our concept has the advantage that avail-

able texture and shape information is used to enhance the retrieval

process. Archaeological research is often interested in finding ob-

ject analogies, emphasizing or de-emphasizing certain characteris-

tics. Our user interface supports this by detailed shape comparison

views and the possibility for interactive weighting of the queries. 

2. Related work 

Our work builds on methods for 3D object retrieval, as well as

methods and applications in Archaeology. 

2.1. 3D object retrieval and features 

Researchers to date have investigated many approaches to

3D object retrieval, based on various similarity concepts such

as shape, structure, appearance, or metadata [2] . Similarity can

be based on whole objects, or on parts of objects [3] . Retrieval

methods can also be distinguished by object modalities. Besides

searching with a given 3D object within a set of 3D objects, one

can also search with and within views (images) of 3D objects,

drawings, sketches, or video. View-based approaches are frequently

used, as views can be a common denominator among different
odalities. Often, a feature-based approach is implemented, where

he objects are described by a feature vector (or descriptor) based

n which similarity scores can be computed [4] . Sketching [5] as

 query modality has the advantage that no query object or

iew is required and that it provides a natural user interface.

ketching also is connected to modeling, and previous works have

roposed modeling based on example objects found by sketch, or

pplying generative modeling methods detected from sketches [6] .

eatures can be distinguished as engineered features and learned

eatures. The first are measurements extracted from a 3D object

r view, according to expert defined properties. Examples include

easures from object surface, volume, or structure (e.g., skeleton)

7] , or view-based features including e.g., depth maps, silhouettes,

radients [8] , or interest points [9] . 

Recent success of deep learning models for image classification

nd retrieval has prompted for application of these models also to

D retrieval. Two main approaches are followed to input 3D object

ata to deep networks, representing 3D models either as a set of

D views or as a voxel grid. Generally, models that use 2D views

urpass voxel-based models. However, the latter may perform bet-

er if more complex neural network models are used, being much

ore expensive to train and also needing a substantial amount of

elevant data for training. Ioannidou et al. give a survey of methods

sing deep learning techniques on 3D models [10] . In particular,

rained deep models have been used for feature extraction, yield-

ng learned features, which have been used e.g., for sketch-based

D Shape Retrieval [11] and to implement a 3D retrieval system

12] . Recent results show that if proper training data can be used,

earned features can outperform engineered features in terms of

etrieval and classification accuracy. However, if a properly trained

etwork is not available, e.g., due to the lack of training data,

t can still be more feasible to rely on engineered features that

ncorporates domain knowledge about the expected target set. The

pproach presented in this paper is independent from the chosen

ype of features. In this work, we focus on engineered features

 Section 6 ), as preliminary results by learned features from a

eneral-purpose network were not able to produce meaningful

esults for the domain specific data used in our experiments. 

.2. 3D objects in archaeological research 

Although nowadays, 3D data are often incorporated in archae-

logical documentation and visualization, it is still rarely used

or archaeological analysis. One of the key issues in dealing with

rchaeological objects is a thorough classification of artifacts,

hich is often affected by the large amount of available objects.

earching for relevant object collections is thus fundamental to

rchaeological research. They are provided by conventional pub-

ications and recently also more often by online repositories. For

he research on Greek pottery highlighted in this paper, useful
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Fig. 2. Concept for implementing shape search using hybrid 3D+sketch queries. The sketch-completed input object is transferred to 2D modality space and compared to the 

2D target images resulting in a ranked list of results. Optionally, the results can be iteratively evaluated and refined by region-based selective weighting. Steps requiring user 

feedback are indicated with a characteristic icon. 
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Fig. 3. A typical plate [ 18 , pl.2] (a) is binarized by thresholding (b). Noisy artifacts 

are removed by morphological opening (red section in (b)) and tiny components 

are merged with morphological closing (blue section in (b)). Bounding rectangles 

around detected contours (c) are used as extraction masks. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web ver- 

sion of this article.) 
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tarting points are the series of the Corpus Vasorum Antiquorum 

1 

CVA) and the Beazley Archive, Oxford 

2 . 

To date, 3D retrieval methods have been used to support

pplications and research in different projects in the CH field. A

ecent survey of geometric analysis techniques for CH applications

s given in Pintus et al. [13] . Papaioannou et al. [14] propose a

orkflow for reassembly and completion of incomplete objects,

sing similarity in several key stages of the workflow. Pratikakis

t al. [15] propose predictive scanning of CH objects. Based on a

artial view acquired from an object, similar objects are retrieved

nd fitted to complete the partial view, based on local shape

escriptors and nonrigid registration. Banterle et al. [16] propose

 pipeline for reconstructing 3D objects from profile sections as a

asis for a reference set for retrieval. Gregor et al. [17] introduce

 preliminary approach for searching views of 3D CH objects in

mage data, using descriptors based on color and shape. While

uilding on the same problem, our work presents a much more en-

ompassing search approach considering geometry, texture, com-

lementary user sketches, and useful interface extensions for query

eighting and result visualization of relevant 3D and image data. 

. Concept for sketch-aided 3D retrieval 

Our concept supports a similarity search over a database of

D images with an incomplete 3D object as query input. Due

o the different modalities of query and target (3D+sketch, im-

ges), feature extraction is not directly applicable, but several

rocessing steps are need. Fig. 2 shows our proposed processing

ipeline. For the query object, the first step includes determining

n appropriate viewpoint and completing the geometry by sketch

 Section 5.1 ). Subsequently, a rendering of the sketch-completed

bject serves as a basis for a texture inpainting step, which is

ased on previous texture synthesis techniques ( Section 5.2 ). The

esult is a completed query usable for similarity search ( Section 6 ).

fter the retrieval, the query can be further refined by applying

elective weighting to the inpainted query image ( Section 6.3 ). This

llows the user to refine the search by shifting the focus to crucial

arts of the geometry or disregarding parts that are irrelevant or

isleading for the given search task. As target objects we consider

mages in a comprehensive archaeological domain publication se-

ies. The generation of the target database involves segmentation

f plates from the publications ( Section 4.1 ), which typically depict

ultiple images together with metadata. The extracted object

mages also require further preprocessing steps ( Section 4.2 ). 
1 www.cvaonline.org/cva/ . 
2 www.beazley.ox.ac.uk/index.htm . 

p  

b  

r  

b  
. Search space generation 

The generation of a comprehensive 2D search space is a major

art of our pipeline. In our case the data basis for this purpose

s a series of relevant archaeological volumes, present as scans of

ndividual pages with vessel depictions, denoted plates . A typical

late exhibits several depictions, possibly multiple of the same

bject from different views or closeups, together with numberings

s given by an example in Fig. 3 a. The goal is to get for each plate

 set of images corresponding to the depictions where each image

isplays exactly one object without any additional scene informa-

ion. This challenge can be broken down to segmentation of a plate

nto separate images and the subsequent foreground-background

egmentation of the object depicted on an individual image. 

.1. Plate segmentation 

The idea behind our plate segmentation process is to bring the

nput into a binarized representation where connected components

re corresponding to the individual images. Initially, the raw plate

mage, converted to grayscale, is subjected to a smart histogram

djustment which ignores 4% of the pixel with minimal and max-

mal values. This ensures that the pixels of the almost white plate

ackground are located on the high end of the color histogram,

ermitting the application of a tight threshold for generating a

inarized image. A exemplaric result is given in Fig. 3 b. On the

ight-hand side it can be seen that in some cases image num-

erings or noise in the inputs account for sprays of white pixels

https://www.cvaonline.org/cva
https://www.beazley.ox.ac.uk/index.htm
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Fig. 4. The raw input (a) is subjected to histogram equalization (b) and threshold- 

ing (c). With morphological opening relicts of the background scenery are removed 

(d). The convex hull of all remaining connected components (e) is used for a graph- 

cut extraction (f). 
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between images, blending the components together. To counteract

this unwanted behavior, an opening transformation with a small

rectangular structuring element is applied. A subsequent closing

transformation with a slightly larger kernel size reunites compo-

nents which belong together while still maintaining desired gaps

between components belonging to different images. Based on this

result the connected components with 8-way connectivity are

determined. The bounding box around the component labels are

used as extraction mask after ruling out too small components

whose bounding boxes take up less 0.5% of the overall plate area. 

Additionally to the depictions itself, the associated image num-

ber is extracted. Together with the plate number and the book

source this uniquely identifies a certain image. In most cases the

image numbers are located below and either centered or on the

left-hand side of their associated image. A small image segment

of the expected location is used as input for the Tesseract Open

Source OCR Engine. 3 If no string is found or the string does not

fit the expected format of numerical characters, the segment is

enlarged until a valid string is found or the segment exceeds a

threshold size relative to the plate size. 

4.2. Object segmentation 

The individual depictions include additional scene information,

mostly in form of shadows cast by the displayed object itself, as

depicted in Fig. 4 a. This is unwanted due to two reasons. First,

the scene information introduces additional gradients influencing

gradient-based feature descriptors with unwanted information.

Second, it prohibits the straightforward detection of the object

contour which is the basis for contour-based retrieval approaches. 

To overcome this limitation, we apply a foreground-background

segmentation, based on a graph-cut extraction algorithm [19] .
3 https://github.com/tesseract-ocr/tesseract . 

s  

c  

t  
he idea of this approach is to treat an image as an unconnected

raph G = (V, E) where the vertices V correspond to pixels and

he edges E are used to model the neighborhood of pixels. The

dges carry a weight which is a measure for the dissimilarity

etween two pixels. The aim of the segmentation is to split the

raph in connected components corresponding to the foreground

nd background pixels while maintaining minimal cutting energy.

raph-cut approaches are typically interactive, as initial seeds are

eeded to initialize the individual nodes as possible foreground or

ossible background. Since user interaction is not feasible in our

ituation (large number of input images) we generate the initial

eed automatically from the input. 

First of all, the input is subjected to the same histogram

djustment as the plate image to enhance the contrast between

bject- and background pixels (see Fig. 4 b). A thresholding is

pplied to bring the image into a binarized representation. Inputs

re present in grayscale as well as in color. It has been found

hat for all our colored inputs the blue color channel exhibits

he best contrast and has thus been used for thresholding. From

he exemplary result in Fig. 4 c it can be seen that this is no

roper representation of the foreground. On the one hand, there

re remnants of shadows in the background that introduce some

aulty binarization. On the other hand, some regions on the object

urface (especially such displaying motifs) are erroneously marked

s background. To overcome the prior issue, a morphological

losing operation with a small kernel size is applied as depicted

n Fig. 4 d. To address the latter, we take the convex hull of all

emaining mask pixels as possible foreground (see Fig. 4 e). This

roved to be a sufficiently good enough representation of object

hape for the graph-cut algorithm (see Fig. 4 f). 

. Sketch completion 

This part of our pipeline consists of the completion of the

roperly aligned 3D input by the user and a subsequent filling of

ewly generated regions with plausible texture. 

.1. Contour completion of query object with sketch 

The alignment and sketching is done in a simple 3D editor with

rthographic projection. From our collaborating archaeologists, we

earned that the depictions in the considered domain publications

ome closer to an orthographic projection, than to a perspective

ne. Prior to the sketching process an appropriate viewpoint is

etermined by rotating the model accordingly. The sketch is drawn

n 2-dimensional overlay superimposed to the rendered object. 

To add to the usability of the sketching interface, a means to

ompensate for faulty user input was implemented. This includes 3

ain cases: (i) gaps between the sketched lines and the remaining

eometry, (ii) gaps between adjacent sketch lines and (iii) over-

appings between sketch lines. These cases are handled as follows:

n case of gaps between sketched lines and object geometry, the

ketched line was connected to the closest point on the geometry.

aps between sketched lines are closed by connecting the ends

f the lines. Overlappings of sketched lines are removed by con-

ecting the lines at the point of intersection and deleting parts

ot connected to geometry or other lines. When the completion is

nished the sketch lines are drawn on a high-resolution rendering

f the object. This image is then passed further down the pipeline.

.2. Texture completion 

The input to the texture inpainting step is a 2D image with a

ketched contour. For the content-based retrieval, the additionally

reated object parts need to be filled with texture in a manner

hat could plausibly resemble the original texture. Using simply a

https://github.com/tesseract-ocr/tesseract
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Fig. 5. (a): Input with sketch completion defines the area for the inpainting (green). 

Texture synthesis results with standard texture inpainting (b), texture inpainting 

with user-defined directivity (c) and patch-filling (d). (For interpretation of the ref- 

erences to color in this figure legend, the reader is referred to the web version of 

this article.) 
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ingle color for the whole region would introduce a gradient at the

racture line and an implausible null gradient in the filled regions.

hus, the aim is to have color and coarseness properties in those

egions, similar to the properties of the original object texture. 

The region to be filled, as well as the region containing the nec-

ssary contour, are defined by a labelling algorithm together with

he user identifying the respective regions. The labels determine

he segment which will be inpainted (target segment) as well as

he segment providing texture information (source segment). 

Previously, in [1] , the inpainting algorithm described by Wei

nd Levoy [20] was combined with a descriptor loosely based

n the RIFT descriptor proposed by Lazebnik and Schmid [21] .

he basic idea is to compute a pixel descriptor for each pixel

f the source label based on the color histogram of a pixels’s

eighborhood. The target label is then filled linearly from top

o bottom and left to right. Same as with the source label, the

ixel descriptor of the pixels in the target area is computed as

ell as the L2 distance to all source descriptors. From those with

 distance below an empirically determined threshold, one is

elected randomly and the color of its respective source pixel

pplied to the current target pixel. If no neighbor within this

hreshold is found, the pixel color of the source descriptor with

he lowest distance is taken. Finally, a median filter is applied to

emove noise possibly caused by the sampling. As it can be seen

n Fig. 5 b this texture inpainting method introduces vertical direc-

ivity, and thereby unwanted gradients, to the filled regions. The

esired behavior is that the inpainting originates at the fracture

ine and propagates towards the sketched outline. To this end we

xtended our system by a means that allows the user to specify

he direction of the filling. The results of this approach can be seen

n Fig. 5 c. 

Additionally, we evaluated an alternative algorithm, based on

he concept proposed by Criminisi et al. [22] . The idea is to fill the

arget region iteratively from the region borders with patches of a

xed size. For each iteration weights are calculated along the fill-

ng front. Those are a combination of a certainty term, modelling

he uncertainty with growing distance from the region border,

nd a data term, favoring areas with a strong gradient normal to

he region border. The point with the maximal weight is taken

s the origin for propagating the filling front. The surrounding

f this origin is used for finding a fitting patch from the source

egment, which could potentially include the whole image (except

he filling region). However, for our application we restricted it

o pixels containing original texture information, disregarding any

ackground pixels. The strength of this approach is that gradient

nformation fitting the surrounding image is induced to the target

egion, leading to a much more realistic texture reconstruction. 

Since the patch-filling method [22] proved to produce the

ualitatively best inpainting results, we use this method for all

ubsequent evaluations. 
. Content-based retrieval 

After the sketch completion, texture inpainting and preprocess-

ng steps, the query and target collection are available, allowing

or a conventional image feature-based similarity search. There

xists a wide range of established 2D image features, incorporat-

ng global features like Color Histogram, Edge Histogram, Tamura,

olor and Edge Directivity Descriptor (CEDD) [ 23 , p. 30–40],

istogram of Oriented Gradients (HOG) [8] and local features like

cale Invariant Feature Transform (SIFT) [9] . Global features are

omputed from the whole image and can be further divided into

eatures based on color, texture and shape. The group of local

eatures relies on ‘significant’ points in the image which noticeably

iffer from their neighborhood. We found that color-based features

erformed poorly for our specific use case of pottery images, as

hey exhibit mostly undiscriminating color distributions, and many

arget images are available only in grayscale at the first place. In

reliminary experiments, global shape-based feature descriptors

ielded the most promising results, due to both the query and the

earch space images being depicting with the whole object in view

nd with a characteristic orientation. Two descriptors, yielding

ppropriate results, are evaluated in more depth: The HOG feature

escriptor as well as the shape contour descriptor (SCD) presented

y Attalla and Siy [24] . 

.1. HOG feature descriptor 

HOG describes an image by an array of local histograms, and

ence can be locally weighted by a user, if required. An input im-

ge is divided into a fixed number of equal sized blocks, which are

ubdivided into cells. For each cell the directivity and magnitude

f gradients is calculated. 

This requires the inputs to be normalized in a way so that

bjects take up the same space in the input images. Firstly, we

rop the images to the bounding box of the displayed object.

adding is added so that the objects’ width and height fills up

0% of width and height of the resulting image in order to create

dditional context. Finally, the input is scaled to a fixed width and

eight as required by the HOG descriptor. To this end, additional

adding is added, either to the top and bottom or left and right

n order to meet the required aspect ratio while maintaining

he object’s position at the center. We choose an image size of

4 by 128 pixels for slender objects and 128 by 128 for bulgy

nes. Moreover, for computing the distance between two feature

ectors � v 1 � v 2 , reflection invariance is obtained by taking the mini-

um d( � v 1 , � v 2 ) = min { ̃  d ( � v 1 , � v 2 ) , ̃  d ( � v 1 mirror 
, � v 2 ) } , � v 1 mirror 

denoting the

eature vector of the horizontally mirrored image. 

.2. Shape contour descriptor 

The SCD is a descriptor based solely on the contour of a shape,

equiring that the boundary of a depicted object is correctly

xtracted (see Section 4.2 ). The basic idea is to split the contour

nto n equal sized chords. In our experiments a setting of n = 100

howed to be a good choice. For each chord, the descriptor stores

hree features: (i) the angle between the current chord and the

dge from chord start point to the shape centroid, (ii) the distance

etween the chord starting point and the centroid and (iii) the

moothness, given by the ratio of chord length to arc length of the

ontour. All three features are normalized with the max values for

n individual shape. Due to this normalization, the descriptor is

nvariant to scale, rotation and translation. 
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Fig. 6. (a): Red-green (left) and seismic (right) color maps indicating the regional 

differences of query and target. (b): Normalized and aligned query- and target con- 

tours with color mapping indicating local differences. (For interpretation of the ref- 

erences to color in this figure legend, the reader is referred to the web version of 

this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. (a): Freehand selection of important and negligible object areas by brush. (b) 

A closeup shows the weights corresponding to a hue and saturation on pixel-basis. 

(c): The selection can be also done via a grid surface. 
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6.3. Distance metric and user weighting of target areas 

Independent from the applied descriptor, the feature vector

of each image in the search space is used to compare to the

feature vector obtained from the query image using the weighted

Euclidean L2 single distance metric 

d L 2 ( � v 1 , � v 2 ) = 

√ ∑ 

i 

(v 1 i − v 2 i ) 2 w i , (1)

with 

�
 v 1 and 

�
 v 2 as the feature vectors of target and query image

and globally uniform weights w i = 1 . Note that in our approach

the used type of features and distance metric are exchangeable.

Integration of other features using feature combination or selection

methods would be straightforward. The output of the described

retrieval system is a list of images from the search space, ranked

by similarity to the query according to above metrics. In its

standard configuration, these metrics assign a globally uniform

importance to all regions of the query image. This might lead

to suboptimal rankings that are due to an improper assessment

of importance in different regions of the image. From our ar-

chaeologist research partners we learned that they would like to

emphasize and compare certain parts of their query objects. For

example, the head or handle of a vessel may or may not be of

importance, depending on the domain comparison task at hand.

To allow the user to adjust the result set, the proposed pipeline

shown in Fig. 2 includes two further steps: 

Quality Assessment . With a dedicated interface we provide a

means to the user to establish which regions of an individual

target object are similar or dissimilar to the current query, and

thus understand why a certain object is at its specific position

in the system’s ranking. Our visualization is dependent on the

applied feature descriptor. 

The HOG descriptor provides a vector of local image descriptors

of the gridded image [8] . Hence, we can compute the Euclidean

distance between all pairs of cells of two images, and visualize it

with a semitransparent heat map, superposed to the input image.

We implemented a red-green color mapping of the absolute

differences ( Fig. 6 a, right) and a seismic color mapping of the

signed differences ( Fig. 6 a, left). The heat map view allows to
ffectively grasp local similarities and dissimilarities between a

air of images. 

Selective Weighting . The quality visualization described above

upports the user in the next step, which allows for concentrat-

ng the focus on specific regions based on his or her domain

nowledge, or disregarding other regions where shape similarity

ight be less relevant. To this end, our software allows the user

o interactively specify areas of higher or lower importance with

 brush tool, as shown in Fig. 7 . In the retrieval this emphasis

n certain regions is governed by the weighting factor w i of the

istance metric in Eq. (1) . This requires a mapping of the selection

n the two-dimensional image and the feature vector. 

The feature vector is the flattened version of the cell-wise de-

criptor values allowing a direct mapping between position in the

eature vector and cell index. Since the selection is freehand with

 brush the weights are present not on a cell-, but a pixel-basis.

he weight of a cell w cell is given by the relative fraction of pixel

ypes present in a cell with 

 cell = 

1 

|C| 
∑ 

i ∈C 
w i , (2)

here C are all the pixel of a cell and w i the weight of the

ixel at position with an empirically chosen weights w = 5 . 0 for

important’ pixels (green), w = 0 . 0 for ‘unimportant’ pixels (red)

nd w = 1 . 0 for all other pixels (default). Values in between are

lso possible at the edges of a brush stroke due to the linear

ecline of the brush kernel, visible in Fig. 7 b. 

With the shapelets feature descriptor the situation is easier. A

escriptor value in the feature vector at position i corresponds to

 specific point p in the input image. This correspondence is used

o directly assign the weights to the feature descriptor. 

. Implementation and application to archaeological data 

We implemented our proposed sketch-aided approach, and

ext demonstrate the applicability and effectiveness. We first

ive details on our implementation ( Section 7.1 ), an overview of

he used data experimented on ( Section 7.2 ), and then present

n encompassing use-case based evaluation, demonstrating its

enefits for supporting archaeological research ( Section 7.3 ). In

ection 7.4 we present quantitative results of an unsupervised

xperiment with synthetically generated fractures. 

.1. Implementation 

All steps of our pipeline can be seamlessly conducted with our

urposely built software. For the sketch completion a 3D editor is

ncluded, which is capable of loading objects given as PLY-files and
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Fig. 8. A small sample of our target search space with more than 30 0 0 images. 
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upports sketching directly on top of the 3D structure. The ren-

ered result can be exported for the subsequent texture inpainting

tep. Note however, that the individual stages of our retrieval

ipeline in Fig. 2 are independent from one another. Thus, arbitrary

D and graphics editors can be used to generate the input for the

exture inpainting step. Our implementation relies heavily on the

penCV 

4 Open Source Computer Vision library, both for tasks of

mage preprocessing ( Section 4 ) and feature extraction ( Section 6 ).

.2. Data sets 

Within our close cooperation with archaeologists working in

he field of ancient pottery and its digitalisation, we have access to

everal sets of scanned objects from different museums, provided

y courtesy e.g. of the Landesmuseum Kärnten (LMK), the Uni-

ersalmuseum Joanneum (UMJ) or the Kunsthistorisches Museum

KHM). They are high-resolution textured 3D scans representing

ottery from the Geometric period (c. 9th - 8th century BC) to the

lassical period (c. 5th - 4th century BC). For our qualitative evalu-

tion we focus on a set of Attic black-figured lekythoi from the first

alf of the 5th century BC., a very common vessel type in Greece

or that period. Seven lekythoi from the LMK with Inv.-Nr. 1245,

248, 1251, 1252, 1253, 9049 and 9050 (respective 3D models with

le names like C8_450_Klagenfurt_{ Inv.-Nr. }.ply), were selected and

arts of their geometry were removed, to mimic the effects of a

oor conservation status, e.g., with broken handle, mouth, etc. In

his way different degrees of fragmentation have been created. The

ubsequent reconstruction by sketch (see Section 5.1 ) was done by

omain experts in Inkscape 5 according to their knowledge of Greek

ottery. To expand the search to objects of different vessel shapes

nd painting styles we have enlarged the query objects (and also

he search base, see above) by including the Attic Geometric

ottery from the KHM. Corresponding 2D images were extracted

rom the prominent Corpus Vasorum Antiquorum (CVA) domain

ublication. Our search space consists in [1] (for the LMK lekythoi)

f 114 images from CVA Berlin 13 [25] and 230 images from CVA

erlin 17 [26] , all illustrating lekythoi, in different sub-shapes and

tyles (black-figure as well as red-figure). In the course of the sub-

equent enlargement of our search base (due to the integration of

he Geometric pottery, our search space currently consists of 3340

mages extracted from further 12 fascicles (see supplementary ma-

erial), illustrating a wide range of different vessel types in color as

ell as grayscale. A small sample of the objects we automatically

xtracted from CVA is given in Fig. 8 . All of them have been

ubjected to automatic extraction steps referred to in Section 4 . 

.3. Qualitative evaluation 

We evaluate the benefit of sketch-aiding and feature weighting

or the search result in a retrieval system, with a specific focus

n domain tasks in archaeological object comparison. To this end,

e use one particular vessel ( C8_450_Klagenfurt_9049.ply ), in the

ollowing referred to by KF9049, exhibiting both, a reasonable

mount of missing geometry as well as a realistically placed

racture line, as shown in Fig. 9 a. We compare the performance of

he SCD, focusing on an exact match of the object silhouettes, as

ell as the HOG descriptor, comparing local gradient information

f the vessel images. 

Reference Ranking . To obtain a reference result set for our

valuation, our Archaeologists determined, from the set of all

VA objects, 30 ranked target objects (based on the incomplete

D object) most similar by domain consideration. This ranking
4 https://opencv.org/ . 
5 https://inkscape.org/ . 

t  

b  

i  

a

as been established using a holistic approach by considering the

essel shape and the style of painting in toto. They differentiated

he images based on the main Greek painting styles (i.e., black

gured, red figured), and then performed an exclusion of specific

hapes, i.e., bulgy shaped vessels. Based on a common approach in

rchaeology, looking for analogies, the other objects were ranked

escending on their similarity to the 3D query object. 

Retrieval without Sketch-Aid . Fig. 9 a displays the top 30 images

f the ranked result set retrieved using the incomplete input

bject. The upper row shows the retrieval results using the SCD

hile the lower row shows the HOG-based results. 

It can be seen that both descriptors are able to retrieve images

isually similar to the query image, ranking similarly thin shaped

essels first. The rotation-invariance of the SCD also yields some

utlier results of flat vessels exhibiting a similar silhouette after

n appropriate rotation. A quantitative evaluation towards the

eference ranking shows that none of these best ranked images is

resent in the reference set, i.e., they do not reflect the experts’

nderstanding of similarity. This is an expected result, as the

escriptors cannot compensate for missing geometry. 

Sketch-Aided Retrieval . Fig. 9 b illustrates the ranked results

ased on sketch-completed query objects. A visual inspection of

he top 30 results shows a much stronger resemblance to the

riginal complete object, shown in the upper left part of the

mage for both descriptors. An improvement of results can be

learly observed with 15 of the top 30 matches corresponding to

he reference set for the HOG descriptor and 11 of 30 for the SCD. 

Besides a mere matching count, we also investigated the simi-

arity of the rankings in detail. To this end, we measure for each

atching image the deviation of its ranking from its ranking in

he reference set. The accuracy in this match is indicated by the

lling level of the blue bar in the background of the vessel images

n Fig. 9 , with a completely filled bar indicating the exact same

osition. If we compare HOG towards SCD results from an archae-

logical point of view, we observe that HOG performs better, but

his is due to the fact that our result reference set is restricted to

lack figure lekythoi. SCD ranked red-figure lekythoi with a sim-

lar proportion of the vessel’s shape more than twice as many

s HOG. 

https://opencv.org/
https://inkscape.org/
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Fig. 9. Ranked result sets from retrievals using an incomplete query object (a) after sketch completion (b), additional texture inpainting (c) and additional selective weighting 

(d). The top row shows the reference ranking of object according to archaeological knowledge. If a result object is present in this reference set (match), the fill level of the 

blue background indicates the accuracy of its ranked position compared to the reference ranking. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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Texture Inpainting . After applying an additional texture inpaint-

ing step based on patch-filling (see Section 5.2 ), the HOG-based

result can be significantly improved compared to row (b), with

22 out of 30 matches (see Fig. 9 c). Note that this inpainting step

does not affect the retrieval using the SCD, as this descriptor

incorporates solely the silhouette information. 

Selective Weighting . By incorporating expert knowledge, the

quality of the results can be further refined by adjusting the

weighting for different regions, as described in Section 6.3 . In the

case of our example object, our Archaeologists specified a focus

on regions containing original texture and shape, and disregarded

the importance of the presence of a handle. This is due to their

domain experience that similarity relations of lekythoi have to be

detected in vessel profiles, whereas attachments such as handles

are less significant [27] . Fig. 9 d shows the corresponding weighting

(left) and the ranking results after incorporating these weights.

We observe a further improvement of the number of matches. 

Reflection Invariance . For scientific archaeological publications

like the CVA, pottery objects are normally photographed in a right

angle to the middle of the vessel’s axis, showing the vessel’s shape

like a profile drawing. In case of vessels with handles, at least one

photo records the object positioned so that the handle is either
n the right or the left side. While in the two CVA Berlin fascicles

25,26] the lekythoi are photographed with the handle on the right

ide in a standardized way, this is not the rule in the whole CVA

nd other publications. Therefore our search has to be resistant

gainst these reflections. For evaluating the reflection invariance of

ur search we choose the Attic Geometric pitcher Vienna KHM IV

, depicted in Fig. 1 , middle. Same as with the lekythoi we intro-

uce a reasonable amount of fracturing by artificially removing the

andle (see Fig. 10 , top row, left), resembling a realistic state of

ncompleteness. For the evaluation we take information from pub-

ished literature in the archaeological domain. The object belongs

o a specific group of pitchers with globular body with vertical

adroons and a broad concave neck, all dated to Late Geometric

b (c. 750-740 BCE). Due to their similar vessel shape and painting

ecoration three further pitchers are attributed to this workshop,

r more specifically to the same painter/potter [28] : Karlsruhe B

680, Oxford 1894.13 and British Museum GR 1878,0812.8. 

Even with the retrieval conducted with the incomplete object

ur system is able to detect one of the similar pitchers: Oxford

894.13 (b) highlighted with a dark blue background in the top

ow of Fig. 10 . The matches on rank 2 and 4 (highlighted in light

lue) are other pitchers with similar proportion of the vessel’s
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Fig. 10. Retrieval results for an incomplete geometric pitcher with the untreated in- 

complete object (top row), the sketch-completed and inpainted object (middle row) 

and reflection invariance (bottom row). 
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Fig. 11. Left: The fracturing is based on a cutting function f ( x ′ ), originating at a 

random point P within the object pixels �. Points placed with distribution N 1 and 

N 2 serve as seed for a Voronoi tessellation (right). 
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hape as Louvre CA 1940 (e) and Tübingen 6214 (g). When apply-

ng our sketch-aided retrieval, but without the reflection invariant

istance function described in Section 6.1 , Karlsruhe B 2680 (a),

he best preserved, is ranked on 1 (see Fig. 10 , middle row).

dditional pitchers are on ranks 2, 3, 6, 9 and 10 with Tübingen

214 (g), Berlin 31,044 (h), Würzburg H 5171 (d), Louvre CA 1940

e) and Tübingen S./10 1088 (f). According to the main publication

f Vienna KHM IV 1 [28] the Würzburg pitcher is very close to the

ienna pitcher in relation to the vessel’s shape and its proportions.

xford, which was ranked previously on 1 is not within the top 10

ny longer since there are only depictions of the front/back side

r with the handle on the right side. With a reflection invariant

earch (bottom row of Fig. 10 ) all of the three pitchers attributed

o the same workshop, Karlsruhe B 2680 (a), Oxford 1894.13 (b)

nd British Museum GR 1878,0812.8 (c) are ranked within the top

0 together with 4 other pitchers already mentioned above. These

re all pitchers from the Late Geometric Ib/IIa period (3rd quarter

f the 8th century BC), relevant for the vessel’s shape comparison

ut from different workshops as our Vienna KHM IV 1. 

.4. Synthetic fracture experiment/ quantitative evaluation 

Due to several steps of our proposed pipeline requiring user

nteraction, a manual evaluation with a large number of queries

s not feasible. Therefore, we evaluate the sketch completion

 Section 5 ) and the content-based retrieval ( Section 6 ) compo-

ents of our system by generating numerous synthetic queries

xhibiting different degrees of fragmentation and simulating the

ser input for sketch completion at different levels of sketch

ccuracy. Two different scenarios are evaluated: the retrieval of

F9049 (see Section 7.3 ) and the retrieval of arbitrary vessels

icked at random from our search space. 

Synthetic Fracturing . We aim to introduce a level of fragmenta-

ion to our depicted objects, resembling the effects of fracture and

ecay experienced by real word incomplete objects. The basis for

ur experiments at this point are not 3D scans but 2-dimensional

epictions extracted from domain publications (see Section 4 ).

onsequently, physics-driven fracturing methods, which typically

equire 3D models, are not applicable. A common method to

enerate plausible fracture patterns for fragile objects is to use

 Voronoi tessellation of the object surface [16] . We resort to a

imilar approach, by cutting through a 2-dimensional Voronoi

essellation superimposed on the image. The Voronoi seed points

re placed normally distributed around a cutting curve function f ,

plitting the tessellation into two disjoint subsets. To generate a

ut exhibiting a high amount of randomness and jitter, f is defined
s a series of 8 superimposed sinusoidal functions 

f (x ′ ) = 

8 ∑ 

i =1 

m i sin (a i x 
′ ) , (3)

ith different random amplitudes m i and frequencies a i . x 
′ and y ′ 

re the canonical basis of a coordinate system rotated by an arbi-

rary angle γ ∈ [ −π, π ] with respect to the images coordinate sys-

em. The system’s origin P is placed at random within the subset

of image pixels belonging to the displayed object (see Fig. 11 ). 

A total of 100 Voronoi points p(x ′ s , y ′ s ) are seeded around f ( x ′ )
ith coordinates x ′ s ∼ N x (0 , 0 . 15 h ) , y ′ s ∼ N y ( f (x ′ ) , 0 . 1 h ) , ( h de-

oting the image height), resulting in a high cell density in prox-

mity of the cut. An example of an arbitrary fracture is displayed

n Fig. 11 , right. Within the local coordinate system, f ( x ′ ) divides

he resulting Voronoi cells into three sets: fracture cells M f with all

ixels above the curve (white), object cells M o with all pixels be-

ow (blue), and cells intersecting the curve ( M i , orange). The final

mage fracturing is performed by setting all fractured object pixels

= � ∩ M f in the image to white color. Note that the amount of

emoved vessel surface (fracture rate) is limited to an interval of

% to 95% by discarding cuts, resulting in less or more fracturing. 

Sketch-line Distortion . In the interactive retrieval workflow,

ketch lines indicating the outline of the missing parts of the

ragmented objects are provided by the user. For our unsupervised

valuation system, we aim at generating queries with sketch-lines

esembling user sketches with different levels of accuracy and dis-

ortion. To this end, we generate the synthetic sketch-lines based

n the object part � removed in the previous fracturing step. As

ts boundary δ� represents a ‘perfect’ sketch of the missing sil-

ouette, a series of transformations is applied which aim to mimic

he traits of a human-created sketch. We identified three charac-

eristics of a user created sketch which we approximate artificially:

1. Sketch-lines are generally smooth continuous strokes without

much scribble. In contrast to that, the contours of our extracted

object depictions exhibit high-frequency components, either 

due to artifacts of our segmentation process or due to the abra-

sive surfaces of the artifact itself. As a countermeasure a curve

smoothing based on the concept of Mokhtarian and Abbassi

[29] is applied, as indicated on the left side top of Fig. 12 . 

2. Strong curvatures are oftentimes drawn by two lines meeting

at the turning point (see Fig. 12 , left bottom). We approximate

said behavior by first detecting high curvature points along

the contour using the algorithm by Rosenfeld and Johnston

[30] . After discarding points with curvature above a threshold

angle of π /3 and a subsequent non-maxima suppression, the

remaining points are used to split δ� into segments which

are then smoothed independently. As a result we get a con-
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Fig. 12. Left: Sketch lines are subjected to a smoothing (top) while strong curva- 

tures are preserved (bottom). Middle/Right: Linear distortion of sketch-lines is gov- 

erned by a control rectangle Q l , Q r , R l and R r . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s  

t  

i  

i  

t  

b

 

m  

w  

a  

s  

e  

q  

m  

i

 

c  

p  

t  

w  

b  

r  

t

8

8

 

s  

s  

f  

p  

t  

a  

a  

s  

i  

f  

o  

f  

o  

i  

b  

i  

t  

t  

w  

m  

O  

w  

s  

i  

o

 

l  

T  

t  

o  

a  

e  

p  

i  

a  

g  

(  
tour exhibiting both, smooth curvatures but also sharp bends,

resembling points where two sketch lines meet. 

3. We experienced that even for experts it can be hard to accu-

rately sketch the exact proportions of the once complete object.

Let � = �\ � be the set of pixels containing the remainder of

the fractured object, and Q l , Q r its intersection points with the

missing silhouette δ� (see Fig. 12 ). We observed that sketch

distortions aggravate with increasing distance of sketch contour

to �, and are almost zero near the bases Q l , Q r . We simulate

this issue by applying a random linear distortion that similarly

increases with the distance to the original object part. To this

end, we define a control rectangle given by the base points

Q l , Q r , and two reference points R l , R r at distance h R ( Fig. 12 ,

middle). Applying random displacement vectors � d l , 
�
 d r to these

reference points, allows us to map the linear distortion of this

control rectangle to each point p ∈ δ� via bilinear interpolation

of the displacement vectors (see Fig. 12 , right). Note that the

displacement vectors at Q l , Q r are � 0 . 

As a measure of the overall distortion caused by these trans-

formations the mean Euclidean distance d dist between the original

contour δ� and the distorted contour δ ˜ � is calculated. 

Experiment Setup . We evaluate the performance of our retrieval

based on (1) the fractured image, (2) the fractured image with

distorted sketch lines δ ˜ � and (3) the thereof reconstructed image

with texture inpainting. 

To determine the quality of a specific retrieval with result

vector � v ret with respect to a reference result vector � v re f we use

the normalized mean Euclidean distance of the first n elements

given by 

D ( � v ret , � v re f ) = 

1 

n 

2 

n ∑ 

i =0 

D (v ret i , � v re f ) , (4)

with 

D (v ret i , � v re f ) = 

{| i − j| , if ∃ j ∈ [0 , n ] : � v ret i = 

�
 v re f j 

n , else. 
(5)

KF9049 with different fractures . In the case of KF9049 we can

rely on the reference ranking introduced in the previous section

with a length n = 30 . 200 different fractures and sketch-line

distortions have been generated. Their normalized mean dis-

tance according to Eq. (4) for the fractured, sketch-completed

and inpainted queries are given in Fig. 13 . Each marker encodes

the orientation of the applied cut function f and the degree of

fragmentation. The queries with the incomplete object perform

clearly worst with the majority of the data points being close to

maximal distance. Those exhibiting a lower distance also have a

low fracture rate, indicating that the retrieval with the incomplete

object worsens with increasing fracture rate. The figure clearly
hows that adding the sketch outlines improves the results dras-

ically while the texture inpainting leads to an additional minor

mprovement. As expected, the results generally degenerate with

ncreasing sketch-line distortion as well as with increasing frac-

ure rate. Moreover, there seems to be no correlation noticeable

etween cut plane orientations and retrieval accuracies. 

Arbitrary vessels . For the evaluation with arbitrary queries we

anually selected 55 images from our search space depicting a

hole vessel. For each of them about four fractures have been

utomatically generated on average, resulting in a total of 200

ample queries. For these cases there is no reference ranking by

xperts available. Instead the ranking that would result from the

uery with the non-fractured object is taken as reference. The

ean distance of the n = 100 first elements over the fracture rate

s given in Fig. 14 . 

For the incomplete queries the same behavior as with KF9049

an be observed. The sketch-completed and inpainted versions

erform clearly superior but in contrast to KF9049 the distribu-

ion seems to be wider spread. It is interesting to observe that

hen considering a diverse set of objects from the search space,

oth sketch-completed and inpainting-completed queries exhibit

oughly similar trends as shown for KF9049 in Fig. 13 . We take

his as an indication of the robustness of our method. 

. Discussion and future work 

.1. Applicability 

From our use case, we conclude that the incorporation of user

ketch-aids and weighting can help to improve and refine domain-

pecific search tasks on incomplete shapes. With the sketch inter-

ace, the domain expert can quickly fill in missing parts, and com-

are the query visually with target objects. Sketching is an effec-

ive tool to test hypotheses, i.e., if certain object shapes or variants

re present in a collection. Our experiments showed that sketch-

ided retrieval is generally more effective. On the one hand, the

ketch allows us to determine the overall extent of the object more

ntuitively than just providing a bounding box. This is necessary

or proper rescaling, especially so if parts at the top or the bottom

f the object are missing. In such cases it is the main driving

actor for improvement, as shown in the example in Fig. 9 . On the

ther hand, the sketch is a necessary prerequisite for the texture

npainting where it serves as a boundary. The gradients introduced

y this step enable the use of the shape in these previously miss-

ng regions, improving the search results even further. Extending

he currently used HOG features with texture features could fur-

her improve the impact of the sketch-aid on recall. In our tests, it

as established that the selective weighting provides a reasonable

eans for domain experts to incorporate their domain knowledge.

ur tests also demonstrate that SCD can be quite useful in case we

ant to show similar vessel’s shape independently of the painting

tyle, e.g. for a diachronic analysis of a vessel’s shape development

n different regions of Greece. More concrete applications of SCD

n archaeological pottery are the subject of future work. 

A problem may arise if the amount of missing geometry is too

arge for the expert to recognize a plausible completion variant.

he concept of sketch-aided search has shown in our experiments

o be of good use in cases where the absence of a part changed the

verall shape, e.g., absence of a handle or a spout. In such cases,

 distinct improvement of retrieval results could be observed. As

xpected, the reconstruction of only small or irrelevant missing

arts showed no obvious advantage over standard retrieval for

ncomplete objects. We also note that we evaluated our sketch-

ided retrieval approach on learned features using a pre-trained

eneral purpose neural network. However, using the query object

a) and (c) shown in Fig. 9 , these features produced only between
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Fig. 13. Left: Normalized mean distance over normalized sketch-line distortion for 200 fractures plus distortions of KF9049 with incomplete, sketch-completed and inpainted 

queries. The markers indicate the orientation of the cutting function f and the degree of fragmentation. Middle: Close-up on the trend of sketch-completed and inpainted 

queries. Right: Fragmented and inpainted version of specific queries. The results show that the inpainting-based search (orange marks and regression) performs best, produc- 

ing rankings most similar to the expert-generated reference ranking. The sketch-only queries (blue marks and regression) perform slightly worse. Using only the incomplete 

queries (green) gives highest distances as expected. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 14. Normalized mean distance over normalized sketch-line distortion for 55 

arbitrary vessels and different fractures with incomplete, sketch-completed and in- 

painted queries (Legend as defined in Fig. 13 .) 
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Fig. 15. Left: the automatic search space generation is limited by publications not 

following our expected conventions. Right: for retrieval depictions of objects with 

missing geometry pose a problem. 

i  

s

 

f  

t  

t  

o  

w  

m  

a  

v  

c  

f  

p  

e  

d

9

 

r  

i  

i  

w  

s  

w  

t  

o  

t  
 and 2 out of 30 matches. We presume that general purpose pre-

rained networks may not produce sufficiently specialized features

or the domain specific class of objects used in our evaluations.

uture work will thus investigate features from specifically trained

etworks. 

.2. Limitations 

The presented processing pipeline is tailored based on certain

ssumptions, which also induce some limitations. In literature

bjects are usually depicted in front of a bright background. If

hose assumptions are not met (see Fig. 15 , left) the automatic

bject segmentation ( Section 4.2 ) can fail. While our pipeline is

ble to cope with an incomplete query object, the same does not

old for objects in our search space with missing parts like the

ekythos with a missing sprout depicted in Fig. 15 , right. Such an

bject will not be found when querying with a complete input

ince the overall shape differs significantly. 

.3. Future work 

Our approach currently supports low-level editing of the query

hapes. Improved editing could make use of semantic sketching

echniques [31] . However, semantic sketching requires appro-

riate generative modeling procedures to cover the application

omain, which may be expensive to obtain for many different

hape types. Another idea is to guide the user while sketching
n an online fashion, based on available target data, following a

hadow-drawing approach [32] . 

We also plan to enhance the result visualization with metadata

rom the target repositories, like inclusion of domain texts, spatio-

emporal information, and other metadata which adds context to

he search. With this in mind we want to upgrade the data model

f our search space from image basis to an object basis, which

ould, on the one hand, prevent the occurrence of the same object

ultiple times in a result set (see Fig. 10 ), and on the other hand,

llow for combined queries with multiple depictions from different

iews. In addition, clustering of results for similar object groups is

onsidered useful. As stated, our approach can accommodate dif-

erent feature types. It will be interesting to analyze in detail the

otential of learned features, and compare their performance with

ngineered features, given the specificity of the considered search

omain (CH objects) and limited available training data. 

. Conclusion 

We have introduced a new query modality, sketch-aided 3D

etrieval. Moreover we presented an appropriate workflow and

mplementation, which we applied to a representative application

n the archaeological research domain, informed by cooperation

ith domain researchers. The paper extends on a previously pre-

ented retrieval system, by introducing new technical findings as

ell as a revised and extended evaluation. Our results show that

he aiding of user sketches to complete and modify the 3D query

bject and subsequent texture inpainting can significantly improve

he search. Specifically, the query modality provides the flexibility
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to search based on incomplete shapes, and to explore hypotheses

of possible shapes in a target repository. While the sketch com-

pletion itself is intuitive to be applied by any user without special

skills, domain knowledge of expected object shapes will lead to a

better sketch and in turn to a better retrieval result. Finally, result

visualization and weight adaption support the analytical retrieval

process. Future work will include other engineered and/or learned

features, and extension of the sketch interface. 
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