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Abstract: Rapid progress in digitisation and computer
techniques have enabled noteworthy new pottery analy-
sis applications in recent decades. We focus on analyti-
cal techniques directed specifically at archaeological pot-
tery research in this survey and review the specific ben-
efits these have brought in the field. We consider tech-
niques based on heterogeneous sources such as drawings,
photographs, 3D scans and CT volume data. The various
approaches and methods are structured according to the
main steps in pottery processing in archaeology: docu-
mentation, classification and retrieval. Within these cat-
egories we review the most relevant papers and identify
their advantages and limitations. We evaluate both freely
and commercially available analysis tools and databases.
Finally, we discuss open problems and future challenges
in the field of pottery analysis.

Keywords:archaeological pottery research, computinghu-
manities, data management and retrieval, image manipu-
lation, science history

ACM CCS: Applied computing → Arts and humani-
ties→ Fine arts, Computing methodologies, General and
reference→ Document types→ Surveys and overviews

1 Introduction

Pottery analysis in archaeology addresses many topics
ranging from the resources of the potter’s clay, the forming
of pottery, the vessel shapes and painting styles – includ-
ing their development over time – to its use, trade, discard
and reuse [1]. Pottery is a source of insights into people and
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cultures of our past, providing information about their re-
ligion, economy, society, and daily life. Studying pottery
is a painstaking occupation. On the one hand pottery is
preserved in huge masses on almost all find spots around
the world, and to make matters worse, mostly broken in
small andworn-off fragments (sherds). On the other hand,
each sherd holds a set of intrinsic properties which first
have to be unveiled by a meticulous investigation. Dur-
ing this process, the sherds are catalogued and classified
based on an adequate documentation and a methodolog-
ical concept to identify meaningful structures and finally
to establish a historical context [2]. Computational appli-
cation have been available to support this pottery process-
ing for quite some time, especially for building databases
and statistical analysis.

In this survey we are focusing on computational ap-
plications which specifically benefit pottery analysis in
its three main categories, displaying the archaeological
pottery processing: documentation, classification and re-
trieval (Fig. 1). We are aware that by limiting our survey to
pottery analysis, we are excluding essential research on
cultural heritage objects made from other materials such
as stone (e. g. marble), glass or even ceramics, if they are
not pottery in the proper sense (e. g. cuneiform tablets).
But in contrast to almost all other archaeological finds,
pottery has one common geometrical property: the vessel
shape corresponds approximately to a rotational body due
to the manufacturing method on a potter’s wheel. A prop-
erty which is still inherent in small broken parts (sherds)
andwas recognised relatively early in computer science as
essential for many computational applications. The com-
mon property of rotational symmetry, as it is also assumed
in archaeological research for prehistoric pottery which
was thrown either on simple rotating devices or by some
other rotating movement during the forming process, is of
course, an idealised concept of these hand-crafted objects.
Handles or other attachments can be added to the vessel
but the basic body of assumed rotational symmetry is nev-
ertheless still preserved.

The intention of this survey is to structure previous
studies (papers) and to review the most relevant publica-
tions in these threemain categories of digital pottery anal-
ysis. The last survey comprising the entire area of com-
puter applications in archaeological pottery was written
byMartínez-Carrillo 2011 [3]. A reviewof computer applica-
tions related to classification and reconstruction are given
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Figure 1: Overview of the typical workflows and major tasks of digital pottery processing covered in this survey. First processing steps based
on input 3D data typically cover the extraction of geometric measures and descriptors such as the main axis of rotation, curvature profile
and features. An unwrapping of the surface can be additionally the basis for the segmentation of patterns in image space. Both the vessel
shapes and their surface patterns represent the main features used for classification and retrieval of the vessels.

by Rasheed and Nordin 2015 [4], who are primarily focus-
ing on the aspect of fragmentmatching. The seminal paper
Pintus et al. 2016 [5] presents a general review of geometric
analysis in the entire sector of cultural heritage. Although
recent surveys exist for the field of pottery analysis, un-
dertaken by Eslami et al. 2020 [6] and Di Angelo et al. 2021
[7], these all treated the topic with a focus on sherd recon-
struction (fragmentmatching). Here we focus primarily on
the use and utilisation within the practise of archaeology
pottery analysis using a taxonomy from the archaeological
workflow of pottery processing [8].

This paper is organised as follows: Section 2 outlines
the scope of the survey, how we delimited the area, col-
lected the papers and how we structured the data. Sec-
tion 3 recalls the early works in this field where the foun-
dation of digital pottery analysis has been laid out. Sec-
tion 4 gives a review about those papers which are most
relevant in the specific categories of digital pottery anal-
ysis, thereby identifying advantages and limitations. Sec-
tion 5 discusses available tools and databases for pottery
analysis. Section 6 provides some open problems and fu-
ture challenges which is followed by concluding remarks
based on the archaeological practicing perspective of pot-
tery research.

2 Scope
We are looking particularly at automated or at least semi-
automated methods, which are based either on images or

on 3D data. By focusing on this computerised analysis, we
do not consider equally important works in this field, such
as the research in improved data acquisition, rendering,
filtering or enhancement techniques or the usage of statis-
tical analysis based solely on manually measured intrin-
sic properties or on other metadata. Additionally, we ex-
clude all applications for fragment matching, which be-
long rather to the field of conservation and restoration or
cultural heritage preservation, and on smaller very spe-
cific categories, like manufacturing techniques or pottery
fabrics.

The survey ranges from 1997 to the end of 2021. This
period is systematically investigated. Earlier work before
1997 is discussed in a separate section (Sec. 3). We have
taken the year 1997 as our upper limit for the following
reason: To the best of our knowledge the automatic esti-
mation of the rotation axis was proposed for the first time
in 1997 [20, 21], whichwas a fundamental step that formed
the basis for many algorithms in the years to follow.

For the collection and selection of relevant publica-
tions,wehave systematically checked conferenceproceed-
ings from the field from 1997 onwards, e. g. the Conference
on Computer Applications and Quantitative Methods in
Archaeology (CAA), the International Symposium on Vir-
tual Reality, Archaeology and Cultural Heritage (VAST),
and the Eurographics Workshop on Graphics and Cultural
Heritage (EG-GCH). The same process has been followed
for journals and this led to the inspection of journals in-
cluding the following Journal of Computer Applications
in Archaeology (JCAA), Journal of Archaeological Science
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(JASc), Journal of Archaeological Science Reports (JASc
Rep.), Journal of Cultural Heritage (JCH), and the Journal
on Computing and Cultural Heritage (JOCCH). Additional
references were found by recursively following citations
in selected papers. Although we tried our best to collect
systematically any published paper to our scope, we are
aware that a completeness could hardly be achieved.

Our survey on computational applications in pottery
research is structured according to the main steps of pot-
tery processing which are established in archaeology for
years: recording (single object), ordering (many to many)
and searching for similarities (one to many). This taxon-
omy is derived from common archaeological practice [2].
In the course of a first overview of the selected papers sin-
gle tasks could be identified. These tasks could be clearly
attributed to one of these three steps in pottery analysis
which we translate to terms which are more common in
computer sciences:
– Documentation / by recording
– Classification / by ordering
– Retrieval / by searching for similarities

Figure 1 presents an overview of our structure according to
a typical workflow in pottery analysis showing the major
tasks in relation to their categories.

3 Early works

Computing in archaeology started on a regular basis in
the 1970s, the first CAA was held in 1973. At the Univer-
sity of Keele (UK), Wilcock’s PLUTARCH (Program Library
Useful to Archaeologists) system is a milestone in the field
of computing archaeologywhich considers already remote
devices. Wilcock underlined that by practicing computed
archaeology “visual presentation is extremely important,
and all facilities are designed with the end-product in
mind: a hard-copy diagram in publishable form” [9]. To-
day, we are going for digital figures too and we have other
storing devices at our disposal than punched cards, mag-
netic tapes etc., but we should stick to the whole philoso-
phy. Wilcock also addressed the interlinkage of the “facil-
ities for information retrieval, statistics and graphics” [9].

In amanner comparable to that of archaeological field
work without any technical equipment, the early works
of computed archaeology emphasised the documentation
of pottery and at first especially the profile line. In the
PLUTARCH project Wilcock and Shennan transformed the
profile line of a vessel in machine readable codes, by us-

ing two methods, slicing or the more complete mosaic
method, to proceed with statistical operations [10].

Pioneering in this field was the SAMOS (Statistical
Analysis ofMathematical Object Structure) project and the
work done by the Germans Clemens and Cornelius Steck-
ner in the late 1980s [11, 12]. A digitised drawing is com-
puted into a virtual whole shape, from which all measure-
ments are taken automatically, also including the calcu-
lated empty weight and capacity of pottery objects. Com-
parable to Wilcock and Shennan they aimed at an auto-
matic classification.

The main goal of the GOAD (Graphically Oriented Ar-
chaeological Database) project, a collaboration between
university and business, was a graphical database which
was more than a simple storage capacity and should pro-
vide answers to archaeological questions [13]. Hence, it
addressed explicitly two issues, the automatic extraction
of explicit shape information from raster images of line
drawings and techniques for representing shape for ef-
fective shape retrieval and classification. The second of
these built on the first. The strong emphasis on the shape
made the use of a graphical user interface necessary pro-
viding a zoom option and measuring tools. The minimal
computing power in the early days was a drastic limita-
tion on performance. Nevertheless, the use of the pattern
matching algorithm known as generalised Hough trans-
form (GHT) to compare the improved drawings was a big
step forward, even when only incomplete shape informa-
tion is available. The calculation and the ranking of the
similarity value is a basic requirement for computational
classification.

At the University of Southampton, Durham and Lewis
from the computer sciences, and Shennan from archae-
ology, proposed another system in the mid-1990s: SMART
(System for Matching ARTefacts) [14].

Like GOAD it uses the GHT, which was tested for clas-
sification in comparison to normalised central (NC) mo-
ments used with k-nearest neighbours. It results that the
latter is slightly less successful concerning the classifica-
tion results as well as the computing time. They also ap-
plied a neural net for the same task at a very early stage,
although with even less success.

The development of stereo and structured light as ac-
quisition methods of 3D surfaces of archaeological finds,
presented by Sablatnig and Menard 1992 [15], has paved a
way to numerous applications. At first, based on the rota-
tional symmetric of pottery objects,Halíř andMenard 1996
[16] proposed a method for an estimation of the diameter,
by which the sherd is manually oriented in the measure-
ment area illuminated by a laser plane and the diameter is
acquired knowing the orientation parameters of the sherd,
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Table 1: Overview of the corpus of work examined in this survey. We structure the selected work into categories, tasks and method class.
Coloured dots on the right illustrate the first-author affiliation and the publication of the selected work (in 2-year bins). Colour bars at cate-
gory headers illustrate the total amount of publications in our supplemental list addressing the respective category per time bin.
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Category (Section) Total Publication Density→
Documentation (4.1) Input

Axis Estimation (4.1.1)
Normal vector based [20, 21, 26] Points/Mesh tt t
M-estimator [22] Points/Mesh t
Sphere fitting [27, 31] Points/Mesh t t
Circle/line fitting [23, 25, 24, 29] Points/Mesh t t t t
Principal curvature [28] Points/Mesh t
Wall thickness based [30] Points/Mesh t

Longest Profile Extraction (4.1.2)
Radial sectioning [32, 25] Points/Mesh t t

Feature Segmentation (4.1.3)
Crease points based [33, 35, 36, 34] Profile t tt t
Axial symmetry based [37, 40] Points/Mesh t t
Surface roughness based [39] Points/Mesh t

Capacity Calculation (4.1.4)
Stacked cylinders based [42] Profile t
Curve function [43] Profile t
Displacement from outer surface [44] Points/Mesh t
Surface reconstruction [46] CT volume t
Inner surface approximation [45] Points/Mesh+weight t

Surface Unwrapping (4.1.5)
Geometric proxies [47, 48] Mesh t t
Elastic flattening [49] Mesh t
Elastic flattening [50] Images t

Pattern Segmentation (4.1.6)
Texture contour detection [51] Mesh t
Deviation from base surface [52, 53] Mesh t t
Constant radius features [54] Mesh t
Characteristic curve detection [55] Mesh t
Repetitive pattern detection [56] Mesh t

Classification (4.2) Input Constraint DL

by Vessel Shape (4.2.1)
Representative function [58, 59] Profile At least rim t t
Shape descriptor [60, 61] Profile/Images Complete t t
Deformation energy [62] Profile Complete t
Geometric Morphometrics [64, 65] Profile/Points/Mesh Complete t t
Simplified curve [63] Profile Complete t
Morphological measurements [66] Mesh/Points t
Learned features [67] Profile ✓ t

by Surface Pattern (4.2.2)
Local colour/texture features [68] Images t
Features learned on depth maps [70] Points/Mesh ✓ t

camera and laser.Halíř and Flusser 1997 [17] extended this
approach. They now used the rule that intersections of a
plane perpendicular to the axis with the surface of a sherd
are constantly circular arcs in each position along the axis.
The correctness of a manually oriented sherd is evaluated
by multiple intersecting the object in parallel planes and
projecting all intersections into a plane. In case of cor-

rect orientation these intersections form a bundle of con-
centric circular arcs; if not, the orientation of the sherd is
again manually improved and the intersections updated.
Thiswas repeateduntil a correct orientationwas achieved.
Finally, this iterative approach paved the way to an auto-
matic orientation of pottery fragments.
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Table 1 (continued)
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Category (Section) Total Publication Density→
Retrieval (4.3) Input Preservation DL

Shape-based (4.3.1)
Profile drawing [62, 73, 74] Profile Complete tt t
Profile drawing [75] Profile Sherd t
Photographs [76] Images Complete t
Photographs [77] Images Complete ✓ t
Photographs [78] Images Sherd ✓ t
3D model [37, 79, 80, 81] Points/Mesh Complete t tt t
Benchmark [82] Points/Mesh Complete ✓ t
3D model [34, 83, 84, 85, 86] Points/Mesh Sherd t t t t t

Pattern-based (4.3.2)
Texture [69, 94] Images t t
Texture [97] Images ✓ t
Texture [87, 88, 89, 56] Points/Mesh tt tt
Relief [95] Images ✓ t
Relief [93, 53, 87, 89] Points/Mesh t t t t
Relief [96] Points/Mesh ✓ t
Benchmark [91, 92, 90] Points/Mesh ✓ t t ttVienna, PRIP; tGenova, IMATI – CNR; t L’Aquila, DIIIE; tGraz, CGV; t Xanthi, ATHENA; t Chemnitz, Computer Science; t Xanthi,

Dept. Electrical and Computer Engineering; t Rehovot, Weizmann Institute of Science; t Providence, Division of Engineering; t Pisa,
MAPPA Lab; tHaifa, Technion; t Columbia, CEC; tOrleans, PRISME; tOther; Histogram maxima: ◼◼◼18 ◼43

The automated procedure versus manual drawings
was evaluated by Poblome et al. 1997 [18] in course of
pottery recording campaigns at Sagalassos / Ağlasun in
Turkey. They showed that the automated procedure mea-
sured the sherds more accurately and consistently, allow-
ing a better definition of types and variants. They con-
cluded that the recording procedure is very appropriate for
statistical typological research.

4 Main categories in digital pottery
analysis

4.1 Documentation

Any pottery analysis starts with a throughout documen-
tation of a given object, both descriptive and graphical
[8]. This includes the object as a whole as well as signif-
icant attributes of the object itself like relief or painted
patterns. The choice of the most suitable method is gen-
erally defined in reference to the respective research ques-
tion to be tackled. For comparability of objects relative to
each other, however, a consistent and normalised docu-
mentation is an indispensable prerequisite. Compared to
theusually appliedprocedures in archaeologybymeans of
manual drawings or photography, computer-aided meth-

ods can provide a more objective documentation, in par-
ticular since they are traceable and reproducible.

4.1.1 Estimation of the rotation axis

Archaeological pottery finds are typically documented us-
ing profile drawings that show a cross-section of the sherd
or the complete vessel representing not only the external
but also the internal contour. Such profile based shape
representations as planar curves is an important criterion
for identifying the type and hence the age, function and
origin of the pottery. Manual drawings are subjective and
error-prone. The correct orientation of a sherd, i. e. the es-
timation of the axis, and the measurement of its diame-
ter, depend strongly on personal skills and professional
experience. In most cases the sherds have small dimen-
sions which further reduce the manual measurement ac-
curacy. Prompted by low-cost 3D scanning methods sev-
eral efforts have been undertaken to develop automatic
computer-based methods to estimate the axis of rotation
for broken pottery objects, which is the basis for a cor-
rect sherd orientation and size estimation. Previous solu-
tions for this task can be roughly classified into two cate-
gories, which are exploiting a specific property of radially
symmetric objects. The first category exploits the assump-
tion that normal vectors at any surface point (internal or
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external or both) pass approximately through the axis of
rotation (normal intersection method or Pottmann et al.’s
method [19]). The second category makes use of another
constraint: parallel planes orthogonal to the rotation axis
and intersecting a fragment form circles whose centres lie
on this axis (circle-and-line fitting method) [30].

The first papers on automatic axis estimation date
back to the year 1997. They used the per-vertex normal in-
formation stored inmeshes to estimate the rotation axis of
the object. For the position of the rotation axis Ben Yacoub
andMenhard 1997 [20] proposed an approachbased on the
Hough transform, whereas Halíř 1997 [21] used a numeri-
cal optimisation.Halíř 1999 [22] extended this approach by
using aM-estimatormethodandan iterative refinement on
the circle-and-line fitting method, thus creating a hybrid
approach. Inspired by the manual method of archaeolo-
gists,Mara 2006 [23] introduced an approach that uses cir-
cle templates for the estimation of the axis (circle-and-line
fitting method), without the evaluation of the differential
geometrical properties. Son et al. 2013 [24] extended this
approach by incorporating RANSAC for circle fitting and
final axis estimation. Karasik and Smilansky 2008 [25] pro-
posed a semi-automatic procedure, first establishing a pre-
orientation by three user-selected points and then apply-
ing the iterative circle-and-line fitting method following
Mara’s approach [23]. For the final tuning they introduced
another iterative procedure based on the convergence of
the projected vertical profiles (rim-tangent method).

Willis et al. 2003 [26] chose the normal intersection
method to estimate an axis/profile curve pair for a sherd by
finding the axially symmetric algebraic surface that best
fits the surface and associated normals. Another method
presented by Cao and Mumford 2002 [27] is based on the
principle that maximal spheres with tangents to the sur-
face have centres on the symmetric axis. The centres of
these spheres are determined by the curvature radius of
the surface that is tangent to each of the point/normal
pairs. The axis and the profile curve is estimated by a
weighted iterative least-squares framework.

A method considering multi-scale and principal cur-
vatures constraints was proposed by Han and Hahn 2014
[28]. Another method for finding the axis was taken by
Sipiran 2017 [29] who clustered the centres of a set of cir-
cles inscribed to the given 3D surface points to determine
the dominant axis. Di Angelo and Di Stefano 2018 [30] pro-
posed the so-called thickness versor intersection method,
which is based on the principle that the minimum path of
a point on the external wall to the internal wall of a pot-
tery object is on a straight line passing through the axis.
Noticeable is the evaluation of the trueness of the pro-
posed method on archaeological sherds using the radial

runout of the sherd’s surface corresponding to the esti-
mated axis, which shows promising results. The most re-
cent method by Hong et al. 2019 [31] extended the Cao and
Mumford’smethod.A two-stage axis estimatorPotSACwas
introduced, which is based on a variant of the RANSAC al-
gorithm followed by a robust nonlinear least-squares re-
finement. The high accuracy of this approach as stated by
the authors wasmeasured by applying bootstrapping. The
techniquewas demonstrated on a brokenpot from the 15th
century which was successfully reassembled based on the
estimated axis.

4.1.2 Extraction of the longest profile

Having an estimated axis, thenext step is to generate a ves-
sel profile, which goes beyond a simple sectioning of the
3Dmodel by a plane through the rotational axis. In pottery
studies a profile drawing includes the maximum of pre-
served information of the profile. Sherds are mostly trans-
versely broken, so that a radial section is insufficient and
multiple vertical sections are needed. A solution was pro-
posed by Kampel and Sablatnig 2003 [32] by projecting the
longest profile from several radial sections. Karasik and
Smilansky 2008 [25] finally introduced the concept of the
“mean profile”, which uses the entire information and ex-
cludes local non-representative deformations. This is ob-
tained byminimising themeanwidth of the projected pro-
files on the plane containing the axis.

4.1.3 Segmentation of morphological features

In pottery studies, the vessel shape is divided into single
elements or “primitives” following an anatomical struc-
ture, such as mouth (rim), neck, shoulder, body or foot
(base). Such elements can also be identified in broken
parts. Terms like rim, base or wall piece characterise also
the specific type of preservation conditions of a broken
pottery object. In addition to the primitives, other features
can be detected, such as the internal or external and the
fractured surfaces or “facets”. These semantic morpholog-
ical features (primitives and facets) provide valuable infor-
mation for subsequent classification and retrieval proce-
dures, but also for fragment matching. However, an auto-
matic recognition of these features from 3D geometric data
is not trivial.

The first attempt towards automatically segmenting a
profile into its primitives was started by Mara et al. 2002
[33] using points with local changes in the curvature of the
external profile line. The basic idea is to store its shape
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characteristics in a description of the profile to raise the
level of abstraction of 3D data, which facilitates further
evaluation as stated by Kampel and Sablatnig 2007 [34].
Almost at the same time in the early 2000s a similar ap-
proach was undertaken by a project at the Arizona State
University aiming to investigate vessel uniformity and pro-
portionality as indicators of the development of craft spe-
cialisation and complex social organisation in prehistoric
times [35]. Based on planar vessel profile curves, Saragusti
et al. 2005 [36] demonstrated the application of closed-
curve representations for the quantitative analyses of vari-
ous shape properties like symmetry and deformation.Hörr
et al. 2007 [37] presented a two-step procedure within this
shape analysis approach with the aim of establishing hi-
erarchical classification based on extracted intrinsic fea-
tures of 3D scanned vessels: first, a segmentation of at-
tached elements like handles and of the body in its prim-
itives, and second, feature extraction by global measures.
A complete list of extracted discrete features was given by
Hörr 2011 [38]. This system is strongly designed to the re-
quirements of pottery archaeologists.

The identification of a sherd facet that is fractured and
one that is intact can be solved either using the axial sym-
metry of the vessel or purely on the geometrical proper-
ties of roughness of the fracture facets. ElNaghy and Dorst
2017 [39] took the latter approach. They estimated the lo-
cal surface properties by applying weighted eigenanalysis
of local neighbourhoods. In the course of the GRAVITATE
project, which focuses on terracotta fragments having nor-
mally larger fracture surfaces than pottery objects the au-
thors demonstrated a complete pipeline for faceting ar-
chaeological fragments, also including some pottery frag-
ments. In contrast, Di Angelo et al. 2020 [40] made use of
the property that a pottery fragment is bounded by an ax-
ially symmetric surface, which is only true for the inter-
nal or external wall, the rest belongs either to fractured
surfaces (also chips) or to attached elements (e. g. han-
dles). Additionally, their segmentation includes the recog-
nition of the primitives. This proposed symmetry-based
method fails forworn-off surfaces (negative) and encrusta-
tions (positive) due to chemical andmechanical processes.

4.1.4 Calculation of vessel capacity

The detection of standardisation for vessel sizes with spe-
cific capacities improves our understanding of the ancient
production management, the distribution and consump-
tion of pottery and the underlying economic organisation.

The vessel capacity is traditionally estimated by di-
rect measurements. A method requiring either unbroken

or fully restored vessels. In this case the vessel is filled
with liquid, sand or rice, which are thenmeasured using a
graded beaker. But this procedure has risks for the conser-
vation of the object on the one hand, while on the other it
can often lead to inaccurate measurements.

For this reason, several computer-assisted methods
have been developed to calculate vessel capacity, which
can be roughly classified in three groups. The first group
consists of methods which are based on a division of the
capacity space from the vessel’s base to its rim in geo-
metric figures using a 2D vessel profile. These are either
stacked cylinders or stacked truncated cones which are in
turn measured and each dimension of each figure is cal-
culated and then added together. This mathematical pro-
cedure, which has a long-standing history in pottery re-
search [41], requires no direct access to the vessel and the
application also works on partly broken objects if a com-
plete profile is preserved or can be restored. The correct
result depends on an accurate scaled and recorded profile
drawing. A freely accessible online application, developed
by Engels, Ereck and Warzé from the CReA-Patrimoine of
Bruxelles in the late 2000s and published by Engels et al.
2009 [42], contains additionally an algorithm for detect-
ing the revolution axes within the uploaded profile draw-
ings, separating and identifying the inside profile auto-
matically. By this means the capacity is mathematically
determined, whereas the filling level can be interactively
modified.

The second group of methods also use 2D contour
lines of the vessel profile. Thereby, as it was proposed by
Karasik and Smilansky 2006 [43], that the capacity is recon-
structed and estimated using a curve function by revolving
the interior profile contour around the axis.

Calculations based on 3D models of pottery objects
belong to the last group. Due to the handmade crafted
vessels having only approximately followed a rotational
body, 3D scans provide an accurate recording of the sur-
faces in spatial terms and thus achieve the best possible
result. Whereas for open vessels, like cups, bowls etc.,
the determination of the capacity was achieved by sim-
ple volume calculation of a phantom capacity body, the
closed vessels, i. e. vessels with a narrow mouth, like am-
phorae, lekythoi, aryballoi, etc., need other approaches to
address the problem that the internal surfaces cannot be
determined by 3D scan technologies. Mara and Portl 2013
[44] proposed a method for this by which the internal sur-
faces are estimated based on a rough estimation of thewall
thickness. The external surface was virtually displaced in
a negative direction into the interior of the vessel in accor-
dance with the estimated thickness. Another method us-
ing the weight of the pottery additionally for estimating
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the ceramic volume was developed by Spelitz 2017 [45].
This approach first determines an expected ceramic vol-
ume based on the weight and the ceramicmaterial density
of the pottery object in question. Then, in course of an it-
erative process the outer shape was shifted inwards aim-
ing to minimise the difference between the expected and
the achieved ceramic volume. Finally, the capacity was es-
timated based on the computationally generated internal
surfaces. This method has some drawbacks however, be-
cause the weight of a pottery item can be influenced by
several factors (material added in the course of restoration
work, fracture of the vessel, humidity, etc.) and almost no
reference data is available for ceramic material density in
archaeological pottery research.

Finally, there is computed tomography (CT), which is
the only recording method in the cultural heritage field
to visualise interior (hidden) structures. The application
on Greek pottery was described by Karl et al. 2013 [46].
Based on CT volume data and surface reconstruction us-
ing a threshold value, this technique accurately captures
the internal surfaces of closed (and completely preserved)
vessels with all their irregularities. While radiation influ-
ences on scientific dating methods such as thermolumi-
nescence are negligible on correct implementation [46],
the main weaknesses of CT are high costs and the immo-
bility of its devices; the objects have to be transported to a
CT-Lab.

4.1.5 Unwrapping of paintings

In studies of painted pottery a task of great significance
is the unwrapping, or unrolling, of the painted surfaces
which inmost cases cover thewhole vessel. Theseunwrap-
pings show the depictions without photographic distor-
tions or sectioning by separate photos, enabling archae-
ologists to analyse and interpret the image as a whole in
terms of style, dating and iconography. Rollouts are typi-
cally created manually using tracing paper, which is time-
consuming, error-prone, and frequentlynot evenpermissi-
ble due to the inducedwear caused by the required contact
with the fragile surfaces. During the past decade in par-
ticular, computer-assisted methods have greatly enriched
this archaeological task thanks to the improvements of
high-quality texture acquisition methods.

Bechtold et al. 2010 [47] presented a method to cre-
ate distortion-minimised rollouts from 3D-scanned trian-
gle meshes by approximating the actual vessel shape with
conical frustums and cylinders that each cover a verti-
cal section of the vessel along the rotational axis. Each
of these sections thus forms a body of revolution around

the vessel’s rotational axis. The resulting surface sections
are developable, i. e., they can be flattened (mapped to a
2D plane) without introducing distortions in the process.
The authors further showed that for certain vessel shapes,
individual sections can use special projections. For exam-
ple, Corinthian aryballoi feature an almost spherical body,
thus a cartographic map projection yields less distortions
when mapped to the plane, than the flattening of sev-
eral approximating conical frusta [48]. One drawback is
that due to using several sections for the rollouts, the flat-
tened image is no longer a connected surface. Hence, the
user has to find a trade-off between usingmore sections to
achieve less distortions at the cost of more disconnected
rolled-out bands on the one hand, and using less sections,
yielding an almost connected 2D rollout, though poten-
tially introducing more unwanted distortions on the other
hand.

A different approach was taken by Preiner et al. 2018
[49] who described a technique to flatten vessels given as
3D meshes, with the result that distortions are globally
minimised, even in the presence of highly curved shape
profiles. In contrast to the proxy geometry method [47],
the resulting unrollings form one connected 2D surface.
This is achieved by simulating a physically-based relax-
ation process of a damped mass-spring system defined on
an initial simple (for example cylindrical) rollout, where
the spring tensions correspond to the difference between
the true edge lengths given by the scanned 3D model, and
the edge lengths in the rollout. By allowing these spring
tensions to relax over the course of several simulation it-
erations, the resulting flattened 2D representation of the
vessel surface gradually reduces distortions introduced by
the initial mapping of the 3D surface to the plane.

Houska et al. 2021 [50] observed that most vessels are
documented in the form of small sets of photographs from
different view directions only, so that none of the tech-
niques that operate on 3D meshes are applicable for gen-
erating high-quality rollouts (Fig. 2). The authors showed
how these photographs can serve the same purpose as
3D meshes for this specific application. By assuming ro-
tational symmetry of the artefacts, the silhouette visible in
the photographs encodes the geometric shape of the object
with sufficient accuracy for the initial cylindrical image-
based rollouts to be calculated for each image, while stor-
ing estimated surface distances for each pixel. The rollouts
are then stitched to create a connected depiction of the en-
tire painted surface. In a final step, the elastic flattening
technique [49] is applied to the stitched image, where the
spring tensions are derived from the estimated surface dis-
tance stored in each pixel, instead of requiring these dis-
tances to be read from a 3D input mesh.
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Figure 2: Unwrapping of paintings. Generating high-quality rollouts based on a set of photographs captured from canonical views by com-
puting a complete elastic unrolling of their painted surface area that minimises projective distortions. Courtesy of Houska et al. 2021 [50],
© 2021 The Authors. Eurographics Proceedings © 2021 The Eurographics Association. Reproduced by kind permission of the Eurographics
Association.

4.1.6 Segmentation of surface patterns

Pottery is traditionally divided into coarse and fine pottery
in archaeological research. Fine pottery includes mostly
tableware or other representative pottery objects. The
more expensive pottery tended to use a decoration, which
can be broadly categorised as painted or relief decorated.
Apart from the elaborate paintings as we can see in the
black- or red-figured pottery of ancient Greece for exam-
ple, the decoration consists mostly of geometric or other
simple ornaments applied circumferentially on the vessel
surface and, usually in a repetitive manner. These orna-
ments, painted, stamped, moulded or applied, have been
executed since prehistoric times and are crucial in pot-
tery studies, providing essential information e. g. for dat-
ing or locations of origin. For decades they were meticu-
lously recorded by manual drawings or photography, cat-
aloguedand classified, filling several publications, e. g. for
the painted ornaments of Greek pottery, the decoration of
Hellenistic relief bowls, the moulded as well as stamped
decoration of Roman terra sigillata and many more.

A pioneering attempt to assist this procedure of
archaeologists by computational applications was ap-
proached byMara et al. 2007 [51]. They proposed a detec-
tionof the contours of paintedpatterns for subsequent seg-
mentation. This edge detection using a convolution tech-
nique was applied on 3D surfaces, in this case on painted
Nasca pottery of Peru.

Due to the insufficient quality of the texture acquisi-
tion by scanning technologies at this time, computational
research in this task of pattern segmentation turned in-
creasingly to the analysis of geometric data, e. g. of relief
decoration.

Relief analysis and extraction were applied on re-
lief pottery by Gilboa et al. 2013 [52] which separated the
feature from the (unknown) base surface by a base nor-
mal estimation and a height function calculation follow-
ing threshold segmentation and filtering. In the ARCADIA
project (Automatic Recognition of Ceramics Achieved by
Digital Image Analysis) another method for recording the
engraved friezes of stamped pottery was described by De-
broutelle et al. 2017 [53]. This uses a depth map of a pro-
jected 3Dpoint cloud and creates a binary image of the pat-
tern by employing a local variance operator for enhance-
ment and a density-based spatial clustering for the seg-
mentation. Di Angelo et al. 2018 [54] identified a new geo-
metric pattern on pottery surfaces which can be automat-
ically recognised. These are linear patterns caused by ei-
ther sweeping or engraving the surface using a tool with
a rounded end or by finger pressure. This manufacturing
process leaves traces with an almost constant radius. Due
to irregularities of hand-made pottery the proper segmen-
tation was performed using an algorithm based on the
fuzzy concept of dissimilarity and by a fittingmethod. The
demonstration of this methodology on the recognition of
an embossed decoration of an ancient vessel is promising,
opening various further applications in pottery research
(e. g. for pottery with incised decoration).

A new method for recognising relief but also painted
decoration was proposed by Romanengo et al. 2020 [55].
This is based on the analysis of characteristic curves on
textured 3D surfaces. They developed a two-stagemethod,
which first identify the characteristic surface points on the
surface, each corresponding to a potential characteristic
curve (from a dictionary of curve families) and then uses a
HT-based curve recognition algorithm for each cluster for
finding the best match. This approach of approximating
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detected curves to known curves is remarkable. Based on
this approach a further development could be the replace-
ment of these synthetic curves with ancient ornaments al-
ready catalogued in pottery research.

Another method is to look at painted ornamen-
tal bands with repetitive patterns running horizontally
around the vessel and thus following the same rotation
symmetry as the vessel itself. Repetition and rotation sym-
metry provides two properties for supporting a computer-
assisted detection and segmentation of such pattern char-
acteristics. This was demonstrated by Lengauer et al. 2020
[56] using a semi-automatic extraction tool based on a
combination of user-defined queries and self-similarity
detection.

4.2 Classification

The classification of artefacts has played an important role
in archaeological research as a means of organising find
material [57]. An organisationmethod of this kind is a first
approach that makes it possible to deal with the sheer
quantity of material remains recovered on excavations. In
archaeology, a class is commonly understood as a generic
term referring to a group of objects having the same or sim-
ilar properties, which can be distinguished from other ob-
jects. A simple classification can be seen for example, in
the division between coarse and fine pottery, a distinction
that was first made in pottery processing. The forming of a
typology is also based on similarity properties, but in con-
trast to a classification, this is done with the purpose of
finally defining a “type” which can be taken as a represen-
tative for a specific group of similar objects. A “prototype-
based classification” with pre-defined types as it is called
by Hörr et al. 2007 [37] is in our sense an attribution to an
existing typology.

4.2.1 Classification by vessel shape

The classification of pottery according to the vessel shape
contour or to numeric/nominal shape features (diameter,
height, etc.) is a common manual task in archaeology.
Computational applications for a classification based on
profile drawings – which are omnipresent in pottery stud-
ies - has already been inuse since themid-1970s, e. g. in the
PLUTARCH system and later within the SAMOS and GOAD
project (Sec. 3).

The first attempt to apply mathematical curvature
functions for describing the vessel shapewas presented by
Gilboa et al. 2004 [58]. Their aimwas to develop a comput-
erised typology and classification for pottery. They used

digitised profile drawings for this purpose. The degree of
similarity between objects is quantified by measuring the
distance between the curvature functions. Finally, a clus-
ter analysis is applied for the grouping. The method was
later extended by Karasik and Smilansky 2011 [59], who
added two further curvature functions for radius and tan-
gent. The three representative functions are thenfinally av-
eraged. In addition to cluster analysis, discriminant anal-
ysis is also introduced to reveal a hierarchical classifica-
tion of pottery objects. The method was tested on a bench-
mark assemblage consisting of 358 fragments from the
early Iron Age at Tel Dor resulting in c. 95% correctly iden-
tified pieces. One drawback of this method, however, is
that the curvature functions need a preserved rim of the
vessel for normalisation (the rim maximum was used as
reference point), which means this method cannot be ap-
plied for base or wall pieces.

The feature descriptor Shape context was used by
Van der Maaten et al. 2010 [60] for shape comparison.
The pairwise (dis)similarities are visualised using a tech-
nique knownas t-distributed stochastic neighbour embed-
ding (t-SNE). This method was applied on 996 pottery pro-
files showing ameaningful distribution.Within the Linked
Views Visual Exploration System (LVVES) proposed by
Lengauer et al. 2020 [61] a Shape contour descriptor was
selected for establishing similarity relations, in this case
based on the external contour of the vessel derived only
from images (Fig. 3). Martínez Carrillo et al. 2012 [62] pro-

Figure 3: Classification by vessel shape. Clustering of similar vessel
shapes based on photographs using a Shape contour descriptor.
The balloon views show different levels of recursion depth. Courtesy
of Lengauer et al. 2020 [61], © 2020 The Authors. Eurographics
Proceedings © 2020 The Eurographics Association. Reproduced by
kind permission of the Eurographics Association.
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posedauniquemethod. Theydesigneda comparison tech-
nique on non-rigid deformation analysis. Similarity is ex-
pressed in deformation energy against a prototype. An-
othermethodwas presented by Lucena et al. 2017 [63] who
used simplified curves and a five-segment polyline from
the rim to the base. All these methods are restricted on
completely preserved vessels.

Since the mid-2010s Landmark-based geometric mor-
phometrics have been introduced into the field of pottery
analysis. Due to the curvature of vessel shapes a morpho-
metric outline approach is effective for assessing morpho-
logical variations. For the computation of shape variables
Wilczek et al. 2014 [64] used an elliptic Fourier analysis
(EFA) for closed outlines (silhouette) and a discrete cosine
transform (DCT) for open outlines (profiles). The method
was proven on 154 vessels with completely preserved pro-
files from the Bibracte Gallic oppidum and attributed to
8 main shapes. After performing an unsupervised model-
based clustering, the results show relatively good match-
ing with the existing attribution performed by archaeolo-
gists. A recent practical application of geometric morpho-
metrics and EFA was applied by Wang and Marwick 2020
[65] on pottery from northeastern Taiwan, especially for
comparingpottery shape standardisation and todetect Eu-
ropean influence in local pottery production. Additionally,
geometric morphometrics allow an average shape calcu-
lation, i. e. a representation of a type (and not of an indi-
vidual), but this shape analysis, however, requires vessels
with completely preserved or restored profiles.

Hörr et al. 2014 [66] proposed a three-step classifica-
tion adapting a knowledgediscovery process (KDP)model.
During the first unsupervised phase numerous meaning-
ful morphological features are detected which require a
comprehensive inspection of the findmaterial and archae-
ological expertise (Sec. 4.1.3). The second semi-supervised
phase consists of the weight of the overall similarity func-
tion, the definition of prototypes based on the now avail-
able reasonable similarity metric and in a removal of
highly correlated and irrelevant features. The supervised
third phase employs a machine learning algorithm which
is trained with the already labelled data and continuously
improved during this phase. The entire classification pro-
cess is strongly focused on the forming of a typology. A big
advantage of this approach is the ability it has for handling
missing data, i. e. broken parts etc. The method was suc-
cessfully tested on 3D data of almost 600 vessels from the
large cemetery of Kötitz in Eastern Saxony.

Machine learning (ML) techniques as such as Deep
learning (DL) are becoming widespread in many different
areas of contemporary life (and research). DL is a power-
ful tool for exploring large datasets and discovering new

patterns. Groundbreaking in pottery classification is the
research undertaken by the Department of Computer Sci-
ences of the University of Jaén in Spain, which can look
back to a long tradition in computer-assisted pottery anal-
ysis [3]. In a recently published work by Navarro et al.
2021 [67] DL architectures without prior knowledge or en-
gineered features were described which are able to clas-
sify profile drawings automatically. The authors proposed
a residual neural network for automatic feature extraction
and classification which has been trained with binary im-
ages of Iberian pottery. After training the network the re-
sulting algorithm achieves a mean accuracy of 0.98 over a
test set.

4.2.2 Classification by surface pattern

Classifying and forming typologies of painted or relief or-
naments are common in pottery studies.

Automatic classification processes based on painted
patterns are surprisingly rare, although there several at-
tempts have been made in this direction since the turn of
themillennium. Exceptional for this task is awork inPenn-
sylvania where several ten-thousands of thin-shell porce-
lain fragments with mostly multicoloured linear decora-
tion from the late 18th/early 19th century were found dur-
ing excavations. For the classification of these numerous
sherds with highly visible textures Smith et al. 2010 [68]
proposed a method based on colour and texture charac-
teristics. The texture similarity is estimated by producing
a new image feature descriptor based on total variation ge-
ometry (TVG). This sherd descriptor vector achieves satis-
factory results in the textured sherd classification.

Applications for classifying unordered material and
forming a typology are indissolubly interlinked with re-
trieval tasks of searching for closest matches based on
the vessel shape and/or surface decoration. The stronger
the ML strategies that are involved, the more the bound-
aries between classification and retrieval disappear. A re-
search group of the Laboratoire PRISME of the university
of Orléans in France started quite early with a classifica-
tion approach to order different design classes impressed
on pottery sherds by a carved wooden wheel (from the
medieval ages), with an imagery process derived from 3D
scans. When they started using conventional descriptors
based on Gabor filters and a bag of visual words in 2015,
the results were modest. This changed radically on the in-
clusion of modern ML methods and by training Convolu-
tional Neural Networks (CNN), with the result that classi-
fication accuracies of around 95% are now achieved ac-
cording to Chetouani et al. 2020 [70].
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4.3 Retrieval

Retrieval tasks are crucial to success in pottery analysis,
when searching for similar artefacts in the vast quanti-
ties of published or otherwise available data generated
by archaeologists over many years [71]. The task of re-
trieval deals with the access to information items, charac-
terised by a user information need [72]. To identify the set,
if items satisfying this information need, it first of all re-
quires to be translated into what is known as a query, a
well-defined digital description of the input for a search
engine. In most cases this query is restricted to textual in-
puts which are relatively easy to process. However, over
the past few decades content-based retrieval methods, in
which the query is comprised of other data types, e. g. im-
ages, have received increased attention. With regard to ar-
chaeology, such approaches are a great support if the aim
is to find similar objects to a given artifact which cannot be
sufficiently well describedwith keywords.We differentiate
roughly between retrieval based on shape (Sec. 4.3.1) and
retrieval based on pattern (Sec. 4.3.2).

4.3.1 Shape-based retrieval

Two different aspects of a query exist in general. First, the
modality which describes the data type of the input, e. g.
profile drawings, images or 3D models. Second, how com-
plete the input is. Some approaches require a whole vessel
as a query since they leverage properties of the solid of rev-
olution, while others are tailored to the retrieval from frag-
ments, as they make use of characteristics of the fracture
lines.

The first approaches targeted at the retrieval were
based on the profile curves illustrated in scientific litera-
ture. Martínez Carrillo et al. 2012 [62] presented the CATA
project, an online pottery classification system. They em-
ployed a non-rigid deformation analysis for the compar-
ison of vessels, which captures the deformation energy
required to deform one profile curve into another. Hris-
tov et al. 2013 [73] worked along similar lines and deter-
mined similarities based on the vessel profiles extracted
fromarchaeological drawings. The approachdifferentiates
between inner and outer vessel profiles and defines their
similaritymeasurewith a combined correlation coefficient
of both profiles. Wilczek et al. 2021 [74] identified four al-
ternative profile features which can be used for the com-
parison of the discretely sampled profile contour: (i) the
root-mean-square distances between the registered points
of source and target; (ii) a spectral representation of the
contours; (iii) the point-wise distances from the rotation

axis, together with the angle between the point tangent
and the rotation axis as well as the rate of change of this
angle; and (iv) the approximation of the contourwith a few
polyline segments.

While these approaches are only applicable if the pro-
file curve is given for a whole solid of revolution, Piccoli
et al. 2015 [75] looked explicitly into the case of a query
being comprised merely of a single fragment. They em-
ployed local features – numeric descriptions of significant
areas – in contrast to the previously mentioned global ap-
proaches.

In the CLAROS (Classical Art Research Online Ser-
vices) project initiated by the University of Oxford, pre-
sented by Kurtz et al. 2009 [76], it was planned to build up
a large international research database for Greek pottery,
similar to the well-known Beazley Archive. The proposed
system also supports searching in their large corpus with
an image as a query. Their retrieval is based on a compari-
son of the parametrised profile curves, which they extract
from the images by a foreground separation and discard-
ing any non-object information, a symmetry axis detection
and lastly the sampling of the object contour.Núñez Jareño
et al. 2021 [77] tackled the problem of pottery classification
from images with a DL approach. Even though DL repre-
sents the state-of-the-art in image classification it can fre-
quently not be applied, as it requires a vast amount of la-
belled training data. The authors circumvented this lim-
itation by generating the necessary data synthetically. To
do this, they generated several thousand images, based on
the profile curves published in P. Webster, Roman Samian
Pottery inBritain, Practical handbooks 13, Council for British
Archaeology, London, 1996 with a shape-from-profile tech-
nique and also 3D rendering tools.

Banterle et al. 2017 [78] followed a similar path in the
ArchAIDE project as they alsomade use of similarly gener-
ated synthetic vessels for training a neural network. How-
ever, in contrast to the former project, their approach does
not address the retrieval of complete or near-complete ves-
sels but merely sherds. Consequently, the synthetically
generated 3Dmodels are subjected to a sophisticated frac-
turing step in order to mimic the appearance of real-world
fragments, before they are fed into the network.

The biggest group of methods, especially in recent
years, operate on 3D inputs. A first concept for describ-
ing 3D vessel shapes was given by Hörr et al. 2007 [37]
who combined a set of global measurements like the ob-
ject’s volume and the profile signatures of individual body
primitives with a geometric attribution of vessel attach-
ments like handles. Later on Koutsoudis et al. showed the
capabilities of 3D pottery retrieval based on a parametri-
sation of the shape in Koutsoudis et al. 2010 [79] as well
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Figure 4: Shape-based retrieval. Searching for similar vessels by enabling domain experts to add missing geometry of incomplete objects
and applying an automatic texture inpainting. A conventional image-based retrieval returns similar objects in a ranked list. Courtesy of
Lengauer et al. 2019 [85], © 2019 The Authors. Eurographics Proceedings © 2019 The Eurographics Association. Reproduced by kind per-
mission of the Eurographics Association.

as a set of depth maps, obtained from the 3D shape, in
Koutsoudis et al. 2011 [80]. Sfikas et al. 2016 [81] applied
the PANORAMA descriptor, a well-established feature de-
scriptor from the field of 3D object retrieval, on pottery
objects. The idea behind this approach was to compute
a panoramic depth map of the solid of revolution, from
which local image features are extracted for the compar-
ison.

A very recent entry in the 3D Shape Retrieval Chal-
lenge (SHREC) – an annually held challenge for evaluat-
ing the effectiveness of 3D-shape retrieval algorithms –
by Sipiran et al. [82], has indicated that the identification
of 3D pottery shapes is still an unsolved research objec-
tive. Within this challenge contestants were asked to con-
duct a retrieval on a given set of pottery artefacts from
pre-Columbian cultures in Peru, exhibiting multifaceted
shapes and varied artistic styles. To this end, a training
dataset with about 1,000 objects from the same corpus
was provided. The submitted approaches were predomi-
nantly learning-based, which show a clear predominance
over engineeredmethods, in the basis of sufficient training
data.

Apart from these approaches which are tailored for
3D models of (near-)complete objects, concepts have also
been developed for 3D models of fragments as input. One
of the earlier works here was that of Kampel and Sablat-
nig 2007 [34]. In their approach they leveraged the as-
sumption that pottery sherds are parts of a solid of revo-
lution. The sherd model is registered by determining it’s
rotation axis. In a second step its profile curve is obtained
by intersecting the sherd with a plane aligned to the ro-
tation axis, before a heuristic-based partial matching with
known profile curves is conducted. A more recent publi-
cation by Roman-Rangel et al. 2015 [83] followed a differ-
ent approach by categorising Teotihuacan and Aztec pot-

sherds based on state-of-the-art local 3D surface descrip-
tors. Savelonas et al. 2016 [84] also used local shape de-
scriptors which are combined with a Fisher encoding. One
of themore recent approacheswas given by Lengauer et al.
2019 [85], extended in the year 2020 [86]. Their approach
tackles the omnipresent incompleteness of archaeological
pottery objects by enabling an experienced user to add a
suggested completed outline (a sketch) to the sherd model
before a conventional image-based retrieval is conducted
(Fig. 4).

4.3.2 Pattern-based retrieval

In the past few years, the topic of surface pattern detec-
tion and classification has intensively been researched in
the GRAVITATE project [87] led by the IT Innovation Centre
at the University of Southampton. For example, Moscoso
Thompson and Biasotti 2018 [88] presented the edge-based
LBP descriptor, an adoption to the local binary pattern
(LBP) description for the three dimensional case which al-
lows classification of pattern type for a point location on
the surface mesh by looking at the colour variances in the
neighbourhood of the point. The approach was later im-
proved by Moscoso Thompson et al. 2020 [89] in order to
work on point cloud inputs and for geometric patterns.

Itskovich and Tal 2011 [93] presented a method to find
the best match of a relief mesh in another mesh at a rela-
tively early researchperiod. This calculates similaritymea-
sures based on both salient per-vertex features, as well as
between components that result from segmentation. The
authors demonstrated that their algorithm is successful in
finding similar reliefs even if there is no exact match for
the query.
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Within the field of Greek painted pottery, Crowley and
Zisserman 2013 [94] proposed a method to annotate au-
tomatically figural depictions such as gods, humans, an-
imals, etc. on painted surfaces and using a suitable tex-
tual description by employing a weakly supervised learn-
ing approach. For this, they processed the huge Beazley
Vase Archive at Oxford University, where each vase is not
only photographed from at least one direction, but the de-
picted scene on the vase surface is also briefly described
in a text. By forming clusters of matching images and their
descriptions, they were also able to achieve an automatic
textual annotation of depicted scenes.

Zhou et al. 2016, 2019 [95, 96] focused on the ancient
Native American paddle-stamping tradition, in which
carved wooden paddles were used to impress character-
istic designs on pottery. They employed DL techniques
to link excavated sherd artifacts to the wooden paddle
stamps that gave rise to the specific relief pattern on the
sherd. In the course of their research, they switched the
input modality from RGB depictions of sherds [95] to 3D-
scanned point clouds of sherds [96], since geometry-based
pattern extraction turned out to be more robust for the
type of artifacts at hand. Debroutelle et al. 2017 [53] pre-
sented a similar technique as Zhou et al. 2019 [96], but in-
stead of relying on a CNN they followed an engineered ap-
proach.

The published corpora of painted patterns in archae-
ology are important sources for research on retrievalmeth-
ods. Already in the 2010s a group from Catania [69] pro-
posed a retrieval approach for decorative patterns on Mi-
noan pottery (the Kamares ware). The system was de-
signed as shape matching to a reference image database
of characteristic ornaments for this pottery ware. Another
approach for pattern detection by Lengauer et al. 2020
[56] addressed the repetitiveness of painted ornaments in
bands or friezes runninghorizontally around the vessel ac-
cording to the assumed rotational symmetry.

Pawlowicz and Downum 2021 [97] described a method
to assign a type (from a small set of reference types that
each exhibit discriminative painted geometric shapes) to
photographs of decorated pottery sherds with the help of
a deep neural network. Furthermore, the system supports
querying of a database by comparing feature vectors that
the network calculates for a given input using cosine sim-
ilarity based on the idea that similar images should yield
similar feature vectors, and that comparing those feature
vectors ismore robust than comparing two images directly.
The authors even addressed the “black-box” aspect that is
often associated with neural networks, by showing heat-
map overlays on the input images that highlight those
areas that contribute most to the final network decision.

When classifying sherds, their method yields comparable
assignments as those donemanually by four experts in the
respective field of pottery research (Tusayan White Ware
pottery from the American Southwest).

To further the development of new surface pattern re-
trieval methods Lengauer et al. 2021 [90] presented an ap-
propriate benchmark dataset comprised of a subset of the
pre-Columbian pottery dataset [82] with detailed surface
annotations. The recognition of surface patterns was also
the topic of several SHREC tracks, such as the 2017 track
on “Retrieval of surfaces with similar relief patterns” by
Biasotti et al. 2017 [91] or the 2018 track on “Recognition of
geometric patterns over 3D models” also by Biasotti et al.
2018 [92].

5 Available tools and databases

Several of the methods described in the previous section
havebeen integrated inopenaccessible tools or databases.
They can be roughly divided into documentation tools
(processing a single pottery object) and databases for stor-
ing, classifying and retrieving pottery data.

The GigaMesh Software framework (https://gigamesh.
eu) is an open source software framework especially
adapted to the needs of archaeologists. Assisted by differ-
ent grids the manual orientation of pottery fragments is
facilitated and improved to a remarkable extent. Once ori-
entated, the axis can be set and one or more profile line(s)
of the pottery object can be exported as svg-files. Meshes
can be easily unrolled using rotational symmetric geomet-
ric proxies like cylinder, cone or sphere.

A complete workflow from the orientation of a sherd
to the final archaeological drawing ready for publishing
is realised by the application Computer-Assisted Drawing
of Archaeological Pottery (DACORD) [98]. It offers several
functions, as optimisation of the rotation axis position af-
ter a pre-orientation based on three points, different styles
of drawings (linear, photographic, shading) or a visualisa-
tion of pottery regularity. DACORD is available via the pub-
lic Git-repository (https://github.com/jwilczek-dotcom) or
as supplementary material in [98]. Written in the R lan-
guage and using various libraries, external applications
and software environments (R project, RStudio and Mesh-
Lab), the installation of DACORD (and also RACORD, see
below) is not easy. Two other software systems TroveS-
ketch and Vessel Reconstructor were developed in cooper-
ation between the Archaeological Heritage Service of Sax-
ony and the Chemnitz University of Technology [99] (http:
//www.3dinsight.de). They create multi-colour or stylised

https://gigamesh.eu
https://gigamesh.eu
https://github.com/jwilczek-dotcom
http://www.3dinsight.de
http://www.3dinsight.de
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images of pottery objects ready for publication, gener-
ate profiles, create unrollings of the surfaces (but not
spherical) and reconstruct vessels based on one or more
sherds.

Various public pottery databases exist for retrieving
pottery data. Awell-knowndatabase is theBeazley Archive
Pottery Database (BAPD) (https://www.beazley.ox.ac.uk/
carc/pottery). It is the largest database of ancient Greek
painted pottery in the world comprised of records for al-
most 130,000 objects and some 250,000 photographs or
drawings. Specific pottery databases storing 3D data are
rare. One exception is the Online database for research on
the development of vessel shapes and capacities (ODeeg)
(https://odeeg.acdh.oeaw.ac.at) holding 237 objects in to-
tal. Linked to the research on painted pottery from an-
cient Greek territories and Cyprus, it focuses on capaci-
ties, metadata, measurements, 3D data acquisition/pro-
cessing and to long-term archiving. Comparable to BAPD,
it is strongly connected to the international Corpus Vaso-
rum Antiquorum (CVA) project.

More important in our scope are databases which as-
sist the manual classification and retrieval that is nor-
mally carried out by pottery specialists. One of the earliest
was The Pottery Informatics Query Database (PIQD) [100]
which incorporated methods for classification by vessel
shape based on the encoding of the profile lines (from
drawings or 3D data) asmathematical representations [58,
59]. Designed as open-source online tool, the objects could
be enriched with archaeological metadata. A spatial anal-
ysis of objects was delivered over a Google Earth-based
user interface. In 2015, PIQD joined the CRANE Project
(https://crane.utoronto.ca) of the University of Toronto.
There several improvements were implemented as a pro-
file matching and visual features extraction approach [75].
The recently developed Computer-Assisted Shape Classifi-
cation of Archaeological Pottery Fragments (RACORD) [74]
is also based on 2D profile drawings. It enables a su-
pervised retrieval, i. e. the user has full control over the
criteria used for the best-matching. This best-match re-
trieval procedure calculates a minimum distance (“simi-
larity”) which can be used for unsupervised classification
or also for the quantification of similarity and shape vari-
ability. Again, RACORD is written in the R language, avail-
able via the public Git-repository (https://github.com/
jwilczek-dotcom).

The ProDesLab Pottery Management System [101] is a
structured database able to store and process 3D models
of pottery. The focus of this concept is to extract automati-
cally relevant dimensional attributes and features (axially
andnon-axially symmetric) to support a “semantic decom-

position” of the pottery objects. The database facilitates
queries of the large amount of information extracted.

ArchAIDE (http://www.archaide.eu) [102], a project
fundedby theEU, seeks to redefine the establishedprocess
chain in archaeology pottery research. It is a recognition
system based on a deep learning approach which starts
from a simple photo of a sherd taken by amobile device. It
takes into account the shape, i. e. the profile, and the dec-
oration of the sherd. Up to date the reference database is
populated with Roman Terra Sigillata (TS) and medieval
and postmedieval Majolica. It remains to be seen whether
this system can really assist archaeological work; e. g. for
correct identification of TS pottery one needs an assess-
ment of the fabric, i. e. the ceramic material.

6 Open problems and future
challenges

We have reviewed the most important papers (Sec. 4) for
each of the three main categories in digital pottery anal-
ysis, documentation, classification and retrieval, which
form the standard “pottery processing” chain in archae-
ology (Sec. 1). This selection is based on a total of 243 pa-
pers related to our scope (Sec. 2), which we have collected
during this work (see supplementary material). Whereas
Table 1 gives an overview of those contributions which we
have discussed in our paper, Figure 5 shows a centrifugal
distribution of all papers in relation to the tasks and affili-
ations of the first authors.

Figure 5: Density of work published by time (radius), category (axes)
and first-author affiliation (colour codes as in Table 1).

https://www.beazley.ox.ac.uk/carc/pottery
https://www.beazley.ox.ac.uk/carc/pottery
https://odeeg.acdh.oeaw.ac.at
https://crane.utoronto.ca
https://github.com/jwilczek-dotcom
https://github.com/jwilczek-dotcom
http://www.archaide.eu
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If we move from the centre of Figure 5 outwards sev-
eral clusters can be identified. For instance, the develop-
ment of methods for the estimation of the rotation axis,
the longest profile extraction and the segmentationofmor-
phological features produced many contributions from
the beginning until 2007, mainly from the Vienna Uni-
versity of Technology Pattern Recognition and Image Pro-
cessing Group (PRIP). The topic of axial symmetry con-
tinued to gain attention, but on a weaker level until re-
cent times, with this mostly aiming to improve established
methods. Another cluster has occurred very recently in
the segmentation of painted or relief decorated patterns
task. This group turned up as a result of two new aspects
that emerged at this time. Firstly, from new developments
in 3D data acquisition technologies (e. g. Structure-from-
motion) which are now able to provide colour information
(textures) in a resolution that is adequate for archaeologi-
cal needs. Secondly, from contributions to the SHape RE-
trieval Contest SHREC ‘19 track on feature curve extrac-
tion.

Two further clusters can be recognised along the time
axis of the classification by vessel shapes (one around
2010, the other from 2016 until today). The former is re-
lated to a cooperation between archaeological institutes
at Haifa and Jerusalem and the Weizmann Institute of Sci-
ence at Rehovot aiming to developmathematical and com-
putational tools for pottery analysis. The latter is a devel-
opment resulting from the advent of Machine Learning in
archaeology from which, moreover, the retrieval tasks of
pottery analysis have benefited very greatly. In the cate-
gory of retrieval,works onpattern-based retrieval emerged
late, which was the result of the improved documenta-
tionmethods. A last striking cluster occurred in the shape-
based retrieval task in 2018/19which represents again con-
tributions initiated by the SHREC contest tracks, this time
to the SHREC ‘18 track on the evaluation of the perfor-
mance of retrieval algorithms. Additionally, this cluster
was populated by outcomes of the ArchAIDE project run-
ning at the same time.

The distribution chart reveals also sparsely populated
areas, as along the axes of surface unwrapping and classi-
fication by surface patterns. It is noticeable that computa-
tional applications in this important field of pottery anal-
ysis (e. g. for vase painting studies) are almost completely
lacking.

Based on the reviewed papers from over a quarter of
computational research, we derive a set of lessons learned
to be considered in developing and implementing meth-
ods in archaeological pottery research. Remarkable is that
methods based on 2D vessel profiles – as in the earlyworks
before 1997 – have shown the most significant progress,

nowadays reinforced by applying machine learning meth-
ods. Nevertheless, we must state that digital pottery anal-
ysis has only found its way into the everyday practice of
pottery archaeologists in rare cases. A main obstacle is
thatmany of the proposedmethods are developedwithout
close cooperation to practical pottery archaeologists. The
open problems that have prevented a broader usage can
be summarised according to key criteria for future chal-
lenges:

Scalability: Pottery has come down to us in huge
masses. Sherds in the hundreds per excavation day are
not unusual. The scalability on large-scale data of pottery
finds of the proposed methods is significant. Structured
databases providing tools for feature recognition and at-
tribute extraction are to preferred here, enabling addition-
ally a storage of the object’smetadata (e. g. the pottery fab-
ric, but also find site, trench, stratigraphic layer, etc).

Applicability: Pottery is mostly broken in small frag-
ments and their surfaces are usually eroded or worn-off.
The performance of computational applications based on
images or 3D data ismostly affected either by the preserva-
tion condition of the object, the quality of the input data,
or both. Archaeological researchers working on large find
assemblages have to perform their analysis on all finds
with the same care independent of their preservation con-
dition. This stresses the importance of the applied meth-
ods needing to be designed in a sufficiently robustmanner
to handle this aspect of “real-world” objects.

Adaptability: Scanning of pottery objects to acquire 3D
models is time-consuming. If only the vessel profile is of
importance (e. g. for analysis of the shape development),
then a Laser Aided Profiler is an efficient alternative. In this
context we must have in mind the fact that archaeological
pottery research is mainly based on photos and drawings
(mostly vessel profiles) which have been published in nu-
merous books, articles and papers since the 19th century.
Therefore, addressing and exploiting these variousmodal-
ities of archaeological data for a consistent analysis will be
a key factor in future challenges.

Visibility: The potential of digital pottery analysis is
almost unknown by the archaeological community. Only
in the last few years has it been possible to recognise an
increase of publications in journals close to archaeology,
such as the Journal of Cultural Heritage or the Journal of
Archaeological Science (including the reports series). Pub-
lishing in journals of the proper archaeological domain
has an essential added value, fostering awareness and ac-
ceptance by pottery archaeologists.
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7 Conclusion
Computer-based methods for digital pottery analysis can
definitely help archaeologists to analyse data and to un-
derstand past life. Within this survey of 25 years of digital
pottery analysis research, we have shown the rapid devel-
opments of different methods for supporting certain tasks
in this specific field of archaeology.

In the classic digital processing workflow we are fo-
cusing on the three major categories of pottery analysis,
the documentation, the classification and the retrieval of
pottery objects. Methods addressing these analysis tasks
mostly operate either on 3D geometric shapes (meshes,
point clouds, CT volume data) or on 2D image data (pro-
file drawings, photographs, relief maps, surface unwrap-
pings). While earlier approaches were mainly based on
classic 3Ddata such as (textured)meshes, recent advances
in deep learningmethods buildmore frequently on simple
image-based representations.

The vast quantity of illustrative drawings and pho-
tographs created and captured overmore than a century in
particular, include a significant share of the archaeologi-
cal domain knowledge. New learning-basedmethods raise
the potential to exploit this vast quantity of image-based
data to enrich different archaeological analysis tasks as
well as to open new research on a much wider basis of
data. However, making this data accessible and usable for
thesemethods often requires suitable data structuring and
annotation, which at the moment is still an expensive and
time-consuming task. A particularly important direction
for digital pottery analysis in the near future therefore ap-
pears to be the investigation anddevelopment of improved
methods for the computer-aided preparation and annota-
tion of large pottery data quantities. Themost recentworks
covered in this survey have already paved the way to the
pursuit of this goal.
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